Add solutions to first three homework assignments.
This commit is contained in:
parent
0619ffc732
commit
526a7c50bc
12
HW1.tex
12
HW1.tex
|
@ -58,7 +58,10 @@ Not quite sure what this question means, but I have a few thoughts:
|
||||||
193nm light, and focused on refining the technique.
|
193nm light, and focused on refining the technique.
|
||||||
\item We started to perform multiple lithography (and maybe etch)
|
\item We started to perform multiple lithography (and maybe etch)
|
||||||
steps for a single layer, which made it possible to
|
steps for a single layer, which made it possible to
|
||||||
halve (or further reduce) the minimum pitch.
|
halve (or further reduce) the minimum pitch. Exposing
|
||||||
|
photoresist more than once also made it possible (from what I can tell) to use all the special
|
||||||
|
techniques (off-axis illumination, immersion, RET), which otherwise constrain masks to being only
|
||||||
|
horizontal or only vertical.
|
||||||
\item Self-aligned mutli-patterning techniques cannot really lay down
|
\item Self-aligned mutli-patterning techniques cannot really lay down
|
||||||
``holes'' in lines; these holes have to be added later.
|
``holes'' in lines; these holes have to be added later.
|
||||||
As a result, layouts of modern CPUs are very regular,
|
As a result, layouts of modern CPUs are very regular,
|
||||||
|
@ -71,7 +74,14 @@ Not quite sure what this question means, but I have a few thoughts:
|
||||||
From the ``Rosetta Stone of Lithography'' it looks like with true double patterning,
|
From the ``Rosetta Stone of Lithography'' it looks like with true double patterning,
|
||||||
the smallest we can get is the 10nm node (50nm pitch).
|
the smallest we can get is the 10nm node (50nm pitch).
|
||||||
|
|
||||||
|
However, the Breakfast Bytes article, right after saying 50nm is the smallest
|
||||||
|
pitch we can get with double patterning, brings up SADP, which is also
|
||||||
|
double patterning, but can go as low as 40nm. In the Rosetta Stone,
|
||||||
|
however, 40nm seems to correspond to `Higher-order pitch division', and not
|
||||||
|
double patterning, so I still think 50nm pitch / 10nm node is the answer here.
|
||||||
|
|
||||||
\section*{Q7}
|
\section*{Q7}
|
||||||
We use tin plasma! Apparently, tin is ``fairly efficient'' at converting laser
|
We use tin plasma! Apparently, tin is ``fairly efficient'' at converting laser
|
||||||
light into EUV.
|
light into EUV.
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
46
HW2.tex
Normal file
46
HW2.tex
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage[margin=1in]{geometry}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\title{Homework 2}
|
||||||
|
\begin{document}
|
||||||
|
\maketitle
|
||||||
|
\section*{Q1}
|
||||||
|
The current scales linearly with oxide capacitance per unit area, $C_{ox}$.
|
||||||
|
Doubling the thickness of the insulator is akin to doubling the distance between the two plates,
|
||||||
|
which halves $C_{ox}$. Thus, current would be halved as well.
|
||||||
|
|
||||||
|
\section*{Q2}
|
||||||
|
This occurs, by definition, at the threshold voltage, $V_t$.
|
||||||
|
|
||||||
|
\section*{Q3}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\linewidth]{Q3.png}
|
||||||
|
\label{fig:iv}
|
||||||
|
\caption{}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section*{Q4}
|
||||||
|
The depletion region is larger because of the potential on the drain.
|
||||||
|
Since (for an NMOS transistor) the source is tied to the lowest potential, to drive current
|
||||||
|
through the transistor, we need to apply potential to the drain.
|
||||||
|
Doing so pushes more carriers into the depletion region, causing it to grow.
|
||||||
|
|
||||||
|
\section*{Q5}
|
||||||
|
The potential is $V_{gs} - V_t$, which is also written as $V_{GT}$ in the book.
|
||||||
|
|
||||||
|
\section*{Q6}
|
||||||
|
The transistor in the picture likely suffers from velocity saturation. I think
|
||||||
|
so because for each step in gate voltage, the current increases by the same amount.
|
||||||
|
However, our simple models predict that this should be a quadratic increase.
|
||||||
|
This difference in behavior is typically caused by velocity saturation.
|
||||||
|
|
||||||
|
\section*{Q7}
|
||||||
|
The transistor in the picture likely suffers from impact ionization.
|
||||||
|
I think so because at high drain-source voltages, the current starts
|
||||||
|
to "bend upwards", increasing more than it is expected to past the saturation
|
||||||
|
point. This can be caused by "hot" electrons producing electron/hole pairs
|
||||||
|
on impact with the substrate atoms. These pairs serve as carriers, thereby
|
||||||
|
contributing to increased current.
|
||||||
|
|
||||||
|
\end{document}
|
121
HW3.tex
Normal file
121
HW3.tex
Normal file
|
@ -0,0 +1,121 @@
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage[margin=1in]{geometry}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\title{Homework 3}
|
||||||
|
\begin{document}
|
||||||
|
\maketitle
|
||||||
|
\section*{Q1}
|
||||||
|
Given the logical formula, we can follow
|
||||||
|
the following process to convert it into strictly
|
||||||
|
inverters, NOR, and NAND gates:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
& \lnot((AB+C)D+E) \\
|
||||||
|
\Leftrightarrow & \lnot(\lnot\lnot(AB+C)D+E) & \text{(negation involutive)} \\
|
||||||
|
\Leftrightarrow & \lnot(\lnot(\lnot(AB+C)+\lnot D)+E) & \text{(DeMorgan's Laws)} \\
|
||||||
|
\Leftrightarrow & \lnot(\lnot(\lnot(\lnot\lnot AB+C)+\lnot D)+E) & \text{(negation involutive)} \\
|
||||||
|
\Leftrightarrow & \lnot(\lnot(\lnot(\lnot(\lnot A + \lnot B)+C)+\lnot D)+E) & \text{(DeMorgan's Laws)} \\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
This corresponds to the following circuit:
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\linewidth]{Q1HW3.png}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
\section*{Q2}
|
||||||
|
Making Scott's adjustment (adding a top-level 'not' to the formula in the assignment) yields the following:
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\linewidth]{Q2.png}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
\section*{Q3}
|
||||||
|
The book gives the following equation for determing the ideal number of stages:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
N &= \log_{\rho}F \\
|
||||||
|
0 &= p_\text{inv} + \rho(1-\ln\rho)
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
Where $p_\text{inv}$ is the intrinsic delay of an inverter.
|
||||||
|
For $p_\text{inv} = 5$, we have $\rho = 6.14$. We then compute $F$:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
& F &= GBH \\
|
||||||
|
& G &= 1 \\
|
||||||
|
& B &= 1 \\
|
||||||
|
& H &= 1000 \\
|
||||||
|
\Rightarrow & F &= 1000
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
The ideal number of stages is then:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\log_\rho F = 3.8 \approx 4
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
For all inverters, then, we get the following:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
\hat{f} &= \sqrt[4]{1000} \\
|
||||||
|
\text{sz}_4 &= 1000/\hat{f}^1 = 178 \\
|
||||||
|
\text{sz}_3 &= 1000/\hat{f}^2 = 31.6 \\
|
||||||
|
\text{sz}_2 &= 1000/\hat{f}^3 = 5.62 \\
|
||||||
|
\text{sz}_1 &= 1000/\hat{f}^4 = 1 \\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
\section*{Q4}
|
||||||
|
First, to compute stage effort $\hat{f}$.
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
& F &= GBH \\
|
||||||
|
& G &= \left(\frac{4}{3}\right)\left(\frac{5}{3}\right)\left(\frac{5}{3}\right) \\
|
||||||
|
& B &= 3 \\
|
||||||
|
& H &= 1000 \\
|
||||||
|
\Rightarrow & F &= 11111
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
Assuimng a $p_\text{invs}$ of 1, and thus $\rho = 3.59$, we get:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\log_\rho F = 7.2 \approx 7
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
Since we currently have 3 stages, we should insert 4 inverters.
|
||||||
|
It appears as though inserting inverters only at the end makes it
|
||||||
|
too difficult for the first-stage NAND gate to drive the 3-branched
|
||||||
|
NOR gates (we end up with an optimal size less than 1). Instead,
|
||||||
|
I will insert two inverters right after the NAND2 gate, and two more
|
||||||
|
inverters at the end. We can now compute gate sizes:
|
||||||
|
|
||||||
|
\begin{equation*}
|
||||||
|
\begin{aligned}
|
||||||
|
\hat{f} &= \sqrt[7]{11111} \\
|
||||||
|
\text{sz}_7 &= 1000/\hat{f}^1 = 264 \\
|
||||||
|
\text{sz}_6 &= 1000/\hat{f}^2 = 69.8 \\
|
||||||
|
\text{sz}_5 &= 1000/\hat{f}^3 * \left(\frac{5}{3}\right) = 30.8 \\
|
||||||
|
\text{sz}_4 &= 1000/\hat{f}^4 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right) = 13.5 \\
|
||||||
|
\text{sz}_3 &= 1000/\hat{f}^5 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right)3 = 10.7 \\
|
||||||
|
\text{sz}_2 &= 1000/\hat{f}^6 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right)3 = 2.84 \\
|
||||||
|
\text{sz}_1 &= 1000/\hat{f}^7 * \left(\frac{5}{3}\right)\left(\frac{5}{3}\right)3 = 1 \\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation*}
|
||||||
|
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user