More progress on Coq post.
This commit is contained in:
parent
6f9a2ce092
commit
43dfee56cc
@ -249,6 +249,9 @@ the program terminates in an "ok" state. Here's a rule for terminating in the "o
|
||||
{(c, a, v) \Rightarrow_{p} (c, a, v)}
|
||||
{{< /latex >}}
|
||||
|
||||
{{< todo >}}
|
||||
We can make this closer to the Coq version.
|
||||
{{< /todo >}}
|
||||
When our program counter reaches the end of the program, we are also done evaluating it. Even though
|
||||
both rules {{< sidenote "right" "redundant-note" "lead to the same conclusion," >}}
|
||||
In fact, if the end of the program is never included in the valid set, the second rule is completely redundant.
|
||||
@ -284,7 +287,7 @@ case - it only says an instruction shouldn't be run twice. The "valid set", alth
|
||||
this debate, is our invention, and isn't part of the original specification.
|
||||
|
||||
There is, however, something we can infer from this problem. Since the problem of jumping "too far behind" or
|
||||
"too far ahead" is never mentioned, we can assume that _all jumps will lead either to a valid instruction,
|
||||
"too far ahead" is never mentioned, we can assume that _all jumps will lead either to an instruction,
|
||||
or right to the end of a program_. This means that \\(c\\) is a natural number, with
|
||||
|
||||
{{< latex >}}
|
||||
@ -355,3 +358,156 @@ If we were to access its elements by indices starting at 0, we'd be allowed to a
|
||||
These are precisely the values of the finite natural numbers less than \\(n\\), \\(\\text{Fin} \\; n \\).
|
||||
Thus, given such an index \\(\\text{Fin} \\; n\\) and a vector \\(\\text{Vec} \\; t \\; n\\), we are guaranteed
|
||||
to be able to retrieve the element at the given index! In our code, we will not have to worry about bounds checking.
|
||||
|
||||
Of course, if our program has \\(n\\) elements, our program counter will be a finite number less than \\(n+1\\),
|
||||
since there's always the possibility of it pointing past the instructions, indicating that we've finished
|
||||
running the program. This leads to some minor complications: we can't safely access the program instruction
|
||||
at index \\(\\text{Fin} \\; (n+1)\\). We can solve this problem by considering two cases:
|
||||
either our index points one past the end of the program (in which case its value is exactly the finite
|
||||
representation of \\(n\\)), or it's less than \\(n\\), in which case we can "tighten" the upper bound,
|
||||
and convert that index into a \\(\\text{Fin} \\; n\\). We formalize it in a lemma:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 80 82 >}}
|
||||
|
||||
{{< todo >}}Prove this (at least informally) {{< /todo >}}
|
||||
|
||||
There's a little bit of a gotcha here. Instead of translating our above statement literally,
|
||||
and returning a value that's the result of "tightening" our input `f`, we return a value
|
||||
`f'` that can be "weakened" to `f`. This is because "tightening" is not a total function -
|
||||
it's not always possible to convert a \\(\\text{Fin} \\; (n+1)\\) into a \\(\\text{Fin} \\; n\\).
|
||||
However, "weakening" \\(\\text{Fin} \\; n\\) _is_ a total function, since a number less than \\(n\\)
|
||||
is, by the transitive property of a total order, also less than \\(n+1\\).
|
||||
|
||||
Next, let's talk about addition, specifically the kind of addition done by the \\(\\texttt{jmp}\\) instruction.
|
||||
We can always add an integer to a natural number, but we can at best guarantee that the result
|
||||
will be an integer. For instance, we can add `-1000` to `1`, and get `-999`, which is _not_ a natural
|
||||
number. We implement this kind of addition in a function called `jump_t`:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 56 56 >}}
|
||||
|
||||
At the moment, its definition is not particularly important. What is important, though,
|
||||
is that it takes a bounded natural number `pc` (our program counter), an integer `off`
|
||||
(the offset provided by the jump instruction) and returns another integer representing
|
||||
the final offset. Why are integers of type `t`? Well, it so happens
|
||||
that Coq provides facilities for working with arbitrary implementations of integers,
|
||||
without relying on how they are implemented under the hood. This can be seen in its
|
||||
[`Coq.ZArith.Int`](https://coq.inria.fr/library/Coq.ZArith.Int.html) module,
|
||||
which describes what functions and types an implementation of integers should provide.
|
||||
Among those is `t`, the type an integer in such an arbitrary implementation. We too
|
||||
will not make an assumption about how the integers are implemented, and simply
|
||||
use this generic `t` from now on.
|
||||
|
||||
#### Semantics in Coq
|
||||
|
||||
Now that we've seen finite sets and vectors, it's time to use them to
|
||||
encode our semantics in Coq. Let's start with jumps. Suppose we wanted to write a function that _does_ return a valid program
|
||||
counter after adding the offset to it. Since it's possible for this function to fail
|
||||
(for instance, if the offset is very negative), it has to return `option (fin (S n))`.
|
||||
That is, this function may either fail (returning `None`) or succeed, returning
|
||||
`Some f`, where `f` is of type `fin (S n)`, aka \\(\\text{Fin} \\; (n + 1)\\). Here's
|
||||
the function in Coq (again, don't worry too much about the definition):
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 61 61 >}}
|
||||
|
||||
But earlier, didn't we say:
|
||||
|
||||
> All jumps will lead either to an instruction, or right to the end of a program.
|
||||
|
||||
To make Coq aware of this constraint, we'll have to formalize this notion. To
|
||||
start off, we'll define the notion of a "valid instruction", which is guaranteed
|
||||
to keep the program counter in the correct range.
|
||||
There are a couple of ways to do this, but we'll use yet another definition based
|
||||
on inference rules. First, though, observe that the same instruction may be valid
|
||||
for one program, and invalid for another. For instance, \\(\\texttt{jmp} \\; 100\\)
|
||||
is perfectly valid for a program with thousands of instructions, but if it occurs
|
||||
in a program with only 3 instructions, it will certainly lead to disaster. Specifically,
|
||||
the validity of an instruction depends on the length of the program in which it resides,
|
||||
and the program counter at which it's encountered.
|
||||
Thus, we refine our idea of validity to "being valid for a program of length n at program counter f".
|
||||
For this, we can use the following two inference rules:
|
||||
|
||||
{{< latex >}}
|
||||
\frac
|
||||
{c : \text{Fin} \; n}
|
||||
{\texttt{acc} \; t \; \text{valid for} \; n, c }
|
||||
\quad
|
||||
\frac
|
||||
{c : \text{Fin} \; n \quad o \in \{\texttt{nop}, \texttt{jmp}\} \quad J_v(c, t) = \text{Some} \; c' }
|
||||
{o \; t \; \text{valid for} \; n, c }
|
||||
{{< /latex >}}
|
||||
|
||||
The first rule states that if a program has length \\(n\\), then it's valid
|
||||
at any program counter whose value is less than \\(n\\). This is because running
|
||||
\\(\\texttt{add}\\) will increment the program counter \\(c\\) by 1,
|
||||
and thus, create a new program counter that's less than \\(n+1\\),
|
||||
which, as we discussed above, is perfectly valid.
|
||||
|
||||
The second rule works for the other two instructions. It has an extra premise:
|
||||
the result of `jump_valid_t` (written as \\(J_v\\)) has to be \\(\\text{Some} \\; c'\\),
|
||||
that is, `jump_valid_t` must succeed. Now, if an instruction satisfies these validity
|
||||
rules for a given program at a given program counter, evaluating it will always
|
||||
result in a program counter that has a proper value.
|
||||
|
||||
We encode this in Coq as follows:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 152 157 >}}
|
||||
|
||||
Note that we have three rules instead of two. This is because we "unfolded"
|
||||
\\(o\\) from our second rule: rather than using set notation (or "or"), we
|
||||
just generated two rules that vary in nothing but the operation involved.
|
||||
|
||||
Of course, we must have that every instruction in a program is valid.
|
||||
We don't really need inference rules for this, as much as a "forall" quantifier.
|
||||
A program \\(p\\) of length \\(n\\) is valid if the following holds:
|
||||
|
||||
{{< latex >}}
|
||||
\forall (c : \text{Fin} \; n). p[c] \; \text{valid for} \; n, c
|
||||
{{< /latex >}}
|
||||
|
||||
That is, for every possible in-bounds program counter \\(c\\),
|
||||
the instruction at the program counter is valid. We can now
|
||||
encode this in Coq, too:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 160 161 >}}
|
||||
|
||||
In the above, we use `input n` to mean "a program of length `n`".
|
||||
This is just an alias for `vect inst n`, a vector of instructions
|
||||
of length `n`. In the above, `n` is made implicit where possible.
|
||||
Since \\(c\\) (called `pc` in the code) is of type \\(\\text{Fin} \\; n\\), there's no
|
||||
need to write \\(n\\) _again_.
|
||||
|
||||
Finally, it's time to get started on the semantics themselves.
|
||||
We start with the inductive definition of \\((\\rightarrow_i)\\).
|
||||
I think this is fairly straightforward. We use
|
||||
`t` instead of \\(n\\) from the rules, and we use `FS`
|
||||
instead of \\(+1\\). Also, we make the formerly implicit
|
||||
assumption that \\(c+n\\) is valid explicit, by
|
||||
providing a proof that `valid_jump_t pc t = Some pc'`.
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 103 110 >}}
|
||||
|
||||
Next, it will help us to combine the premises for a
|
||||
"failed" and "ok" terminations into Coq data types.
|
||||
This will help us formulate a lemma later on. Here they are:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 112 117 >}}
|
||||
|
||||
Since all of out "termination" rules start and
|
||||
end in the same state, there's no reason to
|
||||
write that state twice. Thus, both `done`
|
||||
and `stuck` only take the input `inp`,
|
||||
and the state, which includes the accumulator
|
||||
`acc`, set of allowed program counters `v`, and
|
||||
the program counter at which the program came to an end.
|
||||
When the program terminates successfully, this program
|
||||
counter will be equal to the length of the program `n`,
|
||||
so we use `nat_to_fin n`. On the other hand, if the program
|
||||
terminates in as stuck state, it must be that it terminated
|
||||
at a program counter that points to an instruction. Thus, this
|
||||
program counter is actually a \\(\\text{Fin} \\; n\\), and not
|
||||
a \\(\\text{Fin} \\ (n+1)\\) (we use the same "weakening" trick
|
||||
we saw earlier), and is not in the set of allowed program counters.
|
||||
|
||||
Finally, we encode the three inference rules we came up with:
|
||||
|
||||
{{< codelines "Coq" "aoc-2020/day8.v" 119 126 >}}
|
||||
|
Loading…
Reference in New Issue
Block a user