Compare commits

..

43 Commits

Author SHA1 Message Date
299938d97e Add decidability proofs for properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 22:25:47 -08:00
927030c337 Prove that having a top and bottom element is decidable
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 19:28:56 -08:00
ef3c351bb0 Add some utility proofs about uniqueness etc.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-12-07 19:28:27 -08:00
84c4ea6936 Prove final postulate about cycles in graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 22:46:49 -08:00
a277c8f969 Prove walk splitting
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 21:34:39 -08:00
d1700f23fa Add some helpers
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-29 13:24:27 -08:00
eb2d64f3b5 Properly state all-paths property using simple walks
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 21:31:54 -08:00
14214ab5e7 Reorder definitions to be in the order the graph is built up
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:09:57 -08:00
baece236d3 Re-define 'interior'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:09:14 -08:00
6f642d85e0 Put self-paths into the adjacency graph
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 17:08:56 -08:00
25fa0140f0 Switch to a path definition that allows trivial self-loops
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:30:10 -08:00
27621992ad Rename a helper
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:25:46 -08:00
e409cceae5 Start on an initial implementation of DAG-based builder
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:24:48 -08:00
8cb082e3c5 Delete original builder (lol)
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:24:29 -08:00
c199e9616f Factor some code out into Utils
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-11-28 16:22:17 -08:00
f5457d8841 Move proof of least element into FiniteHeightLattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-26 13:16:22 +02:00
d99d4a2893 [WIP] Demonstrate partial lattice construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:51:27 +02:00
fbb98de40f Prove the other absorption law
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:26:03 +02:00
706b593d1d Write a lemma to wrangle PartialAbsorb proofs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 19:14:49 +02:00
45606679f5 Prove one of the absorption laws
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 18:32:23 +02:00
7e099a2561 Delete debugging code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:18:31 +02:00
2808759338 Add instances of semilattice proofs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:18:19 +02:00
42bb8f8792 Extend laws on Path' to Path versions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:59 +02:00
05e693594d Prove idempotence of meet and join
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:25 +02:00
90e0046707 Prove missing congruence law
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 17:17:01 +02:00
13eee93255 Remove whitespace errors
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:26:41 +02:00
6243326665 Prove associativity of meet
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:21:59 +02:00
7b2114cd0f Use a convenience function for creating the "greatest path"
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-25 15:21:43 +02:00
36ae125e1e Prove associativity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-22 18:05:08 +02:00
6055a79e6a Prove a side lemma about nothing/just
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-22 18:04:53 +02:00
01f7f678d3 Prove congruence of various operations
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-22 18:02:45 +02:00
14f1494fc3 Provide a definition of partial congruence
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-22 18:01:48 +02:00
d3bac2fe60 Switch to representing least/greatest with absorption
It's more convenient this way to require non-partiality.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-22 17:59:54 +02:00
5705f256fd Prove some quasi-homomorphism properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-11 15:49:56 +02:00
d59ae90cef Lock down more equivalence relation proofs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-11 15:46:18 +02:00
c1c34c69a5 Strengthen absorption laws
If x \/ y is defined, x /\ (x \/ y) has to be defined,
too. Previously, we stated them in terms of
"if x /\ (x \/ y) is defined", which is not right.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-11 15:44:29 +02:00
d2faada90a Add a left and right version of identity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-11 15:43:27 +02:00
7fdbf0397d Prove idempotence of value combining
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-05 16:57:24 -07:00
fdef8c0a60 Prove commutativity and associativity of value joining
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-05 16:49:38 -07:00
c48bd0272e Define "less than or equal" for partial lattices and prove some properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-05 14:53:00 -07:00
d251915772 Show that lifted equality preserves equivalences
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-05 14:52:40 -07:00
da6e82d04b Add helper definitions for partial commutativity, associativity, reflexivity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2025-07-02 15:11:12 -05:00
dd101c6e9b Start working on a general lattice builder framework 2025-06-29 10:35:37 -07:00
7 changed files with 483 additions and 55 deletions

View File

@@ -21,7 +21,7 @@ open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using () renaming (isLattice to isLatticeˡ) using () renaming (isLattice to isLatticeˡ)
module WithProg (prog : Program) where module WithProg (prog : Program) where
open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable) -- to disambiguate instance resolution open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable; ≈ᵐ-Decidable) -- to disambiguate instance resolution
open import Analysis.Forward.Evaluation L prog open import Analysis.Forward.Evaluation L prog
open Program prog open Program prog
@@ -66,7 +66,7 @@ module WithProg (prog : Program) where
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂) (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal. -- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-Decidable isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂) open import Fixedpoint analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using () using ()
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result) renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
public public

View File

@@ -5,8 +5,8 @@ module Fixedpoint {a} {A : Set a}
{h : } {h : }
{_≈_ : A A Set a} {_≈_ : A A Set a}
{_⊔_ : A A A} {_⊓_ : A A A} {_⊔_ : A A A} {_⊓_ : A A A}
(≈-Decidable : IsDecidable _≈_) {{ ≈-Decidable : IsDecidable _≈_ }}
(flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_) {{flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_}}
(f : A A) (f : A A)
(Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA) (Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
(IsFiniteHeightLattice._≼_ flA) f) where (IsFiniteHeightLattice._≼_ flA) f) where
@@ -28,24 +28,9 @@ private
using () using ()
renaming renaming
( to ⊥ᴬ ( to ⊥ᴬ
; longestChain to longestChainᴬ
; bounded to boundedᴬ ; bounded to boundedᴬ
) )
⊥ᴬ≼ : (a : A) ⊥ᴬ a
⊥ᴬ≼ a with ≈-dec a ⊥ᴬ
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊥ᴬ)
... | yes ⊥ᴬ≈a⊓⊥ᴬ = ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ (ChainA.step x≺⊥ᴬ ≈-refl longestChainᴬ))
where
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ a) ⊥ᴬ
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
x≺⊥ᴬ : (⊥ᴬ a) ⊥ᴬ
x≺⊥ᴬ = (≈-trans (⊔-comm _ _) (≈-trans (≈-refl {⊥ᴬ (⊥ᴬ a)}) (absorb-⊔-⊓ ⊥ᴬ a)) , ⊥ᴬ⊓a̷≈⊥ᴬ)
-- using 'g', for gas, here helps make sure the function terminates. -- using 'g', for gas, here helps make sure the function terminates.
-- since A forms a fixed-height lattice, we must find a solution after -- since A forms a fixed-height lattice, we must find a solution after
-- 'h' steps at most. Gas is set up such that as soon as it runs -- 'h' steps at most. Gas is set up such that as soon as it runs
@@ -65,7 +50,7 @@ private
c' rewrite +-comm 1 hᶜ = ChainA.concat c (ChainA.step a₂≺fa₂ ≈-refl (ChainA.done (≈-refl {f a₂}))) c' rewrite +-comm 1 hᶜ = ChainA.concat c (ChainA.step a₂≺fa₂ ≈-refl (ChainA.done (≈-refl {f a₂})))
fix : Σ A (λ a a f a) fix : Σ A (λ a a f a)
fix = doStep (suc h) 0 ⊥ᴬ ⊥ᴬ (ChainA.done ≈-refl) (+-comm (suc h) 0) ( (f ⊥ᴬ)) fix = doStep (suc h) 0 ⊥ᴬ ⊥ᴬ (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥≼ (f ⊥ᴬ))
aᶠ : A aᶠ : A
aᶠ = proj₁ fix aᶠ = proj₁ fix
@@ -85,4 +70,4 @@ private
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _ ... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
aᶠ≼ : (a : A) a f a aᶠ a aᶠ≼ : (a : A) a f a aᶠ a
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa ( a) (ChainA.done ≈-refl) (+-comm (suc h) 0) ( (f ⊥ᴬ)) aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥≼ (f ⊥ᴬ))

View File

@@ -68,6 +68,7 @@ module TransportFiniteHeight
renaming ( to ⊥₁; to ⊤₁; bounded to bounded₁; longestChain to c) renaming ( to ⊥₁; to ⊤₁; bounded to bounded₁; longestChain to c)
instance instance
fixedHeight : IsLattice.FixedHeight lB height
fixedHeight = record fixedHeight = record
{ = f ⊥₁ { = f ⊥₁
; = f ⊤₁ ; = f ⊤₁

View File

@@ -124,28 +124,6 @@ buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = buildCfg s₁ buildCfg s₂ buildCfg (if _ then s₁ else s₂) = buildCfg s₁ buildCfg s₂
buildCfg (while _ repeat s) = loop (buildCfg s) buildCfg (while _ repeat s) = loop (buildCfg s)
private
z≢sf : {n : } (f : Fin n) ¬ (zero suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (List.map suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
finValues : (n : ) Σ (List (Fin n)) Unique
finValues 0 = ([] , Utils.empty)
finValues (suc n') =
let
(inds' , unids') = finValues n'
in
( zero List.map suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
finValues-complete : (n : ) (f : Fin n) f ListMem.∈ (proj₁ (finValues n))
finValues-complete (suc n') zero = RelAny.here refl
finValues-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (finValues-complete n' f'))
module _ (g : Graph) where module _ (g : Graph) where
open import Data.Product.Properties as ProdProp using () open import Data.Product.Properties as ProdProp using ()
private _≟_ = ProdProp.≡-dec (FinProp._≟_ {Graph.size g}) private _≟_ = ProdProp.≡-dec (FinProp._≟_ {Graph.size g})
@@ -154,13 +132,13 @@ module _ (g : Graph) where
open import Data.List.Membership.DecPropositional (_≟_) using (_∈?_) open import Data.List.Membership.DecPropositional (_≟_) using (_∈?_)
indices : List (Graph.Index g) indices : List (Graph.Index g)
indices = proj₁ (finValues (Graph.size g)) indices = proj₁ (fins (Graph.size g))
indices-complete : (idx : (Graph.Index g)) idx ListMem.∈ indices indices-complete : (idx : (Graph.Index g)) idx ListMem.∈ indices
indices-complete = finValues-complete (Graph.size g) indices-complete = fins-complete (Graph.size g)
indices-Unique : Unique indices indices-Unique : Unique indices
indices-Unique = proj₂ (finValues (Graph.size g)) indices-Unique = proj₂ (fins (Graph.size g))
predecessors : (Graph.Index g) List (Graph.Index g) predecessors : (Graph.Index g) List (Graph.Index g)
predecessors idx = List.filter (λ idx' (idx' , idx) ∈? (Graph.edges g)) indices predecessors idx = List.filter (λ idx' (idx' , idx) ∈? (Graph.edges g)) indices

View File

@@ -4,7 +4,8 @@ open import Equivalence
import Chain import Chain
open import Relation.Binary.Core using (_Preserves_⟶_ ) open import Relation.Binary.Core using (_Preserves_⟶_ )
open import Relation.Nullary using (Dec; ¬_) open import Relation.Nullary using (Dec; ¬_; yes; no)
open import Data.Empty using (⊥-elim)
open import Data.Nat as Nat using () open import Data.Nat as Nat using ()
open import Data.Product using (_×_; Σ; _,_) open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Sum using (_⊎_; inj₁; inj₂)
@@ -236,6 +237,28 @@ record IsFiniteHeightLattice {a} (A : Set a)
field field
{{fixedHeight}} : FixedHeight h {{fixedHeight}} : FixedHeight h
-- If the equality is decidable, we can prove that the top and bottom
-- elements of the chain are least and greatest elements of the lattice
module _ {{≈-Decidable : IsDecidable _≈_}} where
open IsDecidable ≈-Decidable using () renaming (R-dec to ≈-dec)
module MyChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
open MyChain.Height fixedHeight using (⊥; ) public
open MyChain.Height fixedHeight using (bounded; longestChain)
⊥≼ : (a : A) a
⊥≼ a with ≈-dec a
... | yes a≈⊥ = ≼-cong a≈⊥ ≈-refl (≼-refl a)
... | no a̷≈⊥ with ≈-dec (a )
... | yes ⊥≈a⊓⊥ = ≈-trans (⊔-comm a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥≈a⊓⊥) (absorb-⊔-⊓ a ))
... | no ⊥ᴬ̷≈a⊓⊥ = ⊥-elim (MyChain.Bounded-suc-n bounded (MyChain.step x≺⊥ ≈-refl longestChain))
where
⊥⊓a̷≈⊥ : ¬ ( a)
⊥⊓a̷≈⊥ = λ ⊥⊓a≈⊥ ⊥ᴬ̷≈a⊓⊥ (≈-trans (≈-sym ⊥⊓a≈⊥) (⊓-comm _ _))
x≺⊥ : ( a)
x≺⊥ = (≈-trans (⊔-comm _ _) (≈-trans (≈-refl { ( a)}) (absorb-⊔-⊓ a)) , ⊥⊓a̷≈⊥)
module ChainMapping {a b} {A : Set a} {B : Set b} module ChainMapping {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_≈₂_ : B B Set b} {_≈₁_ : A A Set a} {_≈₂_ : B B Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B} {_⊔₁_ : A A A} {_⊔₂_ : B B B}

381
Lattice/Builder.agda Normal file
View File

@@ -0,0 +1,381 @@
module Lattice.Builder where
open import Lattice
open import Equivalence
open import Utils using (Unique; push; empty; Unique-append; Unique-++⁻ˡ; Unique-++⁻ʳ; Unique-narrow; All¬-¬Any; ¬Any-map; fins; fins-complete; findUniversal; Decidable-¬)
open import Data.Nat as Nat using ()
open import Data.Fin as Fin using (Fin; suc; zero; _≟_)
open import Data.Maybe as Maybe using (Maybe; just; nothing; _>>=_; maybe)
open import Data.Maybe.Properties using (just-injective)
open import Data.Unit using (; tt)
open import Data.List.NonEmpty using (List⁺; tail; toList) renaming (_∷_ to _∷⁺_)
open import Data.List.Membership.Propositional as MemProp using (lose) renaming (_∈_ to _∈ˡ_; mapWith∈ to mapWith∈ˡ)
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ; ∈-++⁺ˡ to ∈ˡ-++⁺ˡ; ∈-cartesianProductWith⁺ to ∈ˡ-cartesianProductWith⁺)
open import Data.List.Relation.Unary.Any using (Any; here; there; any?; satisfied)
open import Data.List.Relation.Unary.Any.Properties using (¬Any[])
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; lookup; zipWith; tabulate; all?)
open import Data.List.Relation.Unary.All.Properties using () renaming (++⁺ to ++ˡ⁺; ++⁻ʳ to ++ˡ⁻ʳ)
open import Data.List using (List; _∷_; []; cartesianProduct; cartesianProductWith; foldr) renaming (_++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-conicalʳ to ++ˡ-conicalʳ; ++-identityʳ to ++ˡ-identityʳ; ++-assoc to ++ˡ-assoc)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (Σ; _,_; _×_; proj₁; proj₂; uncurry)
open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Nullary using (¬_; Dec; yes; no; ¬?)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
open import Relation.Binary using () renaming (Decidable to Decidable²)
open import Relation.Unary using (Decidable)
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_)
record Graph : Set where
constructor mkGraph
field
size :
Node : Set
Node = Fin size
nodes = fins size
nodes-complete = fins-complete size
Edge : Set
Edge = Node × Node
field
edges : List Edge
data Path : Node Node Set where
done : {n : Node} Path n n
step : {n₁ n₂ n₃ : Node} (n₁ , n₂) ∈ˡ edges Path n₂ n₃ Path n₁ n₃
data IsDone : {n₁ n₂} Path n₁ n₂ Set where
isDone : {n : Node} IsDone (done {n})
IsDone? : {n₁ n₂} Decidable (IsDone {n₁} {n₂})
IsDone? done = yes isDone
IsDone? (step _ _) = no (λ {()})
_++_ : {n₁ n₂ n₃} Path n₁ n₂ Path n₂ n₃ Path n₁ n₃
done ++ p = p
(step e p₁) ++ p₂ = step e (p₁ ++ p₂)
++-done : {n₁ n₂} (p : Path n₁ n₂) p ++ done p
++-done done = refl
++-done (step e∈edges p) rewrite ++-done p = refl
++-assoc : {n₁ n₂ n₃ n₄} (p₁ : Path n₁ n₂) (p₂ : Path n₂ n₃) (p₃ : Path n₃ n₄)
(p₁ ++ p₂) ++ p₃ p₁ ++ (p₂ ++ p₃)
++-assoc done p₂ p₃ = refl
++-assoc (step n₁,n∈edges p₁) p₂ p₃ rewrite ++-assoc p₁ p₂ p₃ = refl
IsDone-++ˡ : {n₁ n₂ n₃} (p₁ : Path n₁ n₂) (p₂ : Path n₂ n₃)
¬ IsDone p₁ ¬ IsDone (p₁ ++ p₂)
IsDone-++ˡ done _ done≢done = ⊥-elim (done≢done isDone)
interior : {n₁ n₂} Path n₁ n₂ List Node
interior done = []
interior (step _ done) = []
interior (step {n₂ = n₂} _ p) = n₂ interior p
interior-extend : {n₁ n₂ n₃} (p : Path n₁ n₂) (n₂,n₃∈edges : (n₂ , n₃) ∈ˡ edges)
let p' = (p ++ (step n₂,n₃∈edges done))
in (interior p' interior p) (interior p' interior p ++ˡ (n₂ []))
interior-extend done _ = inj₁ refl
interior-extend (step n₁,n₂∈edges done) n₂n₃∈edges = inj₂ refl
interior-extend {n₂ = n₂} (step {n₂ = n} n₁,n∈edges p@(step _ _)) n₂n₃∈edges
with p ++ (step n₂n₃∈edges done) | interior-extend p n₂n₃∈edges
... | done | inj₁ []≡intp rewrite sym []≡intp = inj₁ refl
... | done | inj₂ []=intp++[n₂] with () ++ˡ-conicalʳ (interior p) (n₂ []) (sym []=intp++[n₂])
... | step _ p | inj₁ IH rewrite IH = inj₁ refl
... | step _ p | inj₂ IH rewrite IH = inj₂ refl
interior-++ : {n₁ n₂ n₃} (p₁ : Path n₁ n₂) (p₂ : Path n₂ n₃)
¬ IsDone p₁ ¬ IsDone p₂
interior (p₁ ++ p₂) interior p₁ ++ˡ (n₂ interior p₂)
interior-++ done _ done≢done _ = ⊥-elim (done≢done isDone)
interior-++ _ done _ done≢done = ⊥-elim (done≢done isDone)
interior-++ (step _ done) (step _ _) _ _ = refl
interior-++ (step n₁,n∈edges p@(step n,n'∈edges p')) p₂ _ p₂≢done
rewrite interior-++ p p₂ (λ {()}) p₂≢done = refl
SimpleWalkVia : List Node Node Node Set
SimpleWalkVia ns n₁ n₂ = Σ (Path n₁ n₂) (λ p Unique (interior p) × All (_∈ˡ ns) (interior p))
SimpleWalk-extend : {n₁ n₂ n₃ ns} (w : SimpleWalkVia ns n₁ n₂) (n₂ , n₃) ∈ˡ edges All (λ ¬ n₂) (interior (proj₁ w)) n₂ ∈ˡ ns SimpleWalkVia ns n₁ n₃
SimpleWalk-extend (p , (Unique-intp , intp⊆ns)) n₂,n₃∈edges w≢n₂ n₂∈ns
with p ++ (step n₂,n₃∈edges done) | interior-extend p n₂,n₃∈edges
... | p' | inj₁ intp'≡intp rewrite sym intp'≡intp = (p' , Unique-intp , intp⊆ns)
... | p' | inj₂ intp'≡intp++[n₂]
with intp++[n₂]⊆ns ++ˡ⁺ intp⊆ns (n₂∈ns [])
rewrite sym intp'≡intp++[n₂] = (p' , (subst Unique (sym intp'≡intp++[n₂]) (Unique-append (¬Any-map sym (All¬-¬Any w≢n₂)) Unique-intp) , intp++[n₂]⊆ns))
∈ˡ-narrow : {x y : Node} {ys : List Node} x ∈ˡ (y ys) ¬ y x x ∈ˡ ys
∈ˡ-narrow (here refl) x≢y = ⊥-elim (x≢y refl)
∈ˡ-narrow (there x∈ys) _ = x∈ys
SplitSimpleWalkViaHelp : {n n₁ n₂ ns} (nⁱ : Node)
(w : SimpleWalkVia (n ns) n₁ n₂)
(p₁ : Path n₁ nⁱ) (p₂ : Path nⁱ n₂)
¬ IsDone p₁ ¬ IsDone p₂
All (_∈ˡ ns) (interior p₁)
proj₁ w p₁ ++ p₂
(Σ (SimpleWalkVia ns n₁ n × SimpleWalkVia ns n n₂) λ (w₁ , w₂) proj₁ w₁ ++ proj₁ w₂ proj₁ w) (Σ (SimpleWalkVia ns n₁ n₂) λ w' proj₁ w' proj₁ w)
SplitSimpleWalkViaHelp nⁱ w done _ done≢done _ _ _ = ⊥-elim (done≢done isDone)
SplitSimpleWalkViaHelp nⁱ w p₁ done _ done≢done _ _ = ⊥-elim (done≢done isDone)
SplitSimpleWalkViaHelp {n} {ns = ns} nⁱ w@(p , (Unique-intp , intp⊆ns)) p₁@(step _ _) p₂@(step {n₂ = nⁱ'} nⁱ,nⁱ',∈edges p₂') p₁≢done p₂≢done intp₁⊆ns p≡p₁++p₂
with intp≡intp₁++[n]++intp₂ trans (cong interior p≡p₁++p₂) (interior-++ p₁ p₂ p₁≢done p₂≢done)
with nⁱ∈n∷ns intp₂⊆n∷ns ++ˡ⁻ʳ (interior p₁) (subst (All (_∈ˡ (n ns))) intp≡intp₁++[n]++intp₂ intp⊆ns)
with nⁱ n
... | yes refl
with Unique-intp₁ Unique-++⁻ˡ (interior p₁) (subst Unique intp≡intp₁++[n]++intp₂ Unique-intp)
with (push n≢intp₂ Unique-intp₂) Unique-++⁻ʳ (interior p₁) (subst Unique intp≡intp₁++[n]++intp₂ Unique-intp)
= inj₁ (((p₁ , (Unique-intp₁ , intp₁⊆ns)) , (p₂ , (Unique-intp₂ , zipWith (uncurry ∈ˡ-narrow) (intp₂⊆n∷ns , n≢intp₂)))) , sym p≡p₁++p₂)
... | no nⁱ≢n
with p₂'
... | done
= let
-- note: copied with below branch. can't use with <- to
-- share and re-use because the termination checker loses the thread.
p₁' = (p₁ ++ (step nⁱ,nⁱ',∈edges done))
n≢nⁱ n≡nⁱ = nⁱ≢n (sym n≡nⁱ)
intp₁'=intp₁++[nⁱ] = subst (λ xs interior p₁' interior p₁ ++ˡ xs) (++ˡ-identityʳ (nⁱ [])) (interior-++ p₁ (step nⁱ,nⁱ',∈edges done) p₁≢done (λ {()}))
intp₁++[nⁱ]⊆ns = ++ˡ⁺ intp₁⊆ns (∈ˡ-narrow nⁱ∈n∷ns n≢nⁱ [])
intp₁'⊆ns = subst (All (_∈ˡ ns)) (sym intp₁'=intp₁++[nⁱ]) intp₁++[nⁱ]⊆ns
-- end shared with below branch.
Unique-intp₁++[nⁱ] = Unique-++⁻ˡ (interior p₁ ++ˡ (nⁱ [])) (subst Unique (trans intp≡intp₁++[n]++intp₂ (sym (++ˡ-assoc (interior p₁) (nⁱ []) []))) Unique-intp)
in inj₂ ((p₁ ++ (step nⁱ,nⁱ',∈edges done) , (subst Unique (sym intp₁'=intp₁++[nⁱ]) Unique-intp₁++[nⁱ] , intp₁'⊆ns)) , sym p≡p₁++p₂)
... | p₂'@(step _ _)
= let p₁' = (p₁ ++ (step nⁱ,nⁱ',∈edges done))
n≢nⁱ n≡nⁱ = nⁱ≢n (sym n≡nⁱ)
intp₁'=intp₁++[nⁱ] = subst (λ xs interior p₁' interior p₁ ++ˡ xs) (++ˡ-identityʳ (nⁱ [])) (interior-++ p₁ (step nⁱ,nⁱ',∈edges done) p₁≢done (λ {()}))
intp₁++[nⁱ]⊆ns = ++ˡ⁺ intp₁⊆ns (∈ˡ-narrow nⁱ∈n∷ns n≢nⁱ [])
intp₁'⊆ns = subst (All (_∈ˡ ns)) (sym intp₁'=intp₁++[nⁱ]) intp₁++[nⁱ]⊆ns
p≡p₁'++p₂' = trans p≡p₁++p₂ (sym (++-assoc p₁ (step nⁱ,nⁱ',∈edges done) p₂'))
in SplitSimpleWalkViaHelp nⁱ' w p₁' p₂' (IsDone-++ˡ _ _ p₁≢done) (λ {()}) intp₁'⊆ns p≡p₁'++p₂'
SplitSimpleWalkVia : {n n₁ n₂ ns} (w : SimpleWalkVia (n ns) n₁ n₂) (Σ (SimpleWalkVia ns n₁ n × SimpleWalkVia ns n n₂) λ (w₁ , w₂) proj₁ w₁ ++ proj₁ w₂ proj₁ w) (Σ (SimpleWalkVia ns n₁ n₂) λ w' proj₁ w' proj₁ w)
SplitSimpleWalkVia (done , (_ , _)) = inj₂ ((done , (empty , [])) , refl)
SplitSimpleWalkVia (step n₁,n₂∈edges done , (_ , _)) = inj₂ ((step n₁,n₂∈edges done , (empty , [])) , refl)
SplitSimpleWalkVia w@(step {n₂ = nⁱ} n₁,nⁱ∈edges p@(step _ _) , (push nⁱ≢intp Unique-intp , nⁱ∈ns intp⊆ns)) = SplitSimpleWalkViaHelp nⁱ w (step n₁,nⁱ∈edges done) p (λ {()}) (λ {()}) [] refl
open import Data.List.Membership.DecSetoid (decSetoid {A = Node} _≟_) using () renaming (_∈?_ to _∈ˡ?_)
splitFromInteriorʳ : {n₁ n₂ n} (p : Path n₁ n₂) n ∈ˡ (interior p)
Σ (Path n n₂) (λ p' ¬ IsDone p' × (Σ (List Node) λ ns interior p ns ++ˡ n interior p'))
splitFromInteriorʳ done ()
splitFromInteriorʳ (step _ done) ()
splitFromInteriorʳ (step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (here refl) = (p' , ((λ {()}) , ([] , refl)))
splitFromInteriorʳ (step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (there n∈intp')
with (p'' , (¬IsDone-p'' , (ns , intp'≡ns++intp''))) splitFromInteriorʳ p' n∈intp'
rewrite intp'≡ns++intp'' = (p'' , (¬IsDone-p'' , (n' ns , refl)))
splitFromInteriorˡ : {n₁ n₂ n} (p : Path n₁ n₂) n ∈ˡ (interior p)
Σ (Path n₁ n) (λ p' ¬ IsDone p' × (Σ (List Node) λ ns interior p interior p' ++ˡ ns))
splitFromInteriorˡ done ()
splitFromInteriorˡ (step _ done) ()
splitFromInteriorˡ p@(step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (here refl) = (step n₁,n'∈edges done , ((λ {()}) , (interior p , refl)))
splitFromInteriorˡ p@(step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (there n∈intp')
with splitFromInteriorˡ p' n∈intp'
... | (p''@(step _ _) , (¬IsDone-p'' , (ns , intp'≡intp''++ns)))
rewrite intp'≡intp''++ns
= (step n₁,n'∈edges p'' , ((λ { () }) , (ns , refl)))
... | (done , (¬IsDone-Done , _)) = ⊥-elim (¬IsDone-Done isDone)
findCycleHelp : {n₁ nⁱ n₂} (p : Path n₁ n₂) (p₁ : Path n₁ nⁱ) (p₂ : Path nⁱ n₂)
¬ IsDone p₁ Unique (interior p₁)
p p₁ ++ p₂
(Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ IsDone (proj₁ w)))
findCycleHelp p p₁ done ¬IsDonep₁ Unique-intp₁ p≡p₁++done rewrite ++-done p₁ = inj₁ ((p₁ , (Unique-intp₁ , tabulate (λ {x} _ nodes-complete x))) , sym p≡p₁++done)
findCycleHelp {nⁱ = nⁱ} p p₁ (step nⁱ,nⁱ'∈edges p₂') ¬IsDone-p₁ Unique-intp₁ p≡p₁++p₂
with nⁱ ∈ˡ? interior p₁
... | no nⁱ∉intp₁ =
let p₁' = p₁ ++ step nⁱ,nⁱ'∈edges done
intp₁'≡intp₁++[nⁱ] = subst (λ xs interior p₁' interior p₁ ++ˡ xs) (++ˡ-identityʳ (nⁱ [])) (interior-++ p₁ (step nⁱ,nⁱ'∈edges done) ¬IsDone-p₁ (λ {()}))
¬IsDone-p₁' = IsDone-++ˡ p₁ (step nⁱ,nⁱ'∈edges done) ¬IsDone-p₁
p≡p₁'++p₂' = trans p≡p₁++p₂ (sym (++-assoc p₁ (step nⁱ,nⁱ'∈edges done) p₂'))
Unique-intp₁' = subst Unique (sym intp₁'≡intp₁++[nⁱ]) (Unique-append nⁱ∉intp₁ Unique-intp₁)
in findCycleHelp p p₁' p₂' ¬IsDone-p₁' Unique-intp₁' p≡p₁'++p₂'
... | yes nⁱ∈intp₁
with (pᶜ , (¬IsDone-pᶜ , (ns , intp₁≡ns++intpᶜ))) splitFromInteriorʳ p₁ nⁱ∈intp₁
rewrite sym (++ˡ-assoc ns (nⁱ []) (interior pᶜ)) =
let Unique-intp₁' = subst Unique intp₁≡ns++intpᶜ Unique-intp₁
in inj₂ (nⁱ , ((pᶜ , (Unique-++⁻ʳ (ns ++ˡ nⁱ []) Unique-intp₁' , tabulate (λ {x} _ nodes-complete x))) , ¬IsDone-pᶜ))
findCycle : {n₁ n₂} (p : Path n₁ n₂) (Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ IsDone (proj₁ w)))
findCycle done = inj₁ ((done , (empty , [])) , refl)
findCycle (step n₁,n₂∈edges done) = inj₁ ((step n₁,n₂∈edges done , (empty , [])) , refl)
findCycle p@(step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) = findCycleHelp p (step n₁,n'∈edges done) p' (λ {()}) empty refl
toSimpleWalk : {n₁ n₂} (p : Path n₁ n₂) SimpleWalkVia (proj₁ nodes) n₁ n₂
toSimpleWalk done = (done , (empty , []))
toSimpleWalk (step {n₂ = nⁱ} n₁,nⁱ∈edges p')
with toSimpleWalk p'
... | (done , _) = (step n₁,nⁱ∈edges done , (empty , []))
... | (p''@(step _ _) , (Unique-intp'' , intp''⊆nodes))
with nⁱ ∈ˡ? interior p''
... | no nⁱ∉intp'' = (step n₁,nⁱ∈edges p'' , (push (tabulate (λ { n∈intp'' refl nⁱ∉intp'' n∈intp'' })) Unique-intp'' , (nodes-complete nⁱ) intp''⊆nodes))
... | yes nⁱ∈intp''
with splitFromInteriorʳ p'' nⁱ∈intp''
... | (done , (¬IsDone=p''ʳ , (ns , intp''≡ns++intp''ʳ))) = ⊥-elim (¬IsDone=p''ʳ isDone)
... | (p''ʳ@(step _ _) , (¬IsDone=p''ʳ , (ns , intp''≡ns++intp''ʳ))) =
-- no rewrites because then I can't reason about the return value of toSimpleWalk
-- rewrite intp''≡ns++intp''ʳ
-- rewrite sym (++ˡ-assoc ns (nⁱ ∷ []) (interior p''ʳ)) =
let reassoc-intp''≡ns++intp''ʳ = subst (interior p'' ≡_) (sym (++ˡ-assoc ns (nⁱ []) (interior p''ʳ))) intp''≡ns++intp''ʳ
intp''ʳ⊆nodes = ++ˡ⁻ʳ (ns ++ˡ nⁱ []) (subst (All (_∈ˡ (proj₁ nodes))) reassoc-intp''≡ns++intp''ʳ intp''⊆nodes)
Unique-ns++intp''ʳ = subst Unique reassoc-intp''≡ns++intp''ʳ Unique-intp''
nⁱ∈p''ˡ = ∈ˡ-++⁺ʳ ns {ys = nⁱ []} (here refl)
in (step n₁,nⁱ∈edges p''ʳ , (Unique-narrow (ns ++ˡ nⁱ []) Unique-ns++intp''ʳ nⁱ∈p''ˡ , nodes-complete nⁱ intp''ʳ⊆nodes ))
toSimpleWalk-IsDone⁻ : {n₁ n₂} (p : Path n₁ n₂)
¬ IsDone p ¬ IsDone (proj₁ (toSimpleWalk p))
toSimpleWalk-IsDone⁻ done ¬IsDone-p _ = ¬IsDone-p isDone
toSimpleWalk-IsDone⁻ (step {n₂ = nⁱ} n₁,nⁱ∈edges p') _ isDone-w
with toSimpleWalk p'
... | (done , _) with () isDone-w
... | (p''@(step _ _) , (Unique-intp'' , intp''⊆nodes))
with nⁱ ∈ˡ? interior p''
... | no nⁱ∉intp'' with () isDone-w
... | yes nⁱ∈intp''
with splitFromInteriorʳ p'' nⁱ∈intp''
... | (done , (¬IsDone=p''ʳ , (ns , intp''≡ns++intp''ʳ))) = ¬IsDone=p''ʳ isDone
... | (p''ʳ@(step _ _) , (¬IsDone=p''ʳ , (ns , intp''≡ns++intp''ʳ)))
with () isDone-w
Adjacency : Set
Adjacency = (n₁ n₂ : Node) List (Path n₁ n₂)
Adjacency-update : (n₁ n₂ : Node) (List (Path n₁ n₂) List (Path n₁ n₂)) Adjacency Adjacency
Adjacency-update n₁ n₂ f adj n₁' n₂'
with n₁ n₁' | n₂ n₂'
... | yes refl | yes refl = f (adj n₁ n₂)
... | _ | _ = adj n₁' n₂'
Adjecency-append : {n₁ n₂ : Node} List (Path n₁ n₂) Adjacency Adjacency
Adjecency-append {n₁} {n₂} ps = Adjacency-update n₁ n₂ (ps ++ˡ_)
Adjacency-append-monotonic : {adj n₁ n₂ n₁' n₂'} {ps : List (Path n₁ n₂)} {p : Path n₁' n₂'} p ∈ˡ adj n₁' n₂' p ∈ˡ Adjecency-append ps adj n₁' n₂'
Adjacency-append-monotonic {adj} {n₁} {n₂} {n₁'} {n₂'} {ps} p∈adj
with n₁ n₁' | n₂ n₂'
... | yes refl | yes refl = ∈ˡ-++⁺ʳ ps p∈adj
... | yes refl | no _ = p∈adj
... | no _ | no _ = p∈adj
... | no _ | yes _ = p∈adj
adj⁰ : Adjacency
adj⁰ n₁ n₂
with n₁ n₂
... | yes refl = done []
... | no _ = []
adj⁰-done : n done ∈ˡ adj⁰ n n
adj⁰-done n
with n n
... | yes refl = here refl
... | no n≢n = ⊥-elim (n≢n refl)
seedWithEdges : (es : List Edge) ( {e} e ∈ˡ es e ∈ˡ edges) Adjacency Adjacency
seedWithEdges es e∈es⇒e∈edges adj = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) Adjacency-update n₁ n₂ ((step n₁n₂∈edges done) ∷_)) adj (mapWith∈ˡ es (λ {e} e∈es (e , e∈es⇒e∈edges e∈es)))
seedWithEdges-monotonic : {n₁ n₂ es adj} (e∈es⇒e∈edges : {e} e ∈ˡ es e ∈ˡ edges) {p} p ∈ˡ adj n₁ n₂ p ∈ˡ seedWithEdges es e∈es⇒e∈edges adj n₁ n₂
seedWithEdges-monotonic {es = []} e∈es⇒e∈edges p∈adj = p∈adj
seedWithEdges-monotonic {es = (n₁ , n₂) es} e∈es⇒e∈edges p∈adj = Adjacency-append-monotonic {ps = step (e∈es⇒e∈edges (here refl)) done []} (seedWithEdges-monotonic (λ e∈es e∈es⇒e∈edges (there e∈es)) p∈adj)
e∈seedWithEdges : {n₁ n₂ es adj} (e∈es⇒e∈edges : {e} e ∈ˡ es e ∈ˡ edges) (n₁n₂∈es : (n₁ , n₂) ∈ˡ es) (step (e∈es⇒e∈edges n₁n₂∈es) done) ∈ˡ seedWithEdges es e∈es⇒e∈edges adj n₁ n₂
e∈seedWithEdges {es = []} e∈es⇒e∈edges ()
e∈seedWithEdges {es = (n₁' , n₂') es} e∈es⇒e∈edges (here refl)
with n₁' n₁' | n₂' n₂'
... | yes refl | yes refl = here refl
... | no n₁'≢n₁' | _ = ⊥-elim (n₁'≢n₁' refl)
... | _ | no n₂'≢n₂' = ⊥-elim (n₂'≢n₂' refl)
e∈seedWithEdges {n₁} {n₂} {es = (n₁' , n₂') es} {adj} e∈es⇒e∈edges (there n₁n₂∈es) = Adjacency-append-monotonic {ps = step (e∈es⇒e∈edges (here refl)) done []} (e∈seedWithEdges (λ e∈es e∈es⇒e∈edges (there e∈es)) n₁n₂∈es)
adj¹ : Adjacency
adj¹ = seedWithEdges edges (λ x x) adj⁰
adj¹-adj⁰ : {n₁ n₂ p} p ∈ˡ adj⁰ n₁ n₂ p ∈ˡ adj¹ n₁ n₂
adj¹-adj⁰ p∈adj⁰ = seedWithEdges-monotonic (λ x x) p∈adj⁰
edge∈adj¹ : {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) (step n₁n₂∈edges done) ∈ˡ adj¹ n₁ n₂
edge∈adj¹ = e∈seedWithEdges (λ x x)
through : Node Adjacency Adjacency
through n adj n₁ n₂ = cartesianProductWith _++_ (adj n₁ n) (adj n n₂) ++ˡ adj n₁ n₂
through-monotonic : adj n {n₁ n₂ p} p ∈ˡ adj n₁ n₂ p ∈ˡ (through n adj) n₁ n₂
through-monotonic adj n p∈adjn₁n₂ = ∈ˡ-++⁺ʳ _ p∈adjn₁n₂
through-++ : adj n {n₁ n₂} {p₁ : Path n₁ n} {p₂ : Path n n₂} p₁ ∈ˡ adj n₁ n p₂ ∈ˡ adj n n₂ (p₁ ++ p₂) ∈ˡ through n adj n₁ n₂
through-++ adj n p₁∈adj p₂∈adj = ∈ˡ-++⁺ˡ (∈ˡ-cartesianProductWith⁺ _++_ p₁∈adj p₂∈adj)
throughAll : List Node Adjacency
throughAll = foldr through adj¹
throughAll-adj₁ : {n₁ n₂ p} ns p ∈ˡ adj¹ n₁ n₂ p ∈ˡ throughAll ns n₁ n₂
throughAll-adj₁ [] p∈adj¹ = p∈adj¹
throughAll-adj₁ (n ns) p∈adj¹ = through-monotonic (throughAll ns) n (throughAll-adj₁ ns p∈adj¹)
paths-throughAll : {n₁ n₂ : Node} (ns : List Node) (w : SimpleWalkVia ns n₁ n₂) proj₁ w ∈ˡ throughAll ns n₁ n₂
paths-throughAll {n₁} [] (done , (_ , _)) = adj¹-adj⁰ (adj⁰-done n₁)
paths-throughAll {n₁} [] (step e∈edges done , (_ , _)) = edge∈adj¹ e∈edges
paths-throughAll {n₁} [] (step _ (step _ _) , (_ , (() _)))
paths-throughAll (n ns) w
with SplitSimpleWalkVia w
... | inj₁ ((w₁ , w₂) , w₁++w₂≡w) rewrite sym w₁++w₂≡w = through-++ (throughAll ns) n (paths-throughAll ns w₁) (paths-throughAll ns w₂)
... | inj₂ (w' , w'≡w) rewrite sym w'≡w = through-monotonic (throughAll ns) n (paths-throughAll ns w')
adj : Adjacency
adj = throughAll (proj₁ nodes)
PathExists : Node Node Set
PathExists n₁ n₂ = Path n₁ n₂
PathExists? : Decidable² PathExists
PathExists? n₁ n₂
with allSimplePathsNoted paths-throughAll {n₁ = n₁} {n₂ = n₂} (proj₁ nodes)
with adj n₁ n₂
... | [] = no (λ p let w = toSimpleWalk p in ¬Any[] (allSimplePathsNoted w))
... | (p ps) = yes p
NoCycles : Set
NoCycles = {n} (p : Path n n) IsDone p
NoCycles? : Dec NoCycles
NoCycles? with any? (λ n any? (Decidable-¬ IsDone?) (adj n n)) (proj₁ nodes)
... | yes existsCycle =
no (λ p,IsDonep let (n , n,n-cycle) = satisfied existsCycle in
let (p , ¬IsDone-p) = satisfied n,n-cycle in
¬IsDone-p (p,IsDonep p))
... | no noCycles =
yes (λ { done isDone
; p@(step {n₁ = n} _ _)
let w = toSimpleWalk p in
let ¬IsDone-w = toSimpleWalk-IsDone⁻ p (λ {()}) in
let w∈adj = paths-throughAll (proj₁ nodes) w in
⊥-elim (noCycles (lose (nodes-complete n) (lose w∈adj ¬IsDone-w)))
})
NoCycles⇒adj-complete : NoCycles {n₁ n₂} {p : Path n₁ n₂} p ∈ˡ adj n₁ n₂
NoCycles⇒adj-complete noCycles {n₁} {n₂} {p}
with findCycle p
... | inj₁ (w , w≡p) rewrite sym w≡p = paths-throughAll (proj₁ nodes) w
... | inj₂ (nᶜ , (wᶜ , wᶜ≢done)) = ⊥-elim (wᶜ≢done (noCycles (proj₁ wᶜ)))
Is- : Node Set
Is- n = All (PathExists n) (proj₁ nodes)
Is-⊥ : Node Set
Is-⊥ n = All (λ n' PathExists n' n) (proj₁ nodes)
Has- : Set
Has- = Any Is- (proj₁ nodes)
Has-T? : Dec Has-
Has-T? = findUniversal (proj₁ nodes) PathExists?
Has-⊥ : Set
Has-⊥ = Any Is-⊥ (proj₁ nodes)
Has-⊥? : Dec Has-⊥
Has-⊥? = findUniversal (proj₁ nodes) (λ n₁ n₂ PathExists? n₂ n₁)

View File

@@ -1,19 +1,31 @@
module Utils where module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_) open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_) open import Data.Product as Prod using (Σ; _×_; _,_; proj₁; proj₂)
open import Data.Nat using (; suc) open import Data.Nat using (; suc)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties using (suc-injective)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ) open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Membership.Propositional using (_∈_; lose)
open import Data.List.Membership.Propositional.Properties as ListMemProp using () open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map) open import Data.List.Relation.Unary.All using (All; []; _∷_; map; all?; lookup)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map open import Data.List.Relation.Unary.All.Properties using (++⁻ˡ; ++⁻ʳ)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there; any?) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_) open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective) open import Function.Definitions using (Injective)
open import Relation.Binary using (Antisymmetric) renaming (Decidable to Decidable²)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong) open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no) open import Relation.Nullary using (¬_; yes; no; Dec)
open import Relation.Nullary.Decidable using (¬?)
open import Relation.Unary using (Decidable) open import Relation.Unary using (Decidable)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
Decidable-¬ : {p c} {C : Set c} {P : C Set p} Decidable P Decidable (λ x ¬ P x)
Decidable-¬ Decidable-P x = ¬? (Decidable-P x)
data Unique {c} {C : Set c} : List C Set c where data Unique {c} {C : Set c} : List C Set c where
empty : Unique [] empty : Unique []
push : {x : C} {xs : List C} push : {x : C} {xs : List C}
@@ -34,6 +46,24 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
help {[]} _ = x'≢x [] help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
Unique-++⁻ˡ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique xs
Unique-++⁻ˡ [] Unique-ys = empty
Unique-++⁻ˡ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = push (++⁻ˡ xs {ys = ys} x≢xs++ys) (Unique-++⁻ˡ xs Unique-xs++ys)
Unique-++⁻ʳ : {c} {C : Set c} (xs : List C) {ys : List C} Unique (xs ++ ys) Unique ys
Unique-++⁻ʳ [] Unique-ys = Unique-ys
Unique-++⁻ʳ (x xs) {ys} (push x≢xs++ys Unique-xs++ys) = Unique-++⁻ʳ xs Unique-xs++ys
Unique-∈-++ˡ : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs ¬ x ys
Unique-∈-++ˡ [] _ ()
Unique-∈-++ˡ {x = x} (x' xs) (push x≢xs++ys _) (here refl) = All¬-¬Any (++⁻ʳ xs x≢xs++ys)
Unique-∈-++ˡ {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-∈-++ˡ xs Unique-xs++ys x̷∈xs
Unique-narrow : {c} {C : Set c} {x : C} (xs : List C) {ys : List C} Unique (xs ++ ys) x xs Unique (x ys)
Unique-narrow [] _ ()
Unique-narrow {x = x} (x' xs) (push x≢xs++ys Unique-xs++ys) (here refl) = push (++⁻ʳ xs x≢xs++ys) (Unique-++⁻ʳ xs Unique-xs++ys)
Unique-narrow {x = x} (x' xs) (push _ Unique-xs++ys) (there x̷∈xs) = Unique-narrow xs Unique-xs++ys x̷∈xs
All-≢-map : {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C D) All-≢-map : {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C D)
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f
All (λ x' ¬ x x') xs All (λ y' ¬ (f x) y') (mapˡ f xs) All (λ x' ¬ x x') xs All (λ y' ¬ (f x) y') (mapˡ f xs)
@@ -46,9 +76,8 @@ Unique-map : ∀ {c d} {C : Set c} {D : Set d} {l : List C} (f : C → D) →
Unique-map {l = []} _ _ _ = empty Unique-map {l = []} _ _ _ = empty
Unique-map {l = x xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs) Unique-map {l = x xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs)
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l ¬Any-map : {p p₂ c} {C : Set c} {P : C Set p} {P₂ : C Set p₂} {l : List C} ( {x} P₁ x P x) ¬ Any P₂ l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px ¬Any-map f ¬Any-P₂ Any-P₁ = ¬Any-P₂ (Any.map f Any-P₁)
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
All-single : {p c} {C : Set c} {P : C Set p} {c : C} {l : List C} All P l c l P c All-single : {p c} {C : Set c} {P : C Set p} {c : C} {l : List C} All P l c l P c
All-single {c = c} {l = x xs} (p ps) (here refl) = p All-single {c = c} {l = x xs} (p ps) (here refl) = p
@@ -106,3 +135,34 @@ _∧_ P Q a = P a × Q a
it : {a} {A : Set a} {{_ : A}} A it : {a} {A : Set a} {{_ : A}} A
it {{x}} = x it {{x}} = x
z≢sf : {n : } (f : Fin n) ¬ (Fin.zero Fin.suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
fins : (n : ) Σ (List (Fin n)) Unique
fins 0 = ([] , empty)
fins (suc n') =
let
(inds' , unids') = fins n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
fins-complete : (n : ) (f : Fin n) f (proj₁ (fins n))
fins-complete (suc n') zero = here refl
fins-complete (suc n') (suc f') = there (x∈xs⇒fx∈fxs suc (fins-complete n' f'))
findUniversal : {p c} {C : Set c} {R : C C Set p} (l : List C) Decidable² R
Dec (Any (λ x All (R x) l) l)
findUniversal l Rdec = any? (λ x all? (Rdec x) l) l
findUniversal-unique : {p c} {C : Set c} (R : C C Set p) (l : List C)
Antisymmetric _≡_ R
x₁ x₂ x₁ l x₂ l All (R x₁) l All (R x₂) l
x₁ x₂
findUniversal-unique R l Rantisym x₁ x₂ x₁∈l x₂∈l Allx₁ Allx₂ = Rantisym (lookup Allx₁ x₂∈l) (lookup Allx₂ x₁∈l)