Compare commits

...

28 Commits

Author SHA1 Message Date
299938d97e Add decidability proofs for properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 22:25:47 -08:00
927030c337 Prove that having a top and bottom element is decidable
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 19:28:56 -08:00
ef3c351bb0 Add some utility proofs about uniqueness etc.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 19:28:27 -08:00
84c4ea6936 Prove final postulate about cycles in graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 22:46:49 -08:00
a277c8f969 Prove walk splitting
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 21:34:39 -08:00
d1700f23fa Add some helpers
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 13:24:27 -08:00
eb2d64f3b5 Properly state all-paths property using simple walks
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 21:31:54 -08:00
14214ab5e7 Reorder definitions to be in the order the graph is built up
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:09:57 -08:00
baece236d3 Re-define 'interior'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:09:14 -08:00
6f642d85e0 Put self-paths into the adjacency graph
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:08:56 -08:00
25fa0140f0 Switch to a path definition that allows trivial self-loops
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:30:10 -08:00
27621992ad Rename a helper
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:25:46 -08:00
e409cceae5 Start on an initial implementation of DAG-based builder
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:24:48 -08:00
8cb082e3c5 Delete original builder (lol)
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:24:29 -08:00
c199e9616f Factor some code out into Utils
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:22:17 -08:00
f5457d8841 Move proof of least element into FiniteHeightLattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-26 13:16:22 +02:00
d99d4a2893 [WIP] Demonstrate partial lattice construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:51:27 +02:00
fbb98de40f Prove the other absorption law
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:26:03 +02:00
706b593d1d Write a lemma to wrangle PartialAbsorb proofs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:14:49 +02:00
45606679f5 Prove one of the absorption laws
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 18:32:23 +02:00
7e099a2561 Delete debugging code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:18:31 +02:00
2808759338 Add instances of semilattice proofs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:18:19 +02:00
42bb8f8792 Extend laws on Path' to Path versions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:59 +02:00
05e693594d Prove idempotence of meet and join
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:25 +02:00
90e0046707 Prove missing congruence law
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:01 +02:00
13eee93255 Remove whitespace errors
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:26:41 +02:00
6243326665 Prove associativity of meet
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:21:59 +02:00
7b2114cd0f Use a convenience function for creating the "greatest path"
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:21:43 +02:00
7 changed files with 464 additions and 852 deletions

View File

@@ -21,7 +21,7 @@ open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using () renaming (isLattice to isLatticeˡ)
module WithProg (prog : Program) where
open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable) -- to disambiguate instance resolution
open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable; ≈ᵐ-Decidable) -- to disambiguate instance resolution
open import Analysis.Forward.Evaluation L prog
open Program prog
@@ -66,7 +66,7 @@ module WithProg (prog : Program) where
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-Decidable isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
open import Fixedpoint analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
public

View File

@@ -5,8 +5,8 @@ module Fixedpoint {a} {A : Set a}
{h : }
{_≈_ : A A Set a}
{_⊔_ : A A A} {_⊓_ : A A A}
(≈-Decidable : IsDecidable _≈_)
(flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
{{ ≈-Decidable : IsDecidable _≈_ }}
{{flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_}}
(f : A A)
(Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
(IsFiniteHeightLattice._≼_ flA) f) where
@@ -28,24 +28,9 @@ private
using ()
renaming
( to ⊥ᴬ
; longestChain to longestChainᴬ
; bounded to boundedᴬ
)
⊥ᴬ≼ : (a : A) ⊥ᴬ a
⊥ᴬ≼ a with ≈-dec a ⊥ᴬ
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊥ᴬ)
... | yes ⊥ᴬ≈a⊓⊥ᴬ = ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ (ChainA.step x≺⊥ᴬ ≈-refl longestChainᴬ))
where
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ a) ⊥ᴬ
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
x≺⊥ᴬ : (⊥ᴬ a) ⊥ᴬ
x≺⊥ᴬ = (≈-trans (⊔-comm _ _) (≈-trans (≈-refl {⊥ᴬ (⊥ᴬ a)}) (absorb-⊔-⊓ ⊥ᴬ a)) , ⊥ᴬ⊓a̷≈⊥ᴬ)
-- using 'g', for gas, here helps make sure the function terminates.
-- since A forms a fixed-height lattice, we must find a solution after
-- 'h' steps at most. Gas is set up such that as soon as it runs
@@ -65,7 +50,7 @@ private
c' rewrite +-comm 1 hᶜ = ChainA.concat c (ChainA.step a₂≺fa₂ ≈-refl (ChainA.done (≈-refl {f a₂})))
fix : Σ A (λ a a f a)
fix = doStep (suc h) 0 ⊥ᴬ ⊥ᴬ (ChainA.done ≈-refl) (+-comm (suc h) 0) ( (f ⊥ᴬ))
fix = doStep (suc h) 0 ⊥ᴬ ⊥ᴬ (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥≼ (f ⊥ᴬ))
aᶠ : A
aᶠ = proj₁ fix
@@ -85,4 +70,4 @@ private
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
aᶠ≼ : (a : A) a f a aᶠ a
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa ( a) (ChainA.done ≈-refl) (+-comm (suc h) 0) ( (f ⊥ᴬ))
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥≼ (f ⊥ᴬ))

View File

@@ -68,6 +68,7 @@ module TransportFiniteHeight
renaming ( to ⊥₁; to ⊤₁; bounded to bounded₁; longestChain to c)
instance
fixedHeight : IsLattice.FixedHeight lB height
fixedHeight = record
{ = f ⊥₁
; = f ⊤₁

View File

@@ -124,28 +124,6 @@ buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = buildCfg s₁ buildCfg s₂
buildCfg (while _ repeat s) = loop (buildCfg s)
private
z≢sf : {n : } (f : Fin n) ¬ (zero suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (List.map suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
finValues : (n : ) Σ (List (Fin n)) Unique
finValues 0 = ([] , Utils.empty)
finValues (suc n') =
let
(inds' , unids') = finValues n'
in
( zero List.map suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
finValues-complete : (n : ) (f : Fin n) f ListMem.∈ (proj₁ (finValues n))
finValues-complete (suc n') zero = RelAny.here refl
finValues-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (finValues-complete n' f'))
module _ (g : Graph) where
open import Data.Product.Properties as ProdProp using ()
private _≟_ = ProdProp.≡-dec (FinProp._≟_ {Graph.size g})
@@ -154,13 +132,13 @@ module _ (g : Graph) where
open import Data.List.Membership.DecPropositional (_≟_) using (_∈?_)
indices : List (Graph.Index g)
indices = proj₁ (finValues (Graph.size g))
indices = proj₁ (fins (Graph.size g))
indices-complete : (idx : (Graph.Index g)) idx ListMem.∈ indices
indices-complete = finValues-complete (Graph.size g)
indices-complete = fins-complete (Graph.size g)
indices-Unique : Unique indices
indices-Unique = proj₂ (finValues (Graph.size g))
indices-Unique = proj₂ (fins (Graph.size g))
predecessors : (Graph.Index g) List (Graph.Index g)
predecessors idx = List.filter (λ idx' (idx' , idx) ∈? (Graph.edges g)) indices

View File

@@ -4,7 +4,8 @@ open import Equivalence
import Chain
open import Relation.Binary.Core using (_Preserves_⟶_ )
open import Relation.Nullary using (Dec; ¬_)
open import Relation.Nullary using (Dec; ¬_; yes; no)
open import Data.Empty using (⊥-elim)
open import Data.Nat as Nat using ()
open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
@@ -236,6 +237,28 @@ record IsFiniteHeightLattice {a} (A : Set a)
field
{{fixedHeight}} : FixedHeight h
-- If the equality is decidable, we can prove that the top and bottom
-- elements of the chain are least and greatest elements of the lattice
module _ {{≈-Decidable : IsDecidable _≈_}} where
open IsDecidable ≈-Decidable using () renaming (R-dec to ≈-dec)
module MyChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
open MyChain.Height fixedHeight using (⊥; ) public
open MyChain.Height fixedHeight using (bounded; longestChain)
⊥≼ : (a : A) a
⊥≼ a with ≈-dec a
... | yes a≈⊥ = ≼-cong a≈⊥ ≈-refl (≼-refl a)
... | no a̷≈⊥ with ≈-dec (a )
... | yes ⊥≈a⊓⊥ = ≈-trans (⊔-comm a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥≈a⊓⊥) (absorb-⊔-⊓ a ))
... | no ⊥ᴬ̷≈a⊓⊥ = ⊥-elim (MyChain.Bounded-suc-n bounded (MyChain.step x≺⊥ ≈-refl longestChain))
where
⊥⊓a̷≈⊥ : ¬ ( a)
⊥⊓a̷≈⊥ = λ ⊥⊓a≈⊥ ⊥ᴬ̷≈a⊓⊥ (≈-trans (≈-sym ⊥⊓a≈⊥) (⊓-comm _ _))
x≺⊥ : ( a)
x≺⊥ = (≈-trans (⊔-comm _ _) (≈-trans (≈-refl { ( a)}) (absorb-⊔-⊓ a)) , ⊥⊓a̷≈⊥)
module ChainMapping {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_≈₂_ : B B Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B}

File diff suppressed because it is too large Load Diff

View File

@@ -1,19 +1,31 @@
module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Product as Prod using (Σ; _×_; _,_; proj₁; proj₂)
open import Data.Nat using (; suc)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties using (suc-injective)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional using (_∈_; lose)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; all?; lookup)
open import Data.List.Relation.Unary.All.Properties using (++⁻ˡ; ++⁻ʳ)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there; any?) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary using (Antisymmetric) renaming (Decidable to Decidable²)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary using (¬_; yes; no; Dec)
open import Relation.Nullary.Decidable using (¬?)
open import Relation.Unary using (Decidable)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
Decidable-¬ : {p c} {C : Set c} {P : C Set p} Decidable P Decidable (λ x ¬ P x)
Decidable-¬ Decidable-P x = ¬? (Decidable-P x)
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : {x : C} {xs : List C}
@@ -34,6 +46,24 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
Unique-++⁻ˡ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique xs
Unique-++⁻ˡ [] Unique-ys = empty
Unique-++⁻ˡ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = push (++⁻ˡ xs {ys = ys} x≢xs++ys) (Unique-++⁻ˡ xs Unique-xs++ys)
Unique-++⁻ʳ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique ys
Unique-++⁻ʳ [] Unique-ys = Unique-ys
Unique-++⁻ʳ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = Unique-++⁻ʳ xs Unique-xs++ys
Unique-∈-++ˡ : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs ¬ x ys
Unique-∈-++ˡ [] _ ()
Unique-∈-++ˡ {x = x} (x' xs) (push x≢xs++ys _) (here refl) = All¬-¬Any (++⁻ʳ xs x≢xs++ys)
Unique-∈-++ˡ {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-∈-++ˡ xs Unique-xs++ys x̷∈xs
Unique-narrow : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs Unique (x ys)
Unique-narrow [] _ ()
Unique-narrow {x = x} (x' xs) (push x≢xs++ys Unique-xs++ys) (here refl) = push (++⁻ʳ xs x≢xs++ys) (Unique-++⁻ʳ xs Unique-xs++ys)
Unique-narrow {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-narrow xs Unique-xs++ys x̷∈xs
All-≢-map : {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
All (λ x' ¬ x x') xs All (λ y' ¬ (f x) y') (mapˡ f xs)
@@ -46,9 +76,8 @@ Unique-map : ∀ {c d} {C : Set c} {D : Set d} {l : List C} (f : C → D) →
Unique-map {l = []} _ _ _ = empty
Unique-map {l = x xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
¬Any-map : {p p₂ c} {C : Set c} {P : C Set p} {P₂ : C Set p₂} {l : List C} ( {x} P₁ x P x) ¬ Any P₂ l ¬ Any P l
¬Any-map f ¬Any-P₂ Any-P₁ = ¬Any-P₂ (Any.map f Any-P₁)
All-single : {p c} {C : Set c} {P : C Set p} {c : C} {l : List C} All P l c l P c
All-single {c = c} {l = x xs} (p ps) (here refl) = p
@@ -106,3 +135,34 @@ _∧_ P Q a = P a × Q a
it : {a} {A : Set a} {{_ : A}} A
it {{x}} = x
z≢sf : {n : } (f : Fin n) ¬ (Fin.zero Fin.suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
fins : (n : ) Σ (List (Fin n)) Unique
fins 0 = ([] , empty)
fins (suc n') =
let
(inds' , unids') = fins n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
fins-complete : (n : ) (f : Fin n) f (proj₁ (fins n))
fins-complete (suc n') zero = here refl
fins-complete (suc n') (suc f') = there (x∈xs⇒fx∈fxs suc (fins-complete n' f'))
findUniversal : {p c} {C : Set c} {R : C C Set p} (l : List C) Decidable² R
Dec (Any (λ x All (R x) l) l)
findUniversal l Rdec = any? (λ x all? (Rdec x) l) l
findUniversal-unique : {p c} {C : Set c} (R : C C Set p) (l : List C)
Antisymmetric _≡_ R
x₁ x₂ x₁ l x₂ l All (R x₁) l All (R x₂) l
x₁ x₂
findUniversal-unique R l Rantisym x₁ x₂ x₁∈l x₂∈l Allx₁ Allx₂ = Rantisym (lookup Allx₁ x₂∈l) (lookup Allx₂ x₁∈l)