Move the product instances into its own file
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -9,29 +9,3 @@ record IsEquivalence {a} (A : Set a) (_≈_ : A → A → Set a) : Set a where
|
||||
≈-refl : {a : A} → a ≈ a
|
||||
≈-sym : {a b : A} → a ≈ b → b ≈ a
|
||||
≈-trans : {a b c : A} → a ≈ b → b ≈ c → a ≈ c
|
||||
|
||||
module IsEquivalenceInstances where
|
||||
module ForProd {a} {A B : Set a}
|
||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||||
(eA : IsEquivalence A _≈₁_) (eB : IsEquivalence B _≈₂_) where
|
||||
|
||||
infix 4 _≈_
|
||||
|
||||
_≈_ : A × B → A × B → Set a
|
||||
(a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
|
||||
|
||||
ProdEquivalence : IsEquivalence (A × B) _≈_
|
||||
ProdEquivalence = record
|
||||
{ ≈-refl = λ {p} →
|
||||
( IsEquivalence.≈-refl eA
|
||||
, IsEquivalence.≈-refl eB
|
||||
)
|
||||
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) →
|
||||
( IsEquivalence.≈-sym eA a₁≈a₂
|
||||
, IsEquivalence.≈-sym eB b₁≈b₂
|
||||
)
|
||||
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) →
|
||||
( IsEquivalence.≈-trans eA a₁≈a₂ a₂≈a₃
|
||||
, IsEquivalence.≈-trans eB b₁≈b₂ b₂≈b₃
|
||||
)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user