Extract common parsing code

This commit is contained in:
2019-12-31 21:59:13 -08:00
parent 4e918db5cb
commit 80410c9200
5 changed files with 113 additions and 130 deletions

View File

@@ -269,18 +269,18 @@ by prepending the word "temp" to that number. We start
with `temp0`, then `temp1`, and so on. To keep a counter,
we can use a state monad:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 269 269 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 230 230 >}}
Don't worry about the `Map.Map String [String]`, we'll get to that in a bit.
For now, all we have to worry about is the second element of the tuple,
the integer counting how many temporary variables we've used. We can
get the current temporary variable as follows:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 271 274 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 232 235 >}}
We can also get a fresh temporary variable like this:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 276 279 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 237 240 >}}
Now, the
{{< sidenote "left" "code-note" "code" >}}
@@ -297,7 +297,7 @@ source code for the blog (which includes this project)
<a href="https://dev.danilafe.com/Web-Projects/blog-static">here</a>.
{{< /sidenote >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 364 369 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 325 330 >}}
##### Implementing "lazy evaluation"
Lazy evaluation in functional programs usually arises from
@@ -344,20 +344,20 @@ and also of the dependencies of each variable (the variables that need
to be access before the variable itself). We compute such a map for
each selector as follows:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 337 337 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 298 298 >}}
We update the existing map using `Map.union`:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 338 338 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 299 299 >}}
And, after we're done generating expressions in the body of this selector,
we clear it to its previous value `vs`:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 341 341 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 302 302 >}}
We generate a single selector as follows:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 307 320 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 268 281 >}}
This generates a function definition statement, which we will examine in
generated Python code later on.
@@ -366,7 +366,7 @@ Solving the problem this way also introduces another gotcha: sometimes,
a variable is produced by a function call, and other times the variable
is just a Python variable. We write this as follows:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 322 327 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 283 288 >}}
##### Special Case Insertion
This is a silly language for a single homework assignment. I'm not
@@ -377,7 +377,7 @@ a list, it can also return the list from its base case. Thus,
that's all we will try to figure out. The checking code is so
short that we can include the whole snippet at once:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 258 266 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 219 227 >}}
`mergePossibleType`
{{< sidenote "right" "bool-identity-note" "figures out" >}}
@@ -404,7 +404,7 @@ My Haskell linter actually suggested a pretty clever way of writing
the whole "add a base case if this function returns a list" code.
Check it out:
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 299 305 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageOne.hs" 260 266 >}}
Specifically, look at the line with `let fastReturn = ...`. It
uses a list comprehension: we take a parameter `p` from the list of

View File

@@ -87,14 +87,14 @@ time, and nor do we have to perform any fancy Python nested function declaration
To keep with the Python convention of lowercase variables, we'll translate the
uppercase "global" variables to lowercase. We'll do it like so:
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 211 220 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 167 176 >}}
Note that we translated "L" and "R" to integer literals. We'll indicate the source of
each element with an integer, since there's no real point to representing it with
a string or a variable. We'll need to be aware of this when we implement the actual, generic
mergesort code. Let's do that now:
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 145 205 >}}
{{< codelines "Haskell" "cs325-langs/src/LanguageTwo.hs" 101 161 >}}
This is probably the ugliest part of this assignment: we handwrote a Python
AST in Haskell that implements mergesort with our augmentations. Note that