Add initial implementation of MonadLogic and SFKT-based LogicT
This commit is contained in:
parent
76507ebaab
commit
124b9a8d56
@ -10,8 +10,9 @@ When creating a new Spago project, you can use
|
||||
`spago init --no-comments` or `spago init -C`
|
||||
to generate this file without the comments in this block.
|
||||
-}
|
||||
{ name = "my-project"
|
||||
, dependencies = [ "console", "effect", "prelude" ]
|
||||
{ name = "logic"
|
||||
, dependencies =
|
||||
[ "control", "lists", "maybe", "prelude", "transformers", "tuples" ]
|
||||
, packages = ./packages.dhall
|
||||
, sources = [ "src/**/*.purs", "test/**/*.purs" ]
|
||||
}
|
||||
|
@ -2,9 +2,92 @@ module Main where
|
||||
|
||||
import Prelude
|
||||
|
||||
import Effect (Effect)
|
||||
import Effect.Console (log)
|
||||
import Control.MonadPlus (class MonadPlus, class Alternative, class Alt, class Plus, (<|>), empty)
|
||||
import Control.Monad.Trans.Class (class MonadTrans, lift)
|
||||
import Control.Monad.Reader.Class (class MonadReader, local, class MonadAsk, ask)
|
||||
import Control.Monad.State.Class (class MonadState, state)
|
||||
import Control.Monad.State (runStateT)
|
||||
import Control.Monad.State.Trans (StateT(..))
|
||||
import Data.Tuple.Nested (type (/\), (/\))
|
||||
import Data.Maybe (Maybe(..))
|
||||
|
||||
main :: Effect Unit
|
||||
main = do
|
||||
log "🍝"
|
||||
class (MonadPlus m) <= MonadLogic m where
|
||||
msplit :: forall a. m a -> m (Maybe (a /\ (m a)))
|
||||
interleave :: forall a. m a -> m a -> m a
|
||||
|
||||
fbind :: forall a b m. MonadLogic m => m a -> (a -> m b) -> m b
|
||||
fbind m f = do
|
||||
r <- msplit m
|
||||
case r of
|
||||
Nothing -> empty
|
||||
Just (a /\ m') -> interleave (f a) (m' `fbind` f)
|
||||
|
||||
reflect :: forall a m. MonadLogic m => Maybe (a /\ m a) -> m a
|
||||
reflect Nothing = empty
|
||||
reflect (Just (a /\ ma)) = pure a <|> ma
|
||||
|
||||
infixl 1 fbind as >>-
|
||||
|
||||
type FK :: Type -> Type
|
||||
type FK ans = ans
|
||||
|
||||
type SK :: Type -> Type -> Type
|
||||
type SK ans a = a -> FK ans -> ans
|
||||
|
||||
newtype SFKT :: (Type -> Type) -> Type -> Type
|
||||
newtype SFKT m a = SFKT (forall ans. SK (m ans) a -> FK (m ans) -> m ans)
|
||||
|
||||
unSFKT :: forall a m. SFKT m a -> forall ans. SK (m ans) a -> FK (m ans) -> m ans
|
||||
unSFKT (SFKT f) = f
|
||||
|
||||
instance Functor (SFKT m) where
|
||||
map f m = SFKT (\sk -> unSFKT m (\a -> sk (f a)))
|
||||
|
||||
instance Apply m => Apply (SFKT m) where
|
||||
apply mf ma = SFKT (\sk -> unSFKT mf (\f -> unSFKT ma (\a -> sk (f a))))
|
||||
|
||||
instance Applicative m => Applicative (SFKT m) where
|
||||
pure a = SFKT (\sk fk -> sk a fk)
|
||||
|
||||
instance Bind m => Bind (SFKT m) where
|
||||
bind m f = SFKT (\sk -> unSFKT m (\a -> unSFKT (f a) sk))
|
||||
|
||||
instance Monad m => Monad (SFKT m)
|
||||
|
||||
instance Alt (SFKT m) where
|
||||
alt m1 m2 = SFKT (\sk fk -> unSFKT m1 sk (unSFKT m2 sk fk))
|
||||
|
||||
instance Plus (SFKT m) where
|
||||
empty = SFKT (\_ fk -> fk)
|
||||
|
||||
instance Applicative m => Alternative (SFKT m)
|
||||
|
||||
instance Monad m => MonadPlus (SFKT m)
|
||||
|
||||
instance MonadTrans SFKT where
|
||||
lift m = SFKT (\sk fk -> m >>= (\a -> sk a fk))
|
||||
|
||||
instance Monad m => MonadLogic (SFKT m) where
|
||||
msplit ma = lift (unSFKT ma (\a fk -> pure (Just (a /\ (lift fk >>= reflect)))) (pure Nothing))
|
||||
interleave m1 m2 = do
|
||||
r <- msplit m1
|
||||
case r of
|
||||
Nothing -> m2
|
||||
Just (a /\ m1') -> pure a <|> interleave m2 m1'
|
||||
|
||||
instance MonadAsk r m => MonadAsk r (SFKT m) where
|
||||
ask = lift ask
|
||||
|
||||
instance MonadReader r m => MonadReader r (SFKT m) where
|
||||
local f m = SFKT (\sk -> unSFKT m (\a -> local f <<< sk a))
|
||||
|
||||
instance MonadState s m => MonadState s (SFKT m) where
|
||||
state f = lift $ state f
|
||||
|
||||
instance MonadLogic m => MonadLogic (StateT s m) where
|
||||
msplit sm = StateT $ \s -> do
|
||||
r <- msplit (runStateT sm s)
|
||||
case r of
|
||||
Nothing -> pure (Nothing /\ s)
|
||||
Just ((a /\ s') /\ m) -> pure (Just (a /\ (StateT $ const m)) /\ s')
|
||||
interleave m1 m2 = StateT $ \s -> runStateT m1 s <|> runStateT m2 s
|
||||
|
Loading…
Reference in New Issue
Block a user