Compare commits

..

3 Commits

Author SHA1 Message Date
e0248397b7 Prove that predecessors imply edges
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:18:51 -07:00
41ada43047 Move predecessor code into Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:13:49 -07:00
a081edb881 Add a proof about filter's distributivity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:06:49 -07:00
3 changed files with 25 additions and 7 deletions

View File

@ -86,6 +86,4 @@ record Program : Set where
edge⇒incoming : {s₁ s₂ : State} (s₁ , s₂) ListMem.∈ (Graph.edges graph)
s₁ ListMem.∈ (incoming s₂)
edge⇒incoming {s₁} {s₂} s₁,s₂∈es =
∈-filter⁺ (λ s' (s' , s₂) ∈? (Graph.edges graph))
(states-complete s₁) s₁,s₂∈es
edge⇒incoming = edge⇒predecessor graph

View File

@ -6,7 +6,7 @@ open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺; ∈-filter⁻)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.Nat as Nat using (; suc)
@ -161,3 +161,14 @@ module _ (g : Graph) where
predecessors : (Graph.Index g) List (Graph.Index g)
predecessors idx = List.filter (λ idx' (idx' , idx) ∈? (Graph.edges g)) indices
edge⇒predecessor : {idx₁ idx₂ : Graph.Index g} (idx₁ , idx₂) ListMem.∈ (Graph.edges g)
idx₁ ListMem.∈ (predecessors idx₂)
edge⇒predecessor {idx₁} {idx₂} idx₁,idx₂∈es =
∈-filter⁺ (λ idx' (idx' , idx₂) ∈? (Graph.edges g))
(indices-complete idx₁) idx₁,idx₂∈es
predecessor⇒edge : {idx₁ idx₂ : Graph.Index g} idx₁ ListMem.∈ (predecessors idx₂)
(idx₁ , idx₂) ListMem.∈ (Graph.edges g)
predecessor⇒edge {idx₁} {idx₂} idx₁∈pred =
proj₂ (∈-filter⁻ (λ idx' (idx' , idx₂) ∈? (Graph.edges g)) {v = idx₁} {xs = indices} idx₁∈pred )

View File

@ -3,15 +3,16 @@ module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Nat using (; suc)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr) renaming (map to mapˡ)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Unary using (Decidable)
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
@ -83,6 +84,14 @@ concat-∈ : ∀ {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)} →
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
concat-∈ {ls = l' ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
filter-++ : {a p} {A : Set a} (l₁ l₂ : List A) {P : A Set p} (P? : Decidable P)
filter P? (l₁ ++ l₂) filter P? l₁ ++ filter P? l₂
filter-++ [] l₂ P? = refl
filter-++ (x xs) l₂ P?
with P? x
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
... | no _ = (filter-++ xs l₂ P?)
_⇒_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
_⇒_ P Q = a P a Q a