Fix uses of 'absurd' in Fixedpoint.agda
This commit is contained in:
parent
bf74b35c14
commit
9646096c75
|
@ -13,6 +13,7 @@ module Fixedpoint {a} {A : Set a}
|
|||
|
||||
open import Data.Nat.Properties using (+-suc; +-comm)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
|
||||
|
@ -30,7 +31,7 @@ private
|
|||
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
|
||||
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ)
|
||||
... | yes ⊥ᴬ≈a⊓⊥ᴬ = (a , ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ)))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))))
|
||||
where
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
|
||||
|
@ -44,7 +45,7 @@ private
|
|||
-- out, we have exceeded h steps, which shouldn't be possible.
|
||||
|
||||
doStep : ∀ (g hᶜ : ℕ) (a₁ a₂ : A) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h) (a₂≼fa₂ : a₂ ≼ f a₂) → Σ A (λ a → a ≈ f a)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
doStep (suc g') hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes a₂≈fa₂ = (a₂ , a₂≈fa₂)
|
||||
|
@ -70,7 +71,7 @@ private
|
|||
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h)
|
||||
(a₂≼fa₂ : a₂ ≼ f a₂) →
|
||||
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ a
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = absurd (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes _ = a₂≼a
|
||||
|
|
Loading…
Reference in New Issue
Block a user