Compare commits
47 Commits
donations
...
7fb3c26633
| Author | SHA1 | Date | |
|---|---|---|---|
| 7fb3c26633 | |||
| 21ca8e5e90 | |||
| f719cedc37 | |||
| 22e70f7164 | |||
| a573a0b765 | |||
| ca1abf951f | |||
| 2efa3c4a42 | |||
| f3fd177235 | |||
| 092f98c17a | |||
| eec6174562 | |||
| 81efcea0e5 | |||
| 7ac85b5b1e | |||
| 1b35ca32ac | |||
| 97c989e465 | |||
| b43b81cc02 | |||
| c061e3e1b2 | |||
| cd61c47e35 | |||
| 4f9b3669a2 | |||
| 7164140c15 | |||
| d41973f1a8 | |||
| 8806f2862d | |||
| 36989c76ee | |||
| 13aef5b3c0 | |||
| b8f9f93537 | |||
| 1c93d28441 | |||
| 2ce351f7ef | |||
| 826dde759f | |||
| d1aa966737 | |||
| 4d24e7095b | |||
| 6c1940f5d2 | |||
| 30c395151d | |||
| d72e64c7f9 | |||
| abdc8e5056 | |||
| bc754c7a7d | |||
| 84ad8d43b5 | |||
| e440630497 | |||
| 71689fce79 | |||
| e7185ff460 | |||
| 18f493675a | |||
| 0c004b2e85 | |||
| c214d9ee37 | |||
| 72259c16a9 | |||
| 66b656ada5 | |||
| 46e4ca3948 | |||
| f2bf2fb025 | |||
| 50d48deec1 | |||
| 3c905aa1d7 |
3
.gitmodules
vendored
@@ -7,3 +7,6 @@
|
|||||||
[submodule "themes/vanilla"]
|
[submodule "themes/vanilla"]
|
||||||
path = themes/vanilla
|
path = themes/vanilla
|
||||||
url = https://dev.danilafe.com/Web-Projects/vanilla-hugo.git
|
url = https://dev.danilafe.com/Web-Projects/vanilla-hugo.git
|
||||||
|
[submodule "code/server-config"]
|
||||||
|
path = code/server-config
|
||||||
|
url = https://dev.danilafe.com/Nix-Configs/server-config
|
||||||
|
|||||||
82
analyze.rb
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
require "pathname"
|
||||||
|
require "set"
|
||||||
|
require "json"
|
||||||
|
|
||||||
|
def resolve_path(bp, p)
|
||||||
|
path = nil
|
||||||
|
if bp.start_with? "."
|
||||||
|
path = Pathname.new(File.join(bp, p)).cleanpath.to_s
|
||||||
|
elsif p.start_with? "blog/"
|
||||||
|
path = File.join("content", p)
|
||||||
|
else
|
||||||
|
path = File.join("content", "blog", p)
|
||||||
|
end
|
||||||
|
if File.directory? path
|
||||||
|
path = File.join(path, "index.md")
|
||||||
|
elsif !path.end_with? ".md"
|
||||||
|
path += ".md"
|
||||||
|
end
|
||||||
|
path.gsub("blog/blog/", "blog/")
|
||||||
|
end
|
||||||
|
|
||||||
|
files = Set.new
|
||||||
|
refs = {}
|
||||||
|
ARGF.each do |file|
|
||||||
|
file = file.chomp
|
||||||
|
files << file
|
||||||
|
arr = refs[file] || (refs[file] = [])
|
||||||
|
File.open(file).read.scan(/< relref "([^"]+)" >/) do |ref|
|
||||||
|
ref = resolve_path(File.dirname(file), ref[0])
|
||||||
|
arr << ref
|
||||||
|
files << ref
|
||||||
|
end
|
||||||
|
arr.uniq!
|
||||||
|
end
|
||||||
|
|
||||||
|
data = {}
|
||||||
|
id = 0
|
||||||
|
files.each do |file|
|
||||||
|
id += 1
|
||||||
|
name = file
|
||||||
|
tags = []
|
||||||
|
group = 1
|
||||||
|
value = File.size(file)
|
||||||
|
url = file.gsub(/^content/, "https://danilafe.com").delete_suffix("/index.md").delete_suffix(".md")
|
||||||
|
File.readlines(file).each do |l|
|
||||||
|
if l =~ /^title: (.+)$/
|
||||||
|
name = $~[1].delete_prefix('"').delete_suffix('"')
|
||||||
|
elsif l =~ /^tags: (.+)$/
|
||||||
|
tags = $~[1].delete_prefix("[").delete_suffix("]").split(/,\s?/).map { |it| it.gsub('"', '') }
|
||||||
|
if tags.include? "Compilers"
|
||||||
|
group = 2
|
||||||
|
elsif tags.include? "Coq"
|
||||||
|
group = 3
|
||||||
|
elsif tags.include? "Programming Languages"
|
||||||
|
group = 4
|
||||||
|
elsif tags.include? "Haskell"
|
||||||
|
group = 5
|
||||||
|
elsif tags.include? "Crystal"
|
||||||
|
group = 6
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
data[file] = { :id => id, :label => name, :group => group, :tags => tags, :url => url, :value => value }
|
||||||
|
end
|
||||||
|
|
||||||
|
edges = []
|
||||||
|
files.each do |file1|
|
||||||
|
# files.each do |file2|
|
||||||
|
# next if file1 == file2
|
||||||
|
# next unless data[file1][:tags].any? { |t| data[file2][:tags].include? t }
|
||||||
|
# edges << { :from => data[file1][:id], :to => data[file2][:id] }
|
||||||
|
# end
|
||||||
|
next unless frefs = refs[file1]
|
||||||
|
frefs.each do |ref|
|
||||||
|
edges << { :from => data[file1][:id], :to => data[ref][:id] }
|
||||||
|
end
|
||||||
|
end
|
||||||
|
edges.uniq
|
||||||
|
# edges.filter! { |e| e[:from] < e[:to] }
|
||||||
|
|
||||||
|
puts ("const nodes = " + JSON.pretty_unparse(data.values) + ";")
|
||||||
|
puts ("const edges = " + JSON.pretty_unparse(edges) + ";")
|
||||||
@@ -17,12 +17,32 @@
|
|||||||
border-bottom-right-radius: 0;
|
border-bottom-right-radius: 0;
|
||||||
padding-left: 0.5em;
|
padding-left: 0.5em;
|
||||||
padding-right: 0.5rem;
|
padding-right: 0.5rem;
|
||||||
|
|
||||||
|
@include below-container-width {
|
||||||
|
@include bordered-block;
|
||||||
|
text-align: center;
|
||||||
|
border-bottom: none;
|
||||||
|
border-bottom-left-radius: 0;
|
||||||
|
border-bottom-right-radius: 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
&:last-child {
|
&:last-child {
|
||||||
@include bordered-block;
|
@include bordered-block;
|
||||||
border-top-left-radius: 0;
|
border-top-left-radius: 0;
|
||||||
border-bottom-left-radius: 0;
|
border-bottom-left-radius: 0;
|
||||||
|
|
||||||
|
@include below-container-width {
|
||||||
|
@include bordered-block;
|
||||||
|
border-top-left-radius: 0;
|
||||||
|
border-top-right-radius: 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
tr {
|
||||||
|
@include below-container-width {
|
||||||
|
margin-bottom: 0.5rem;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
179
code/dawn/Dawn.v
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
Require Import Coq.Lists.List.
|
||||||
|
From Ltac2 Require Import Ltac2.
|
||||||
|
|
||||||
|
Inductive intrinsic :=
|
||||||
|
| swap
|
||||||
|
| clone
|
||||||
|
| drop
|
||||||
|
| quote
|
||||||
|
| compose
|
||||||
|
| apply.
|
||||||
|
|
||||||
|
Inductive expr :=
|
||||||
|
| e_int (i : intrinsic)
|
||||||
|
| e_quote (e : expr)
|
||||||
|
| e_comp (e1 e2 : expr).
|
||||||
|
|
||||||
|
Definition e_compose (e : expr) (es : list expr) := fold_left e_comp es e.
|
||||||
|
|
||||||
|
Inductive IsValue : expr -> Prop :=
|
||||||
|
| Val_quote : forall {e : expr}, IsValue (e_quote e).
|
||||||
|
|
||||||
|
Definition value := { v : expr & IsValue v }.
|
||||||
|
Definition value_stack := list value.
|
||||||
|
|
||||||
|
Definition v_quote (e : expr) := existT IsValue (e_quote e) Val_quote.
|
||||||
|
|
||||||
|
Inductive Sem_int : value_stack -> intrinsic -> value_stack -> Prop :=
|
||||||
|
| Sem_swap : forall (v v' : value) (vs : value_stack), Sem_int (v' :: v :: vs) swap (v :: v' :: vs)
|
||||||
|
| Sem_clone : forall (v : value) (vs : value_stack), Sem_int (v :: vs) clone (v :: v :: vs)
|
||||||
|
| Sem_drop : forall (v : value) (vs : value_stack), Sem_int (v :: vs) drop vs
|
||||||
|
| Sem_quote : forall (v : value) (vs : value_stack), Sem_int (v :: vs) quote ((v_quote (projT1 v)) :: vs)
|
||||||
|
| Sem_compose : forall (e e' : expr) (vs : value_stack), Sem_int (v_quote e' :: v_quote e :: vs) compose (v_quote (e_comp e e') :: vs)
|
||||||
|
| Sem_apply : forall (e : expr) (vs vs': value_stack), Sem_expr vs e vs' -> Sem_int (v_quote e :: vs) apply vs'
|
||||||
|
|
||||||
|
with Sem_expr : value_stack -> expr -> value_stack -> Prop :=
|
||||||
|
| Sem_e_int : forall (i : intrinsic) (vs vs' : value_stack), Sem_int vs i vs' -> Sem_expr vs (e_int i) vs'
|
||||||
|
| Sem_e_quote : forall (e : expr) (vs : value_stack), Sem_expr vs (e_quote e) (v_quote e :: vs)
|
||||||
|
| Sem_e_comp : forall (e1 e2 : expr) (vs1 vs2 vs3 : value_stack),
|
||||||
|
Sem_expr vs1 e1 vs2 -> Sem_expr vs2 e2 vs3 -> Sem_expr vs1 (e_comp e1 e2) vs3.
|
||||||
|
|
||||||
|
Definition false : expr := e_quote (e_int drop).
|
||||||
|
Definition false_v : value := v_quote (e_int drop).
|
||||||
|
|
||||||
|
Definition true : expr := e_quote (e_comp (e_int swap) (e_int drop)).
|
||||||
|
Definition true_v : value := v_quote (e_comp (e_int swap) (e_int drop)).
|
||||||
|
|
||||||
|
Theorem false_correct : forall (v v' : value) (vs : value_stack), Sem_expr (v' :: v :: vs) (e_comp false (e_int apply)) (v :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v v' vs.
|
||||||
|
eapply Sem_e_comp.
|
||||||
|
- apply Sem_e_quote.
|
||||||
|
- apply Sem_e_int. apply Sem_apply. apply Sem_e_int. apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem true_correct : forall (v v' : value) (vs : value_stack), Sem_expr (v' :: v :: vs) (e_comp true (e_int apply)) (v' :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v v' vs.
|
||||||
|
eapply Sem_e_comp.
|
||||||
|
- apply Sem_e_quote.
|
||||||
|
- apply Sem_e_int. apply Sem_apply. eapply Sem_e_comp.
|
||||||
|
* apply Sem_e_int. apply Sem_swap.
|
||||||
|
* apply Sem_e_int. apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition or : expr := e_comp (e_int clone) (e_int apply).
|
||||||
|
|
||||||
|
Theorem or_false_v : forall (v : value) (vs : value_stack), Sem_expr (false_v :: v :: vs) or (v :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v vs.
|
||||||
|
eapply Sem_e_comp...
|
||||||
|
- apply Sem_clone.
|
||||||
|
- apply Sem_apply... apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem or_true : forall (v : value) (vs : value_stack), Sem_expr (true_v :: v :: vs) or (true_v :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v vs.
|
||||||
|
eapply Sem_e_comp...
|
||||||
|
- apply Sem_clone...
|
||||||
|
- apply Sem_apply. eapply Sem_e_comp...
|
||||||
|
* apply Sem_swap.
|
||||||
|
* apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition or_false_false := or_false_v false_v.
|
||||||
|
Definition or_false_true := or_false_v true_v.
|
||||||
|
Definition or_true_false := or_true false_v.
|
||||||
|
Definition or_true_true := or_true true_v.
|
||||||
|
|
||||||
|
Fixpoint quote_n (n : nat) :=
|
||||||
|
match n with
|
||||||
|
| O => e_int quote
|
||||||
|
| S n' => e_compose (quote_n n') (e_int swap :: e_int quote :: e_int swap :: e_int compose :: nil)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Theorem quote_2_correct : forall (v1 v2 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v2 :: v1 :: vs) (quote_n 1) (v_quote (e_comp (projT1 v1) (projT1 v2)) :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v1 v2 vs. simpl.
|
||||||
|
repeat (eapply Sem_e_comp)...
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem quote_3_correct : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (quote_n 2) (v_quote (e_comp (projT1 v1) (e_comp (projT1 v2) (projT1 v3))) :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v1 v2 v3 vs. simpl.
|
||||||
|
repeat (eapply Sem_e_comp)...
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac2 rec solve_basic () := Control.enter (fun _ =>
|
||||||
|
match! goal with
|
||||||
|
| [|- Sem_int ?vs1 swap ?vs2] => apply Sem_swap
|
||||||
|
| [|- Sem_int ?vs1 clone ?vs2] => apply Sem_clone
|
||||||
|
| [|- Sem_int ?vs1 drop ?vs2] => apply Sem_drop
|
||||||
|
| [|- Sem_int ?vs1 quote ?vs2] => apply Sem_quote
|
||||||
|
| [|- Sem_int ?vs1 compose ?vs2] => apply Sem_compose
|
||||||
|
| [|- Sem_int ?vs1 apply ?vs2] => apply Sem_apply
|
||||||
|
| [|- Sem_expr ?vs1 (e_comp ?e1 ?e2) ?vs2] => eapply Sem_e_comp; solve_basic ()
|
||||||
|
| [|- Sem_expr ?vs1 (e_int ?e) ?vs2] => apply Sem_e_int; solve_basic ()
|
||||||
|
| [|- Sem_expr ?vs1 (e_quote ?e) ?vs2] => apply Sem_e_quote
|
||||||
|
| [_ : _ |- _] => ()
|
||||||
|
end).
|
||||||
|
|
||||||
|
Theorem quote_2_correct' : forall (v1 v2 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v2 :: v1 :: vs) (quote_n 1) (v_quote (e_comp (projT1 v1) (projT1 v2)) :: vs).
|
||||||
|
Proof. intros. simpl. solve_basic (). Qed.
|
||||||
|
|
||||||
|
Theorem quote_3_correct' : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (quote_n 2) (v_quote (e_comp (projT1 v1) (e_comp (projT1 v2) (projT1 v3))) :: vs).
|
||||||
|
Proof. intros. simpl. solve_basic (). Qed.
|
||||||
|
|
||||||
|
Definition rotate_n (n : nat) := e_compose (quote_n n) (e_int swap :: e_int quote :: e_int compose :: e_int apply :: nil).
|
||||||
|
|
||||||
|
Lemma eval_value : forall (v : value) (vs : value_stack),
|
||||||
|
Sem_expr vs (projT1 v) (v :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v vs.
|
||||||
|
destruct v. destruct i.
|
||||||
|
simpl. apply Sem_e_quote.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem rotate_3_correct : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (rotate_n 1) (v1 :: v3 :: v2 :: vs).
|
||||||
|
Proof.
|
||||||
|
intros. unfold rotate_n. simpl. solve_basic ().
|
||||||
|
repeat (eapply Sem_e_comp); apply eval_value.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem rotate_4_correct : forall (v1 v2 v3 v4 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v4 :: v3 :: v2 :: v1 :: vs) (rotate_n 2) (v1 :: v4 :: v3 :: v2 :: vs).
|
||||||
|
Proof.
|
||||||
|
intros. unfold rotate_n. simpl. solve_basic ().
|
||||||
|
repeat (eapply Sem_e_comp); apply eval_value.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem e_comp_assoc : forall (e1 e2 e3 : expr) (vs vs' : value_stack),
|
||||||
|
Sem_expr vs (e_comp e1 (e_comp e2 e3)) vs' <-> Sem_expr vs (e_comp (e_comp e1 e2) e3) vs'.
|
||||||
|
Proof.
|
||||||
|
intros e1 e2 e3 vs vs'.
|
||||||
|
split; intros Heval.
|
||||||
|
- inversion Heval; subst. inversion H4; subst.
|
||||||
|
eapply Sem_e_comp. eapply Sem_e_comp. apply H2. apply H3. apply H6.
|
||||||
|
- inversion Heval; subst. inversion H2; subst.
|
||||||
|
eapply Sem_e_comp. apply H3. eapply Sem_e_comp. apply H6. apply H4.
|
||||||
|
Qed.
|
||||||
254
code/dawn/DawnEval.v
Normal file
@@ -0,0 +1,254 @@
|
|||||||
|
Require Import Coq.Lists.List.
|
||||||
|
Require Import DawnV2.
|
||||||
|
Require Import Coq.Program.Equality.
|
||||||
|
From Ltac2 Require Import Ltac2.
|
||||||
|
|
||||||
|
Inductive step_result :=
|
||||||
|
| err
|
||||||
|
| middle (e : expr) (s : value_stack)
|
||||||
|
| final (s : value_stack).
|
||||||
|
|
||||||
|
Fixpoint eval_step (s : value_stack) (e : expr) : step_result :=
|
||||||
|
match e, s with
|
||||||
|
| e_int swap, v' :: v :: vs => final (v :: v' :: vs)
|
||||||
|
| e_int clone, v :: vs => final (v :: v :: vs)
|
||||||
|
| e_int drop, v :: vs => final vs
|
||||||
|
| e_int quote, v :: vs => final (v_quote (value_to_expr v) :: vs)
|
||||||
|
| e_int compose, (v_quote v2) :: (v_quote v1) :: vs => final (v_quote (e_comp v1 v2) :: vs)
|
||||||
|
| e_int apply, (v_quote v1) :: vs => middle v1 vs
|
||||||
|
| e_quote e', vs => final (v_quote e' :: vs)
|
||||||
|
| e_comp e1 e2, vs =>
|
||||||
|
match eval_step vs e1 with
|
||||||
|
| final vs' => middle e2 vs'
|
||||||
|
| middle e1' vs' => middle (e_comp e1' e2) vs'
|
||||||
|
| err => err
|
||||||
|
end
|
||||||
|
| _, _ => err
|
||||||
|
end.
|
||||||
|
|
||||||
|
Theorem eval_step_correct : forall (e : expr) (vs vs' : value_stack), Sem_expr vs e vs' ->
|
||||||
|
(eval_step vs e = final vs') \/
|
||||||
|
(exists (ei : expr) (vsi : value_stack),
|
||||||
|
eval_step vs e = middle ei vsi /\
|
||||||
|
Sem_expr vsi ei vs').
|
||||||
|
Proof.
|
||||||
|
intros e vs vs' Hsem.
|
||||||
|
(* Proceed by induction on the semantics. *)
|
||||||
|
induction Hsem.
|
||||||
|
- inversion H; (* The expression is just an intrnsic. *)
|
||||||
|
(* Dismiss all the straightforward "final" cases,
|
||||||
|
of which most intrinsics are. *)
|
||||||
|
try (left; reflexivity).
|
||||||
|
(* Only apply remains; We are in an intermediate / middle case. *)
|
||||||
|
right.
|
||||||
|
(* The semantics guarantee that the expression in the
|
||||||
|
quote evaluates to the final state. *)
|
||||||
|
exists e, vs0. auto.
|
||||||
|
- (* The expression is a quote. This is yet another final case. *)
|
||||||
|
left; reflexivity.
|
||||||
|
- (* The composition is never a final step, since we have to evaluate both
|
||||||
|
branches to "finish up". *)
|
||||||
|
destruct IHHsem1; right.
|
||||||
|
+ (* If the left branch finihed, only the right branch needs to be evaluted. *)
|
||||||
|
simpl. rewrite H. exists e2, vs2. auto.
|
||||||
|
+ (* Otherwise, the left branch has an intermediate evaluation, guaranteed
|
||||||
|
by induction to be consitent. *)
|
||||||
|
destruct H as [ei [vsi [Heval Hsem']]].
|
||||||
|
(* We compose the remaining part of the left branch with the right branch. *)
|
||||||
|
exists (e_comp ei e2), vsi. simpl.
|
||||||
|
(* The evaluation is trivially to a "middle" state. *)
|
||||||
|
rewrite Heval. split. auto.
|
||||||
|
eapply Sem_e_comp. apply Hsem'. apply Hsem2.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Inductive eval_chain (vs : value_stack) (e : expr) (vs' : value_stack) : Prop :=
|
||||||
|
| chain_final (P : eval_step vs e = final vs')
|
||||||
|
| chain_middle (ei : expr) (vsi : value_stack)
|
||||||
|
(P : eval_step vs e = middle ei vsi) (rest : eval_chain vsi ei vs').
|
||||||
|
|
||||||
|
Lemma eval_chain_merge : forall (e1 e2 : expr) (vs vs' vs'' : value_stack),
|
||||||
|
eval_chain vs e1 vs' -> eval_chain vs' e2 vs'' -> eval_chain vs (e_comp e1 e2) vs''.
|
||||||
|
Proof.
|
||||||
|
intros e1 e2 vs vs' vs'' ch1 ch2.
|
||||||
|
induction ch1;
|
||||||
|
eapply chain_middle; simpl; try (rewrite P); auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma eval_chain_split : forall (e1 e2 : expr) (vs vs'' : value_stack),
|
||||||
|
eval_chain vs (e_comp e1 e2) vs'' -> exists vs', (eval_chain vs e1 vs') /\ (eval_chain vs' e2 vs'').
|
||||||
|
Proof.
|
||||||
|
intros e1 e2 vs vss'' ch.
|
||||||
|
ltac1:(dependent induction ch).
|
||||||
|
- simpl in P. destruct (eval_step vs e1); inversion P.
|
||||||
|
- simpl in P. destruct (eval_step vs e1) eqn:Hval; try (inversion P).
|
||||||
|
+ injection P as Hinj; subst. specialize (IHch e e2 H0) as [s'0 [ch1 ch2]].
|
||||||
|
eexists. split.
|
||||||
|
* eapply chain_middle. apply Hval. apply ch1.
|
||||||
|
* apply ch2.
|
||||||
|
+ subst. eexists. split.
|
||||||
|
* eapply chain_final. apply Hval.
|
||||||
|
* apply ch.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem val_step_sem : forall (e : expr) (vs vs' : value_stack),
|
||||||
|
Sem_expr vs e vs' -> eval_chain vs e vs'
|
||||||
|
with eval_step_int : forall (i : intrinsic) (vs vs' : value_stack),
|
||||||
|
Sem_int vs i vs' -> eval_chain vs (e_int i) vs'.
|
||||||
|
Proof.
|
||||||
|
- intros e vs vs' Hsem.
|
||||||
|
induction Hsem.
|
||||||
|
+ (* This is an intrinsic, which is handled by the second
|
||||||
|
theorem, eval_step_int. This lemma is used here. *)
|
||||||
|
auto.
|
||||||
|
+ (* A quote doesn't have a next step, and so is final. *)
|
||||||
|
apply chain_final. auto.
|
||||||
|
+ (* In composition, by induction, we know that the two sub-expressions produce
|
||||||
|
proper evaluation chains. Chains can be composed (via eval_chain_merge). *)
|
||||||
|
eapply eval_chain_merge; eauto.
|
||||||
|
- intros i vs vs' Hsem.
|
||||||
|
(* The evaluation chain depends on the specific intrinsic in use. *)
|
||||||
|
inversion Hsem; subst;
|
||||||
|
(* Most intrinsics produce a final value, and the evaluation chain is trivial. *)
|
||||||
|
try (apply chain_final; auto; fail).
|
||||||
|
(* Only apply is non-final. The first step is popping the quote from the stack,
|
||||||
|
and the rest of the steps are given by the evaluation of the code in the quote. *)
|
||||||
|
apply chain_middle with e vs0; auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac2 Type exn ::= [ | Not_intrinsic ].
|
||||||
|
|
||||||
|
Ltac2 rec destruct_n (n : int) (vs : constr) : unit :=
|
||||||
|
if Int.le n 0 then () else
|
||||||
|
let v := Fresh.in_goal @v in
|
||||||
|
let vs' := Fresh.in_goal @vs in
|
||||||
|
destruct $vs as [|$v $vs']; Control.enter (fun () =>
|
||||||
|
try (destruct_n (Int.sub n 1) (Control.hyp vs'))
|
||||||
|
).
|
||||||
|
|
||||||
|
Ltac2 int_arity (int : constr) : int :=
|
||||||
|
match! int with
|
||||||
|
| swap => 2
|
||||||
|
| clone => 1
|
||||||
|
| drop => 1
|
||||||
|
| quote => 1
|
||||||
|
| compose => 2
|
||||||
|
| apply => 1
|
||||||
|
| _ => Control.throw Not_intrinsic
|
||||||
|
end.
|
||||||
|
|
||||||
|
Ltac2 destruct_int_stack (int : constr) (va: constr) := destruct_n (int_arity int) va.
|
||||||
|
|
||||||
|
Ltac2 ensure_valid_stack () := Control.enter (fun () =>
|
||||||
|
match! goal with
|
||||||
|
| [h : eval_step ?a (e_int ?b) = ?c |- _] =>
|
||||||
|
let h := Control.hyp h in
|
||||||
|
destruct_int_stack b a;
|
||||||
|
try (inversion $h; fail)
|
||||||
|
| [|- _ ] => ()
|
||||||
|
end).
|
||||||
|
|
||||||
|
Theorem test : forall (vs vs': value_stack), eval_step vs (e_int swap) = final vs' ->
|
||||||
|
exists v1 v2 vs'', vs = v1 :: v2 :: vs'' /\ vs' = v2 :: v1 :: vs''.
|
||||||
|
Proof.
|
||||||
|
intros s s' Heq.
|
||||||
|
ensure_valid_stack ().
|
||||||
|
simpl in Heq. injection Heq as Hinj. subst. eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem eval_step_final_sem : forall (e : expr) (vs vs' : value_stack),
|
||||||
|
eval_step vs e = final vs' -> Sem_expr vs e vs'.
|
||||||
|
Proof.
|
||||||
|
intros e vs vs' Hev. destruct e.
|
||||||
|
- destruct i; ensure_valid_stack ();
|
||||||
|
(* Get rid of trivial cases that match one-to-one. *)
|
||||||
|
simpl in Hev; try (injection Hev as Hinj; subst; solve_basic ()).
|
||||||
|
+ (* compose with one quoted value is not final, but an error. *)
|
||||||
|
destruct v. inversion Hev.
|
||||||
|
+ (* compose with two quoted values. *)
|
||||||
|
destruct v; destruct v0.
|
||||||
|
injection Hev as Hinj; subst; solve_basic ().
|
||||||
|
+ (* Apply is not final. *) destruct v. inversion Hev.
|
||||||
|
- (* Quote is always final, trivially, and the semantics match easily. *)
|
||||||
|
simpl in Hev. injection Hev as Hinj; subst. solve_basic ().
|
||||||
|
- (* Compose is never final, so we don't need to handle it here. *)
|
||||||
|
simpl in Hev. destruct (eval_step vs e1); inversion Hev.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem eval_step_middle_sem : forall (e ei: expr) (vs vsi vs' : value_stack),
|
||||||
|
eval_step vs e = middle ei vsi ->
|
||||||
|
Sem_expr vsi ei vs' ->
|
||||||
|
Sem_expr vs e vs'.
|
||||||
|
Proof.
|
||||||
|
intros e. induction e; intros ei vs vsi vs' Hev Hsem.
|
||||||
|
- destruct i; ensure_valid_stack ().
|
||||||
|
+ (* compose with one quoted value; invalid. *)
|
||||||
|
destruct v. inversion Hev.
|
||||||
|
+ (* compose with two quoted values; not a middle step. *)
|
||||||
|
destruct v; destruct v0. inversion Hev.
|
||||||
|
+ (* Apply *)
|
||||||
|
destruct v. injection Hev as Hinj; subst.
|
||||||
|
solve_basic (). auto.
|
||||||
|
- (* quoting an expression is not middle. *)
|
||||||
|
inversion Hev.
|
||||||
|
- simpl in Hev.
|
||||||
|
destruct (eval_step vs e1) eqn:Hev1.
|
||||||
|
+ (* Step led to an error, which can't happen in a chain. *)
|
||||||
|
inversion Hev.
|
||||||
|
+ (* Left expression makes a non-final step. Milk this for equalities first. *)
|
||||||
|
injection Hev as Hinj; subst.
|
||||||
|
(* The rest of the program (e_comp e e2) evaluates using our semantics,
|
||||||
|
which means that both e and e2 evaluate using our semantics. *)
|
||||||
|
inversion Hsem; subst.
|
||||||
|
(* By induction, e1 evaluates using our semantics if e does, which we just confirmed. *)
|
||||||
|
specialize (IHe1 e vs vsi vs2 Hev1 H2).
|
||||||
|
(* The composition rule can now be applied. *)
|
||||||
|
eapply Sem_e_comp; eauto.
|
||||||
|
+ (* Left expression makes a final step. Milk this for equalities first. *)
|
||||||
|
injection Hev as Hinj; subst.
|
||||||
|
(* Using eval_step_final, we know that e1 evaluates to the intermediate
|
||||||
|
state given our semantics. *)
|
||||||
|
specialize (eval_step_final_sem e1 vs vsi Hev1) as Hsem1.
|
||||||
|
(* The composition rule can now be applied. *)
|
||||||
|
eapply Sem_e_comp; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem eval_step_sem_back : forall (e : expr) (vs vs' : value_stack),
|
||||||
|
eval_chain vs e vs' -> Sem_expr vs e vs'.
|
||||||
|
Proof.
|
||||||
|
intros e vs vs' ch.
|
||||||
|
ltac1:(dependent induction ch).
|
||||||
|
- apply eval_step_final_sem. auto.
|
||||||
|
- specialize (eval_step_middle_sem e ei vs vsi vs' P IHch). auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Corollary eval_step_no_sem : forall (e : expr) (vs vs' : value_stack),
|
||||||
|
~(Sem_expr vs e vs') -> ~(eval_chain vs e vs').
|
||||||
|
Proof.
|
||||||
|
intros e vs vs' Hnsem Hch.
|
||||||
|
specialize (eval_step_sem_back _ _ _ Hch). auto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Require Extraction.
|
||||||
|
Require Import ExtrHaskellBasic.
|
||||||
|
Extraction Language Haskell.
|
||||||
|
Set Extraction KeepSingleton.
|
||||||
|
Extraction "UccGen.hs" expr eval_step true false or.
|
||||||
|
|
||||||
|
Remark eval_swap_two_values : forall (vs vs' : value_stack),
|
||||||
|
eval_step vs (e_int swap) = final vs' -> exists v1 v2 vst, vs = v1 :: v2 :: vst /\ vs' = v2 :: v1 :: vst.
|
||||||
|
Proof.
|
||||||
|
intros vs vs' Hev.
|
||||||
|
(* Can't proceed until we know more about the stack. *)
|
||||||
|
destruct vs as [|v1 [|v2 vs]].
|
||||||
|
- (* Invalid case; empty stack. *) inversion Hev.
|
||||||
|
- (* Invalid case; stack only has one value. *) inversion Hev.
|
||||||
|
- (* Valid case: the stack has two values. *) injection Hev. eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Remark eval_swap_two_values' : forall (vs vs' : value_stack),
|
||||||
|
eval_step vs (e_int swap) = final vs' -> exists v1 v2 vst, vs = v1 :: v2 :: vst /\ vs' = v2 :: v1 :: vst.
|
||||||
|
Proof.
|
||||||
|
intros vs vs' Hev.
|
||||||
|
ensure_valid_stack ().
|
||||||
|
injection Hev. eauto.
|
||||||
|
Qed.
|
||||||
179
code/dawn/DawnV2.v
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
Require Import Coq.Lists.List.
|
||||||
|
From Ltac2 Require Import Ltac2.
|
||||||
|
|
||||||
|
Inductive intrinsic :=
|
||||||
|
| swap
|
||||||
|
| clone
|
||||||
|
| drop
|
||||||
|
| quote
|
||||||
|
| compose
|
||||||
|
| apply.
|
||||||
|
|
||||||
|
Inductive expr :=
|
||||||
|
| e_int (i : intrinsic)
|
||||||
|
| e_quote (e : expr)
|
||||||
|
| e_comp (e1 e2 : expr).
|
||||||
|
|
||||||
|
Definition e_compose (e : expr) (es : list expr) := fold_left e_comp es e.
|
||||||
|
|
||||||
|
Inductive value := v_quote (e : expr).
|
||||||
|
Definition value_stack := list value.
|
||||||
|
|
||||||
|
Definition value_to_expr (v : value) : expr :=
|
||||||
|
match v with
|
||||||
|
| v_quote e => e_quote e
|
||||||
|
end.
|
||||||
|
|
||||||
|
Inductive Sem_int : value_stack -> intrinsic -> value_stack -> Prop :=
|
||||||
|
| Sem_swap : forall (v v' : value) (vs : value_stack), Sem_int (v' :: v :: vs) swap (v :: v' :: vs)
|
||||||
|
| Sem_clone : forall (v : value) (vs : value_stack), Sem_int (v :: vs) clone (v :: v :: vs)
|
||||||
|
| Sem_drop : forall (v : value) (vs : value_stack), Sem_int (v :: vs) drop vs
|
||||||
|
| Sem_quote : forall (v : value) (vs : value_stack), Sem_int (v :: vs) quote ((v_quote (value_to_expr v)) :: vs)
|
||||||
|
| Sem_compose : forall (e e' : expr) (vs : value_stack), Sem_int (v_quote e' :: v_quote e :: vs) compose (v_quote (e_comp e e') :: vs)
|
||||||
|
| Sem_apply : forall (e : expr) (vs vs': value_stack), Sem_expr vs e vs' -> Sem_int (v_quote e :: vs) apply vs'
|
||||||
|
|
||||||
|
with Sem_expr : value_stack -> expr -> value_stack -> Prop :=
|
||||||
|
| Sem_e_int : forall (i : intrinsic) (vs vs' : value_stack), Sem_int vs i vs' -> Sem_expr vs (e_int i) vs'
|
||||||
|
| Sem_e_quote : forall (e : expr) (vs : value_stack), Sem_expr vs (e_quote e) (v_quote e :: vs)
|
||||||
|
| Sem_e_comp : forall (e1 e2 : expr) (vs1 vs2 vs3 : value_stack),
|
||||||
|
Sem_expr vs1 e1 vs2 -> Sem_expr vs2 e2 vs3 -> Sem_expr vs1 (e_comp e1 e2) vs3.
|
||||||
|
|
||||||
|
Definition false : expr := e_quote (e_int drop).
|
||||||
|
Definition false_v : value := v_quote (e_int drop).
|
||||||
|
|
||||||
|
Definition true : expr := e_quote (e_comp (e_int swap) (e_int drop)).
|
||||||
|
Definition true_v : value := v_quote (e_comp (e_int swap) (e_int drop)).
|
||||||
|
|
||||||
|
Theorem false_correct : forall (v v' : value) (vs : value_stack), Sem_expr (v' :: v :: vs) (e_comp false (e_int apply)) (v :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v v' vs.
|
||||||
|
eapply Sem_e_comp.
|
||||||
|
- apply Sem_e_quote.
|
||||||
|
- apply Sem_e_int. apply Sem_apply. apply Sem_e_int. apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem true_correct : forall (v v' : value) (vs : value_stack), Sem_expr (v' :: v :: vs) (e_comp true (e_int apply)) (v' :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v v' vs.
|
||||||
|
eapply Sem_e_comp.
|
||||||
|
- apply Sem_e_quote.
|
||||||
|
- apply Sem_e_int. apply Sem_apply. eapply Sem_e_comp.
|
||||||
|
* apply Sem_e_int. apply Sem_swap.
|
||||||
|
* apply Sem_e_int. apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition or : expr := e_comp (e_int clone) (e_int apply).
|
||||||
|
|
||||||
|
Theorem or_false_v : forall (v : value) (vs : value_stack), Sem_expr (false_v :: v :: vs) or (v :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v vs.
|
||||||
|
eapply Sem_e_comp...
|
||||||
|
- apply Sem_clone.
|
||||||
|
- apply Sem_apply... apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem or_true : forall (v : value) (vs : value_stack), Sem_expr (true_v :: v :: vs) or (true_v :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v vs.
|
||||||
|
eapply Sem_e_comp...
|
||||||
|
- apply Sem_clone...
|
||||||
|
- apply Sem_apply. eapply Sem_e_comp...
|
||||||
|
* apply Sem_swap.
|
||||||
|
* apply Sem_drop.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition or_false_false := or_false_v false_v.
|
||||||
|
Definition or_false_true := or_false_v true_v.
|
||||||
|
Definition or_true_false := or_true false_v.
|
||||||
|
Definition or_true_true := or_true true_v.
|
||||||
|
|
||||||
|
Fixpoint quote_n (n : nat) :=
|
||||||
|
match n with
|
||||||
|
| O => e_int quote
|
||||||
|
| S n' => e_compose (quote_n n') (e_int swap :: e_int quote :: e_int swap :: e_int compose :: nil)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Theorem quote_2_correct : forall (v1 v2 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v2 :: v1 :: vs) (quote_n 1) (v_quote (e_comp (value_to_expr v1) (value_to_expr v2)) :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v1 v2 vs. simpl.
|
||||||
|
repeat (eapply Sem_e_comp)...
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem quote_3_correct : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (quote_n 2) (v_quote (e_comp (value_to_expr v1) (e_comp (value_to_expr v2) (value_to_expr v3))) :: vs).
|
||||||
|
Proof with apply Sem_e_int.
|
||||||
|
intros v1 v2 v3 vs. simpl.
|
||||||
|
repeat (eapply Sem_e_comp)...
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_quote.
|
||||||
|
- apply Sem_swap.
|
||||||
|
- apply Sem_compose.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac2 rec solve_basic () := Control.enter (fun _ =>
|
||||||
|
match! goal with
|
||||||
|
| [|- Sem_int ?vs1 swap ?vs2] => apply Sem_swap
|
||||||
|
| [|- Sem_int ?vs1 clone ?vs2] => apply Sem_clone
|
||||||
|
| [|- Sem_int ?vs1 drop ?vs2] => apply Sem_drop
|
||||||
|
| [|- Sem_int ?vs1 quote ?vs2] => apply Sem_quote
|
||||||
|
| [|- Sem_int ?vs1 compose ?vs2] => apply Sem_compose
|
||||||
|
| [|- Sem_int ?vs1 apply ?vs2] => apply Sem_apply
|
||||||
|
| [|- Sem_expr ?vs1 (e_comp ?e1 ?e2) ?vs2] => eapply Sem_e_comp; solve_basic ()
|
||||||
|
| [|- Sem_expr ?vs1 (e_int ?e) ?vs2] => apply Sem_e_int; solve_basic ()
|
||||||
|
| [|- Sem_expr ?vs1 (e_quote ?e) ?vs2] => apply Sem_e_quote
|
||||||
|
| [_ : _ |- _] => ()
|
||||||
|
end).
|
||||||
|
|
||||||
|
Theorem quote_2_correct' : forall (v1 v2 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v2 :: v1 :: vs) (quote_n 1) (v_quote (e_comp (value_to_expr v1) (value_to_expr v2)) :: vs).
|
||||||
|
Proof. intros. simpl. solve_basic (). Qed.
|
||||||
|
|
||||||
|
Theorem quote_3_correct' : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (quote_n 2) (v_quote (e_comp (value_to_expr v1) (e_comp (value_to_expr v2) (value_to_expr v3))) :: vs).
|
||||||
|
Proof. intros. simpl. solve_basic (). Qed.
|
||||||
|
|
||||||
|
Definition rotate_n (n : nat) := e_compose (quote_n n) (e_int swap :: e_int quote :: e_int compose :: e_int apply :: nil).
|
||||||
|
|
||||||
|
Lemma eval_value : forall (v : value) (vs : value_stack),
|
||||||
|
Sem_expr vs (value_to_expr v) (v :: vs).
|
||||||
|
Proof.
|
||||||
|
intros v vs.
|
||||||
|
destruct v.
|
||||||
|
simpl. apply Sem_e_quote.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem rotate_3_correct : forall (v1 v2 v3 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v3 :: v2 :: v1 :: vs) (rotate_n 1) (v1 :: v3 :: v2 :: vs).
|
||||||
|
Proof.
|
||||||
|
intros. unfold rotate_n. simpl. solve_basic ().
|
||||||
|
repeat (eapply Sem_e_comp); apply eval_value.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem rotate_4_correct : forall (v1 v2 v3 v4 : value) (vs : value_stack),
|
||||||
|
Sem_expr (v4 :: v3 :: v2 :: v1 :: vs) (rotate_n 2) (v1 :: v4 :: v3 :: v2 :: vs).
|
||||||
|
Proof.
|
||||||
|
intros. unfold rotate_n. simpl. solve_basic ().
|
||||||
|
repeat (eapply Sem_e_comp); apply eval_value.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem e_comp_assoc : forall (e1 e2 e3 : expr) (vs vs' : value_stack),
|
||||||
|
Sem_expr vs (e_comp e1 (e_comp e2 e3)) vs' <-> Sem_expr vs (e_comp (e_comp e1 e2) e3) vs'.
|
||||||
|
Proof.
|
||||||
|
intros e1 e2 e3 vs vs'.
|
||||||
|
split; intros Heval.
|
||||||
|
- inversion Heval; subst. inversion H4; subst.
|
||||||
|
eapply Sem_e_comp. eapply Sem_e_comp. apply H2. apply H3. apply H6.
|
||||||
|
- inversion Heval; subst. inversion H2; subst.
|
||||||
|
eapply Sem_e_comp. apply H3. eapply Sem_e_comp. apply H6. apply H4.
|
||||||
|
Qed.
|
||||||
64
code/dawn/Ucc.hs
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
module Ucc where
|
||||||
|
import UccGen
|
||||||
|
import Text.Parsec
|
||||||
|
import Data.Functor.Identity
|
||||||
|
import Control.Applicative hiding ((<|>))
|
||||||
|
import System.IO
|
||||||
|
|
||||||
|
instance Show Intrinsic where
|
||||||
|
show Swap = "swap"
|
||||||
|
show Clone = "clone"
|
||||||
|
show Drop = "drop"
|
||||||
|
show Quote = "quote"
|
||||||
|
show Compose = "compose"
|
||||||
|
show Apply = "apply"
|
||||||
|
|
||||||
|
instance Show Expr where
|
||||||
|
show (E_int i) = show i
|
||||||
|
show (E_quote e) = "[" ++ show e ++ "]"
|
||||||
|
show (E_comp e1 e2) = show e1 ++ " " ++ show e2
|
||||||
|
|
||||||
|
instance Show Value where
|
||||||
|
show (V_quote e) = show (E_quote e)
|
||||||
|
|
||||||
|
type Parser a = ParsecT String () Identity a
|
||||||
|
|
||||||
|
intrinsic :: Parser Intrinsic
|
||||||
|
intrinsic = (<* spaces) $ foldl1 (<|>) $ map (\(s, i) -> try (string s >> return i))
|
||||||
|
[ ("swap", Swap)
|
||||||
|
, ("clone", Clone)
|
||||||
|
, ("drop", Drop)
|
||||||
|
, ("quote", Quote)
|
||||||
|
, ("compose", Compose)
|
||||||
|
, ("apply", Apply)
|
||||||
|
]
|
||||||
|
|
||||||
|
expression :: Parser Expr
|
||||||
|
expression = foldl1 E_comp <$> many1 single
|
||||||
|
where
|
||||||
|
single
|
||||||
|
= (E_int <$> intrinsic)
|
||||||
|
<|> (fmap E_quote $ char '[' *> spaces *> expression <* char ']' <* spaces)
|
||||||
|
|
||||||
|
parseExpression :: String -> Either ParseError Expr
|
||||||
|
parseExpression = runParser expression () "<inline>"
|
||||||
|
|
||||||
|
eval :: [Value] -> Expr -> Maybe [Value]
|
||||||
|
eval s e =
|
||||||
|
case eval_step s e of
|
||||||
|
Err -> Nothing
|
||||||
|
Final s' -> Just s'
|
||||||
|
Middle e' s' -> eval s' e'
|
||||||
|
|
||||||
|
main :: IO ()
|
||||||
|
main = do
|
||||||
|
putStr "> "
|
||||||
|
hFlush stdout
|
||||||
|
str <- getLine
|
||||||
|
case parseExpression str of
|
||||||
|
Right e ->
|
||||||
|
case eval [] e of
|
||||||
|
Just st -> putStrLn $ show st
|
||||||
|
_ -> putStrLn "Evaluation error"
|
||||||
|
_ -> putStrLn "Parse error"
|
||||||
|
main
|
||||||
68
code/patterns/patterns.rb
Normal file
@@ -0,0 +1,68 @@
|
|||||||
|
require 'victor'
|
||||||
|
|
||||||
|
def sum_digits(n)
|
||||||
|
while n > 9
|
||||||
|
n = n.to_s.chars.map(&:to_i).sum
|
||||||
|
end
|
||||||
|
n
|
||||||
|
end
|
||||||
|
|
||||||
|
def step(x, y, n, dir)
|
||||||
|
case dir
|
||||||
|
when :top
|
||||||
|
return [x,y+n,:right]
|
||||||
|
when :right
|
||||||
|
return [x+n,y,:bottom]
|
||||||
|
when :bottom
|
||||||
|
return [x,y-n,:left]
|
||||||
|
when :left
|
||||||
|
return [x-n,y,:top]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
def run_number(number)
|
||||||
|
counter = 1
|
||||||
|
x, y, dir = 0, 0, :top
|
||||||
|
line_stack = [[0,0]]
|
||||||
|
|
||||||
|
loop do
|
||||||
|
x, y, dir = step(x,y, sum_digits(counter*number), dir)
|
||||||
|
line_stack << [x,y]
|
||||||
|
counter += 1
|
||||||
|
break if x == 0 && y == 0
|
||||||
|
end
|
||||||
|
return make_svg(line_stack)
|
||||||
|
end
|
||||||
|
|
||||||
|
def make_svg(line_stack)
|
||||||
|
line_length = 20
|
||||||
|
xs = line_stack.map { |c| c[0] }
|
||||||
|
ys = line_stack.map { |c| c[1] }
|
||||||
|
|
||||||
|
x_offset = -xs.min
|
||||||
|
y_offset = -ys.min
|
||||||
|
svg_coords = ->(p) {
|
||||||
|
nx, ny = p
|
||||||
|
[(nx+x_offset)*line_length + line_length/2, (ny+y_offset)*line_length + line_length/2]
|
||||||
|
}
|
||||||
|
|
||||||
|
max_width = (xs.max - xs.min).abs * line_length + line_length
|
||||||
|
max_height = (ys.max - ys.min).abs * line_length + line_length
|
||||||
|
svg = Victor::SVG.new width: max_width, height: max_height
|
||||||
|
|
||||||
|
style = { stroke: 'black', stroke_width: 5 }
|
||||||
|
svg.build do
|
||||||
|
line_stack.each_cons(2) do |pair|
|
||||||
|
p1, p2 = pair
|
||||||
|
x1, y1 = svg_coords.call(p1)
|
||||||
|
x2, y2 = svg_coords.call(p2)
|
||||||
|
line x1: x1, y1: y1, x2: x2, y2: y2, style: style
|
||||||
|
circle cx: x2, cy: y2, r: line_length/6, style: style, fill: 'black'
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return svg
|
||||||
|
end
|
||||||
|
|
||||||
|
(1..9).each do |i|
|
||||||
|
run_number(i).save "pattern_#{i}"
|
||||||
|
end
|
||||||
1
code/server-config
Submodule
23
code/typescript-emitter/js1.js
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
class EventEmitter {
|
||||||
|
constructor() {
|
||||||
|
this.handlers = {}
|
||||||
|
}
|
||||||
|
|
||||||
|
emit(event) {
|
||||||
|
this.handlers[event]?.forEach(h => h());
|
||||||
|
}
|
||||||
|
|
||||||
|
addHandler(event, handler) {
|
||||||
|
if(!this.handlers[event]) {
|
||||||
|
this.handlers[event] = [handler];
|
||||||
|
} else {
|
||||||
|
this.handlers[event].push(handler);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const emitter = new EventEmitter();
|
||||||
|
emitter.addHandler("start", () => console.log("Started!"));
|
||||||
|
emitter.addHandler("end", () => console.log("Ended!"));
|
||||||
|
emitter.emit("end");
|
||||||
|
emitter.emit("start");
|
||||||
23
code/typescript-emitter/js2.js
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
class EventEmitter {
|
||||||
|
constructor() {
|
||||||
|
this.handlers = {}
|
||||||
|
}
|
||||||
|
|
||||||
|
emit(event, value) {
|
||||||
|
this.handlers[event]?.forEach(h => h(value));
|
||||||
|
}
|
||||||
|
|
||||||
|
addHandler(event, handler) {
|
||||||
|
if(!this.handlers[event]) {
|
||||||
|
this.handlers[event] = [handler];
|
||||||
|
} else {
|
||||||
|
this.handlers[event].push(handler);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const emitter = new EventEmitter();
|
||||||
|
emitter.addHandler("numberChange", n => console.log("New number value is: ", n));
|
||||||
|
emitter.addHandler("stringChange", s => console.log("New string value is: ", s));
|
||||||
|
emitter.emit("numberChange", 1);
|
||||||
|
emitter.emit("stringChange", "3");
|
||||||
27
code/typescript-emitter/ts.ts
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
class EventEmitter<T> {
|
||||||
|
private handlers: { [eventName in keyof T]?: ((value: T[eventName]) => void)[] }
|
||||||
|
|
||||||
|
constructor() {
|
||||||
|
this.handlers = {}
|
||||||
|
}
|
||||||
|
|
||||||
|
emit<K extends keyof T>(event: K, value: T[K]): void {
|
||||||
|
this.handlers[event]?.forEach(h => h(value));
|
||||||
|
}
|
||||||
|
|
||||||
|
addHandler<K extends keyof T>(event: K, handler: (value: T[K]) => void): void {
|
||||||
|
if(!this.handlers[event]) {
|
||||||
|
this.handlers[event] = [handler];
|
||||||
|
} else {
|
||||||
|
this.handlers[event].push(handler);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const emitter = new EventEmitter<{ numberChange: number, stringChange: string }>();
|
||||||
|
emitter.addHandler("numberChange", n => console.log("New number value is: ", n));
|
||||||
|
emitter.addHandler("stringChange", s => console.log("New string value is: ", s));
|
||||||
|
emitter.emit("numberChange", 1);
|
||||||
|
emitter.emit("stringChange", "3");
|
||||||
|
emitter.emit("numberChange", "1");
|
||||||
|
emitter.emit("stringChange", 3);
|
||||||
@@ -3,3 +3,6 @@
|
|||||||
[params.submoduleLinks.aoc2020]
|
[params.submoduleLinks.aoc2020]
|
||||||
url = "https://dev.danilafe.com/Advent-of-Code/AdventOfCode-2020/src/commit/7a8503c3fe1aa7e624e4d8672aa9b56d24b4ba82"
|
url = "https://dev.danilafe.com/Advent-of-Code/AdventOfCode-2020/src/commit/7a8503c3fe1aa7e624e4d8672aa9b56d24b4ba82"
|
||||||
path = "aoc-2020"
|
path = "aoc-2020"
|
||||||
|
[params.submoduleLinks.serverconfig]
|
||||||
|
url = "https://dev.danilafe.com/Nix-Configs/server-config/src/commit/98cffe09546aee1678f7baebdea5eb5fef288935"
|
||||||
|
path = "server-config"
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: A Language for an Assignment - Homework 1
|
title: A Language for an Assignment - Homework 1
|
||||||
date: 2019-12-27T23:27:09-08:00
|
date: 2019-12-27T23:27:09-08:00
|
||||||
tags: ["Haskell", "Python", "Algorithms"]
|
tags: ["Haskell", "Python", "Algorithms", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
On a rainy Oregon day, I was walking between classes with a group of friends.
|
On a rainy Oregon day, I was walking between classes with a group of friends.
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: A Language for an Assignment - Homework 2
|
title: A Language for an Assignment - Homework 2
|
||||||
date: 2019-12-30T20:05:10-08:00
|
date: 2019-12-30T20:05:10-08:00
|
||||||
tags: ["Haskell", "Python", "Algorithms"]
|
tags: ["Haskell", "Python", "Algorithms", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
After the madness of the
|
After the madness of the
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: A Language for an Assignment - Homework 3
|
title: A Language for an Assignment - Homework 3
|
||||||
date: 2020-01-02T22:17:43-08:00
|
date: 2020-01-02T22:17:43-08:00
|
||||||
tags: ["Haskell", "Python", "Algorithms"]
|
tags: ["Haskell", "Python", "Algorithms", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
It rained in Sunriver on New Year's Eve, and it continued to rain
|
It rained in Sunriver on New Year's Eve, and it continued to rain
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ title: Learning Emulation, Part 2
|
|||||||
date: 2016-11-23 23:23:18.664038
|
date: 2016-11-23 23:23:18.664038
|
||||||
tags: ["C and C++", "Emulation"]
|
tags: ["C and C++", "Emulation"]
|
||||||
---
|
---
|
||||||
_This is the second post in a series I'm writing about Chip-8 emulation. If you want to see the first one, head [here]({{< ref "/blog/01_learning_emulation.md" >}})._
|
_This is the second post in a series I'm writing about Chip-8 emulation. If you want to see the first one, head [here]({{< relref "/blog/01_learning_emulation.md" >}})._
|
||||||
|
|
||||||
Now that we have an understanding of the physical capabilities of a Chip-8 system, we can write code that will represent such a system on our computer. In this post we'll start writing some basic code - be prepared.
|
Now that we have an understanding of the physical capabilities of a Chip-8 system, we can write code that will represent such a system on our computer. In this post we'll start writing some basic code - be prepared.
|
||||||
|
|
||||||
|
|||||||
@@ -3,7 +3,7 @@ title: Learning Emulation, Part 2.5 - Implementation
|
|||||||
date: 2016-11-23 23:23:56.633942
|
date: 2016-11-23 23:23:56.633942
|
||||||
tags: ["C and C++", "Emulation"]
|
tags: ["C and C++", "Emulation"]
|
||||||
---
|
---
|
||||||
_This is the third post in a series I'm writing about Chip-8 emulation. If you want to see the first one, head [here]({{< ref "/blog/01_learning_emulation.md" >}})._
|
_This is the third post in a series I'm writing about Chip-8 emulation. If you want to see the first one, head [here]({{< relref "/blog/01_learning_emulation.md" >}})._
|
||||||
|
|
||||||
In the previous part of this tutorial, we created a type to represent a basic Chip-8 machine. However, we've done nothing to make it behave like one! Let's start working on that.
|
In the previous part of this tutorial, we created a type to represent a basic Chip-8 machine. However, we've done nothing to make it behave like one! Let's start working on that.
|
||||||
|
|
||||||
|
|||||||
78
content/blog/blog_with_nix.md
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
---
|
||||||
|
title: "Declaratively Deploying Multiple Blog Versions with NixOS and Flakes"
|
||||||
|
date: 2021-10-23T18:01:31-07:00
|
||||||
|
expirydate: 2021-10-23T18:01:31-07:00
|
||||||
|
draft: true
|
||||||
|
tags: ["Hugo", "Nix"]
|
||||||
|
---
|
||||||
|
|
||||||
|
### Prologue
|
||||||
|
|
||||||
|
You can skip this section if you'd like.
|
||||||
|
|
||||||
|
For the last few days, I've been stuck inside of my room due to some kind of cold or flu, which
|
||||||
|
or
|
||||||
|
{{< sidenote "right" "pcr-note" "may or may not be COVID™." >}}
|
||||||
|
The results of the PCR test are pending at the time of writing.
|
||||||
|
{{< /sidenote >}}
|
||||||
|
In seeming correspondence with the progression of my cold, a thought occured in the back of my mind:
|
||||||
|
"_Your blog deployment is kind of a mess_". On the first day, when I felt only a small tingling in
|
||||||
|
my throat, I waved that thought away pretty easily. On the second day, feeling unwell and staying
|
||||||
|
in bed, I couldn't help but start to look up Nix documentation. And finally, on the third day,
|
||||||
|
between coughing fits and overconsumption of oral analgesic, I got to work.
|
||||||
|
|
||||||
|
In short, this post is the closest thing I've written to a fever dream.
|
||||||
|
|
||||||
|
### The Constraints
|
||||||
|
|
||||||
|
I run several versions of this site. The first is, of course, the "production" version, hosted
|
||||||
|
at the time of writing on `danilafe.com` and containing the articles that I would like to share
|
||||||
|
with the world. The second is a version of this site on which drafts are displayed - this
|
||||||
|
way, I can share posts with my friends before they are published, get feedback, and even just
|
||||||
|
re-read what I wrote from any device that has an internet connection. The third is the Russian
|
||||||
|
version of my blog. It's rather empty, because translation is hard work, so it only exists
|
||||||
|
so far as another "draft" website.
|
||||||
|
|
||||||
|
My build process (a derivative of what I describe in [rendering mathematics on the back end]({{< relref "./backend_math_rendering.md" >}})) is also fairly unconventional. When I developed this site, the best
|
||||||
|
form of server-side mathematics rendering was handlded by KaTeX, and required some additional
|
||||||
|
work to get rolling (specifically, I needed to write code to replace sections of LaTeX on
|
||||||
|
a page with their HTML and MathML versions). There may be a better way now, but I haven't yet
|
||||||
|
performed any kind of migration.
|
||||||
|
|
||||||
|
Currently, only my main site is behind HTTPS. However, I would like for it to be possible to
|
||||||
|
adjust this, and possibly even switch my hosts without changing any of the code that actually
|
||||||
|
builds my blog.
|
||||||
|
|
||||||
|
### Why Flakes
|
||||||
|
This article is about using Nix Flakes to manage my configuration. But what is it that made
|
||||||
|
me use flakes? Well, two things:
|
||||||
|
|
||||||
|
* __Adding custom packages__. The Nix code for my blog provides a package / derivation for each
|
||||||
|
version of my website, and I want to use these packages in my `configuration.nix` so that
|
||||||
|
I can point various Nginx virtual hosts to each of them. This is typically done using
|
||||||
|
overlays, but I need a clean way to let my system configuration pull in my blog overlay (or blog
|
||||||
|
packages); flakes solve this issue my letting me specify a blog flake, and pull it in as one
|
||||||
|
of the inputs.
|
||||||
|
* __Versioning__. My process for deploying new versions of the site prior to flakes boiled down to fetcing
|
||||||
|
the latest commit from the `master` branch of my blog repository, and updating the `default.nix`
|
||||||
|
file with that commit. This way, I could reliably fetch the version of my site that
|
||||||
|
I want published. Flakes do the same thing: the `flake.lock` file
|
||||||
|
contains the hashes of the Git-based dependencies of a flake, and thus prevents builds from
|
||||||
|
accidentally pulling in something else. However, unlike my approach, which relies on custom
|
||||||
|
scripts and extra tools such as `jq`, the locking mechanism used by flakes is provided with
|
||||||
|
standard Nix tooling. Using Flakes also guarantees that my build process won't break with
|
||||||
|
updates to Hugo or Ruby, since the `nixpkgs` version is stored in `flake.lock`, too.
|
||||||
|
|
||||||
|
### The Final Result
|
||||||
|
Here's the relevant section of my configuration:
|
||||||
|
|
||||||
|
{{< codelines "Nix" "server-config/configuration.nix" 42 59 >}}
|
||||||
|
|
||||||
|
I really like how this turned out for three reasons. First,
|
||||||
|
it's very clear from the configuration what I want from my server:
|
||||||
|
three virtual hosts, one with HTTPS, one with drafts, and one with drafts and
|
||||||
|
_in Russian_. Second, there's plenty of code reuse. I'm using two builder functions,
|
||||||
|
`english` and `russian`, but under the hood, the exact same code is being
|
||||||
|
used to run Hugo and all the necessay post-processing. Finally, all of this can be
|
||||||
|
used pretty much immediately given my blog flake, which reduces the amount of glue
|
||||||
|
code I have to write.
|
||||||
377
content/blog/coq_dawn.md
Normal file
@@ -0,0 +1,377 @@
|
|||||||
|
---
|
||||||
|
title: "Formalizing Dawn in Coq"
|
||||||
|
date: 2021-11-20T19:04:57-08:00
|
||||||
|
tags: ["Coq", "Dawn", "Programming Languages"]
|
||||||
|
description: "In this article, we use Coq to write down machine-checked semantics for the untyped concatenative calculus."
|
||||||
|
---
|
||||||
|
|
||||||
|
The [_Foundations of Dawn_](https://www.dawn-lang.org/posts/foundations-ucc/) article came up
|
||||||
|
on [Lobsters](https://lobste.rs/s/clatuv/foundations_dawn_untyped_concatenative) recently.
|
||||||
|
In this article, the author of Dawn defines a core calculus for the language, and provides its
|
||||||
|
semantics. The core calculus is called the _untyped concatenative calculus_, or UCC.
|
||||||
|
The definitions in the semantics seemed so clean and straightforward that I wanted to try my hand at
|
||||||
|
translating them into machine-checked code. I am most familiar with [Coq](https://coq.inria.fr/),
|
||||||
|
and that's what I reached for when making this attempt.
|
||||||
|
|
||||||
|
### Defining the Syntax
|
||||||
|
#### Expressions and Intrinsics
|
||||||
|
This is mostly the easy part. A UCC expression is one of three things:
|
||||||
|
|
||||||
|
* An "intrinsic", written \\(i\\), which is akin to a built-in function or command.
|
||||||
|
* A "quote", written \\([e]\\), which takes a UCC expression \\(e\\) and moves it onto the stack (UCC is stack-based).
|
||||||
|
* A composition of several expressions, written \\(e_1\\ e_2\\ \\ldots\\ e_n\\), which effectively evaluates them in order.
|
||||||
|
|
||||||
|
This is straightforward to define in Coq, but I'm going to make a little simplifying change.
|
||||||
|
Instead of making "composition of \\(n\\) expressions" a core language feature, I'll only
|
||||||
|
allow "composition of \\(e_1\\) and \\(e_2\\)", written \\(e_1\\ e_2\\). This change does not
|
||||||
|
in any way reduce the power of the language; we can still
|
||||||
|
{{< sidenote "right" "assoc-note" "write \(e_1\ e_2\ \ldots\ e_n\) as \((e_1\ e_2)\ \ldots\ e_n\)." >}}
|
||||||
|
The same expression can, of course, be written as \(e_1\ \ldots\ (e_{n-1}\ e_n)\).
|
||||||
|
So, which way should we <em>really</em> use when translating the many-expression composition
|
||||||
|
from the Dawn article into the two-expression composition I am using here? Well, the answer is,
|
||||||
|
it doesn't matter; expression composition is <em>associative</em>, so both ways effectively mean
|
||||||
|
the same thing.<br>
|
||||||
|
<br>
|
||||||
|
This is quite similar to what we do in algebra: the regular old addition operator, \(+\) is formally
|
||||||
|
only defined for pairs of numbers, like \(a+b\). However, no one really bats an eye when we
|
||||||
|
write \(1+2+3\), because we can just insert parentheses any way we like, and get the same result:
|
||||||
|
\((1+2)+3\) is the same as \(1+(2+3)\).
|
||||||
|
{{< /sidenote >}}
|
||||||
|
With that in mind, we can translate each of the three types of expressions in UCC into cases
|
||||||
|
of an inductive data type in Coq.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 12 15 >}}
|
||||||
|
|
||||||
|
Why do we need `e_int`? We do because a token like \\(\\text{swap}\\) can be viewed
|
||||||
|
as belonging to the set of intrinsics \\(i\\), or the set of expressions, \\(e\\). While writing
|
||||||
|
down the rules in mathematical notation, what exactly the token means is inferred from context - clearly
|
||||||
|
\\(\\text{swap}\\ \\text{drop}\\) is an expression built from two other expressions. In statically-typed
|
||||||
|
functional languages like Coq or Haskell, however, the same expression can't belong to two different,
|
||||||
|
arbitrary types. Thus, to turn an intrinsic into an expression, we need to wrap it up in a constructor,
|
||||||
|
which we called `e_int` here. Other than that, `e_quote` accepts as argument another expression, `e` (the
|
||||||
|
thing being quoted), and `e_comp` accepts two expressions, `e1` and `e2` (the two sub-expressions being composed).
|
||||||
|
|
||||||
|
The definition for intrinsics themselves is even simpler:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 4 10 >}}
|
||||||
|
|
||||||
|
We simply define a constructor for each of the six intrinsics. Since none of the intrinsic
|
||||||
|
names are reserved in Coq, we can just call our constructors exactly the same as their names
|
||||||
|
in the written formalization.
|
||||||
|
|
||||||
|
#### Values and Value Stacks
|
||||||
|
Values are up next. My initial thought was to define a value much like
|
||||||
|
I defined an intrinsic expression: by wrapping an expression in a constructor for a new data
|
||||||
|
type. Something like:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
Inductive value :=
|
||||||
|
| v_quot (e : expr).
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, `v_quot (e_int swap)` would be the Coq translation of the expression \\([\\text{swap}]\\).
|
||||||
|
However, I didn't decide on this approach for two reasons:
|
||||||
|
|
||||||
|
* There are now two ways to write a quoted expression: either `v_quote e` to represent
|
||||||
|
a quoted expression that is a value, or `e_quote e` to represent a quoted expression
|
||||||
|
that is just an expression. In the extreme case, the value \\([[e]]\\) would
|
||||||
|
be represented by `v_quote (e_quote e)` - two different constructors for the same concept,
|
||||||
|
in the same expression!
|
||||||
|
* When formalizing the lambda calculus,
|
||||||
|
[Programming Language Foundations](https://softwarefoundations.cis.upenn.edu/plf-current/Stlc.html)
|
||||||
|
uses an inductively-defined property to indicate values. In the simply typed lambda calculus,
|
||||||
|
much like in UCC, values are a subset of expressions.
|
||||||
|
|
||||||
|
I took instead the approach from Programming Language Foundations: a value is merely an expression
|
||||||
|
for which some predicate, `IsValue`, holds. We will define this such that `IsValue (e_quote e)` is provable,
|
||||||
|
but also such that here is no way to prove `IsValue (e_int swap)`, since _that_ expression is not
|
||||||
|
a value. But what does "provable" mean, here?
|
||||||
|
|
||||||
|
By the [Curry-Howard correspondence](https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence),
|
||||||
|
a predicate is just a function that takes _something_ and returns a type. Thus, if \\(\\text{Even}\\)
|
||||||
|
is a predicate, then \\(\\text{Even}\\ 3\\) is actually a type. Since \\(\\text{Even}\\) takes
|
||||||
|
numbers in, it is a predicate on numbers. Our \\(\\text{IsValue}\\) predicate will be a predicate
|
||||||
|
on expressions, instead. In Coq, we can write this as:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 19 19 >}}
|
||||||
|
|
||||||
|
You might be thinking,
|
||||||
|
|
||||||
|
> Huh, `Prop`? But you just said that predicates return types!
|
||||||
|
|
||||||
|
This is a good observation; In Coq, `Prop` is a special sort of type that corresponds to logical
|
||||||
|
propositions. It's special for a few reasons, but those reasons are beyond the scope of this post;
|
||||||
|
for our purposes, it's sufficient to think of `IsValue e` as a type.
|
||||||
|
|
||||||
|
Alright, so what good is this new `IsValue e` type? Well, we will define `IsValue` such that
|
||||||
|
this type is only _inhabited_ if `e` is a value according to the UCC specification. A type
|
||||||
|
is inhabited if and only if we can find a value of that type. For instance, the type of natural
|
||||||
|
numbers, `nat`, is inhabited, because any number, like `0`, has this type. Uninhabited types
|
||||||
|
are harder to come by, but take as an example the type `3 = 4`, the type of proofs that three is equal
|
||||||
|
to four. Three is _not_ equal to four, so we can never find a proof of equality, and thus, `3 = 4` is
|
||||||
|
uninhabited. As I said, `IsValue e` will only be inhabited if `e` is a value per the formal
|
||||||
|
specification of UCC; specifically, this means that `e` is a quoted expression, like `e_quote e'`.
|
||||||
|
|
||||||
|
To this end, we define `IsValue` as follows:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 19 20 >}}
|
||||||
|
|
||||||
|
Now, `IsValue` is a new data type with only only constructor, `ValQuote`. For any expression `e`,
|
||||||
|
this constructor creates a value of type `IsValue (e_quote e)`. Two things are true here:
|
||||||
|
|
||||||
|
* Since `Val_quote` accepts any expression `e` to be put inside `e_quote`, we can use
|
||||||
|
`Val_quote` to create an `IsValue` instance for any quoted expression.
|
||||||
|
* Because `Val_quote` is the _only_ constructor, and because it always returns `IsValue (e_quote e)`,
|
||||||
|
there's no way to get `IsValue (e_int i)`, or anything else.
|
||||||
|
|
||||||
|
Thus, `IsValue e` is inhabited if and only if `e` is a UCC value, as we intended.
|
||||||
|
|
||||||
|
Just one more thing. A value is just an expression, but Coq only knows about this as long
|
||||||
|
as there's an `IsValue` instance around to vouch for it. To be able to reason about values, then,
|
||||||
|
we will need both the expression and its `IsValue` proof. Thus, we define the type `value` to mean
|
||||||
|
a pair of two things: an expression `v` and a proof that it's a value, `IsValue v`:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 22 22 >}}
|
||||||
|
|
||||||
|
A value stack is just a list of values:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 23 23 >}}
|
||||||
|
|
||||||
|
### Semantics
|
||||||
|
Remember our `IsValue` predicate? Well, it's not just any predicate, it's a _unary_ predicate.
|
||||||
|
_Unary_ means that it's a predicate that only takes one argument, an expression in our case. However,
|
||||||
|
this is far from the only type of predicate. Here are some examples:
|
||||||
|
|
||||||
|
* Equality, `=`, is a binary predicate in Coq. It takes two arguments, say `x` and `y`, and builds
|
||||||
|
a type `x = y` that is only inhabited if `x` and `y` are equal.
|
||||||
|
* The mathematical "less than" relation is also a binary predicate, and it's called `le` in Coq.
|
||||||
|
It takes two numbers `n` and `m` and returns a type `le n m` that is only inhabited if `n` is less
|
||||||
|
than or equal to `m`.
|
||||||
|
* The evaluation relation in UCC is a ternary predicate. It takes two stacks, `vs` and `vs'`,
|
||||||
|
and an expression, `e`, and creates a type that's inhabited if and only if evaluating
|
||||||
|
`e` starting at a stack `vs` results in the stack `vs'`.
|
||||||
|
|
||||||
|
Binary predicates are just functions of two inputs that return types. For instance, here's what Coq has
|
||||||
|
to say about the type of `eq`:
|
||||||
|
|
||||||
|
```
|
||||||
|
eq : ?A -> ?A -> Prop
|
||||||
|
```
|
||||||
|
|
||||||
|
By a similar logic, ternary predicates, much like UCC's evaluation relation, are functions
|
||||||
|
of three inputs. We can thus write the type of our evaluation relation as follows:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 35 35 >}}
|
||||||
|
|
||||||
|
We define the constructors just like we did in our `IsValue` predicate. For each evaluation
|
||||||
|
rule in UCC, such as:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\langle V, v, v'\rangle\ \text{swap}\ \rightarrow\ \langle V, v', v \rangle
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We introduce a constructor. For the `swap` rule mentioned above, the constructor looks like this:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 28 28 >}}
|
||||||
|
|
||||||
|
Although the stacks are written in reverse order (which is just a consequence of Coq's list notation),
|
||||||
|
I hope that the correspondence is fairly clear. If it's not, try reading this rule out loud:
|
||||||
|
|
||||||
|
> The rule `Sem_swap` says that for every two values `v` and `v'`, and for any stack `vs`,
|
||||||
|
evaluating `swap` in the original stack `v' :: v :: vs`, aka \\(\\langle V, v, v'\\rangle\\),
|
||||||
|
results in a final stack `v :: v' :: vs`, aka \\(\\langle V, v', v\\rangle\\).
|
||||||
|
|
||||||
|
With that in mind, here's a definition of a predicate `Sem_int`, the evaluation predicate
|
||||||
|
for intrinsics:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 27 33 >}}
|
||||||
|
|
||||||
|
Hey, what's all this with `v_quote` and `projT1`? It's just a little bit of bookkeeping.
|
||||||
|
Given a value -- a pair of an expression `e` and a proof `IsValue e` -- the function `projT1`
|
||||||
|
just returns the expression `e`. That is, it's basically a way of converting a value back into
|
||||||
|
an expression. The function `v_quote` takes us in the other direction: given an expression \\(e\\),
|
||||||
|
it constructs a quoted expression \\([e]\\), and combines it with a proof that the newly constructed
|
||||||
|
quote is a value.
|
||||||
|
|
||||||
|
The above two function in combination help us define the `quote` intrinsic, which
|
||||||
|
wraps a value on the stack in an additional layer of quotes. When we create a new quote, we
|
||||||
|
need to push it onto the value stack, so it needs to be a value; we thus use `v_quote`. However,
|
||||||
|
`v_quote` needs an expression to wrap in a quote, so we use `projT1` to extract the expression from
|
||||||
|
the value on top of the stack.
|
||||||
|
|
||||||
|
In addition to intrinsics, we also define the evaluation relation for actual expressions.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 35 39 >}}
|
||||||
|
|
||||||
|
Here, we may as well go through the three constructors to explain what they mean:
|
||||||
|
|
||||||
|
* `Sem_e_int` says that if the expression being evaluated is an intrinsic, and if the
|
||||||
|
intrinsic has an effect on the stack as described by `Sem_int` above, then the effect
|
||||||
|
of the expression itself is the same.
|
||||||
|
* `Sem_e_quote` says that if the expression is a quote, then a corresponding quoted
|
||||||
|
value is placed on top of the stack.
|
||||||
|
* `Sem_e_comp` says that if one expression `e1` changes the stack from `vs1` to `vs2`,
|
||||||
|
and if another expression `e2` takes this new stack `vs2` and changes it into `vs3`,
|
||||||
|
then running the two expressions one after another (i.e. composing them) means starting
|
||||||
|
at stack `vs1` and ending in stack `vs3`.
|
||||||
|
|
||||||
|
### \\(\\text{true}\\), \\(\\text{false}\\), \\(\\text{or}\\) and Proofs
|
||||||
|
Now it's time for some fun! The UCC language specification starts by defining two values:
|
||||||
|
true and false. Why don't we do the same thing?
|
||||||
|
|
||||||
|
|UCC Spec| Coq encoding |
|
||||||
|
|---|----|
|
||||||
|
|\\(\\text{false}\\)=\\([\\text{drop}]\\)| {{< codelines "Coq" "dawn/Dawn.v" 41 42 >}}
|
||||||
|
|\\(\\text{true}\\)=\\([\\text{swap} \\ \\text{drop}]\\)| {{< codelines "Coq" "dawn/Dawn.v" 44 45 >}}
|
||||||
|
|
||||||
|
Let's try prove that these two work as intended.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 47 53 >}}
|
||||||
|
|
||||||
|
This is the first real proof in this article. Rather than getting into the technical details,
|
||||||
|
I invite you to take a look at the "shape" of the proof:
|
||||||
|
|
||||||
|
* After the initial use of `intros`, which brings the variables `v`, `v`, and `vs` into
|
||||||
|
scope, we start by applying `Sem_e_comp`. Intuitively, this makes sense - at the top level,
|
||||||
|
our expression, \\(\\text{false}\\ \\text{apply}\\),
|
||||||
|
is a composition of two other expressions, \\(\\text{false}\\) and \\(\\text{apply}\\).
|
||||||
|
Because of this, we need to use the rule from our semantics that corresponds to composition.
|
||||||
|
* The composition rule requires that we describe the individual effects on the stack of the
|
||||||
|
two constituent expressions (recall that the first expression takes us from the initial stack `v1`
|
||||||
|
to some intermediate stack `v2`, and the second expression takes us from that stack `v2` to the
|
||||||
|
final stack `v3`). Thus, we have two "bullet points":
|
||||||
|
* The first expression, \\(\\text{false}\\), is just a quoted expression. Thus, the rule
|
||||||
|
`Sem_e_quote` applies, and the contents of the quote are puhsed onto the stack.
|
||||||
|
* The second expression, \\(\\text{apply}\\), is an intrinsic, so we need to use the rule
|
||||||
|
`Sem_e_int`, which handles the intrinsic case. This, in turn, requires that we show
|
||||||
|
the effect of the intrinsic itself; the `apply` intrinsic evaluates the quoted expression
|
||||||
|
on the stack.
|
||||||
|
The quoted expression contains the body of false, or \\(\\text{drop}\\). This is
|
||||||
|
once again an intrinsic, so we use `Sem_e_int`; the intrinsic in question is \\(\\text{drop}\\),
|
||||||
|
so the `Sem_drop` rule takes care of that.
|
||||||
|
|
||||||
|
Following these steps, we arrive at the fact that evaluating `false` on the stack simply drops the top
|
||||||
|
element, as specified. The proof for \\(\\text{true}\\) is very similar in spirit:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 55 63 >}}
|
||||||
|
|
||||||
|
We can also formalize the \\(\\text{or}\\) operator:
|
||||||
|
|
||||||
|
|UCC Spec| Coq encoding |
|
||||||
|
|---|----|
|
||||||
|
|\\(\\text{or}\\)=\\(\\text{clone}\\ \\text{apply}\\)| {{< codelines "Coq" "dawn/Dawn.v" 65 65 >}}
|
||||||
|
|
||||||
|
We can write two top-level proofs about how this works: the first says that \\(\\text{or}\\),
|
||||||
|
when the first argument is \\(\\text{false}\\), just returns the second argument (this is in agreement
|
||||||
|
with the truth table, since \\(\\text{false}\\) is the identity element of \\(\\text{or}\\)).
|
||||||
|
The proof proceeds much like before:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 67 73 >}}
|
||||||
|
|
||||||
|
To shorten the proof a little bit, I used the `Proof with` construct from Coq, which runs
|
||||||
|
an additional _tactic_ (like `apply`) whenever `...` is used.
|
||||||
|
Because of this, in this proof writing `apply Sem_apply...` is the same
|
||||||
|
as `apply Sem_apply. apply Sem_e_int`. Since the `Sem_e_int` rule is used a lot, this makes for a
|
||||||
|
very convenient shorthand.
|
||||||
|
|
||||||
|
Similarly, we prove that \\(\\text{or}\\) applied to \\(\\text{true}\\) always returns \\(\\text{true}\\).
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 75 83 >}}
|
||||||
|
|
||||||
|
Finally, the specific facts (like \\(\\text{false}\\ \\text{or}\\ \\text{false}\\) evaluating to \\(\\text{false}\\))
|
||||||
|
can be expressed using our two new proofs, `or_false_v` and `or_true`.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 85 88 >}}
|
||||||
|
|
||||||
|
### Derived Expressions
|
||||||
|
#### Quotes
|
||||||
|
The UCC specification defines \\(\\text{quote}_n\\) to make it more convenient to quote
|
||||||
|
multiple terms. For example, \\(\\text{quote}_2\\) composes and quotes the first two values
|
||||||
|
on the stack. This is defined in terms of other UCC expressions as follows:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\text{quote}_n = \text{quote}_{n-1}\ \text{swap}\ \text{quote}\ \text{swap}\ \text{compose}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We can write this in Coq as follows:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 90 94 >}}
|
||||||
|
|
||||||
|
This definition diverges slightly from the one given in the UCC specification; particularly,
|
||||||
|
UCC's spec mentions that \\(\\text{quote}_n\\) is only defined for \\(n \\geq 1\\).However,
|
||||||
|
this means that in our code, we'd have to somehow handle the error that would arise if the
|
||||||
|
term \\(\\text{quote}\_0\\) is used. Instead, I defined `quote_n n` to simply mean
|
||||||
|
\\(\\text{quote}\_{n+1}\\); thus, in Coq, no matter what `n` we use, we will have a valid
|
||||||
|
expression, since `quote_n 0` will simply correspond to \\(\\text{quote}_1 = \\text{quote}\\).
|
||||||
|
|
||||||
|
We can now attempt to prove that this definition is correct by ensuring that the examples given
|
||||||
|
in the specification are valid. We may thus write,
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 96 106 >}}
|
||||||
|
|
||||||
|
We used a new tactic here, `repeat`, but overall, the structure of the proof is pretty straightforward:
|
||||||
|
the definition of `quote_n` consists of many intrinsics, and we apply the corresponding rules
|
||||||
|
one-by-one until we arrive at the final stack. Writing this proof was kind of boring, since
|
||||||
|
I just had to see which intrinsic is being used in each step, and then write a line of `apply`
|
||||||
|
code to handle that intrinsic. This gets worse for \\(\\text{quote}_3\\):
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 108 122 >}}
|
||||||
|
|
||||||
|
It's so long! Instead, I decided to try out Coq's `Ltac2` mechanism to teach Coq how
|
||||||
|
to write proofs like this itself. Here's what I came up with:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 124 136 >}}
|
||||||
|
|
||||||
|
You don't have to understand the details, but in brief, this checks what kind of proof
|
||||||
|
we're asking Coq to do (for instance, if we're trying to prove that a \\(\\text{swap}\\)
|
||||||
|
instruction has a particular effect), and tries to apply a corresponding semantic rule.
|
||||||
|
Thus, it will try `Sem_swap` if the expression is \\(\\text{swap}\\),
|
||||||
|
`Sem_clone` if the expression is \\(\\text{clone}\\), and so on. Then, the two proofs become:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 138 144 >}}
|
||||||
|
|
||||||
|
#### Rotations
|
||||||
|
There's a little trick to formalizing rotations. Values have an important property:
|
||||||
|
when a value is run against a stack, all it does is place itself on a stack. We can state
|
||||||
|
this as follows:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\langle V \rangle\ v = \langle V\ v \rangle
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Or, in Coq,
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 148 149 >}}
|
||||||
|
|
||||||
|
This is the trick to how \\(\\text{rotate}_n\\) works: it creates a quote of \\(n\\) reordered and composed
|
||||||
|
values on the stack, and then evaluates that quote. Since evaluating each value
|
||||||
|
just places it on the stack, these values end up back on the stack, in the same order that they
|
||||||
|
were in the quote. When writing the proof, `solve_basic ()` gets us almost all the way to the
|
||||||
|
end (evaluating a list of values against a stack). Then, we simply apply the composition
|
||||||
|
rule over and over, following it up with `eval_value` to prove that the each value is just being
|
||||||
|
placed back on the stack.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 156 168 >}}
|
||||||
|
|
||||||
|
### `e_comp` is Associative
|
||||||
|
When composing three expressions, which way of inserting parentheses is correct?
|
||||||
|
Is it \\((e_1\\ e_2)\\ e_3\\)? Or is it \\(e_1\\ (e_2\\ e_3)\\)? Well, both!
|
||||||
|
Expression composition is associative, which means that the order of the parentheses
|
||||||
|
doesn't matter. We state this in the following theorem, which says that the two
|
||||||
|
ways of writing the composition, if they evaluate to anything, evaluate to the same thing.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 170 171 >}}
|
||||||
|
|
||||||
|
### Conclusion
|
||||||
|
That's all I've got in me for today. However, we got pretty far! The UCC specification
|
||||||
|
says:
|
||||||
|
|
||||||
|
> One of my long term goals for UCC is to democratize formal software verification in order to make it much more feasible and realistic to write perfect software.
|
||||||
|
|
||||||
|
I think that UCC is definitely getting there: formally defining the semantics outlined
|
||||||
|
on the page was quite straightforward. We can now have complete confidence in the behavior
|
||||||
|
of \\(\\text{true}\\), \\(\\text{false}\\), \\(\\text{or}\\), \\(\\text{quote}_n\\) and
|
||||||
|
\\(\\text{rotate}_n\\). The proof of associativity is also enough to possibly argue for simplifying
|
||||||
|
the core calculus' syntax even more. All of this we got from an official source, with only
|
||||||
|
a little bit of tweaking to get from the written description of the language to code! I'm
|
||||||
|
looking forward to reading the next post about the _multistack_ concatenative calculus.
|
||||||
BIN
content/blog/coq_dawn_eval/coq_eval_chain_base.png
Normal file
|
After Width: | Height: | Size: 114 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_chain_inductive.png
Normal file
|
After Width: | Height: | Size: 190 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_chain_merge.png
Normal file
|
After Width: | Height: | Size: 132 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_empty.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_lists.png
Normal file
|
After Width: | Height: | Size: 193 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_one.png
Normal file
|
After Width: | Height: | Size: 54 KiB |
BIN
content/blog/coq_dawn_eval/coq_eval_two.png
Normal file
|
After Width: | Height: | Size: 87 KiB |
638
content/blog/coq_dawn_eval/index.md
Normal file
@@ -0,0 +1,638 @@
|
|||||||
|
---
|
||||||
|
title: "A Verified Evaluator for the Untyped Concatenative Calculus"
|
||||||
|
date: 2021-11-27T20:24:57-08:00
|
||||||
|
tags: ["Dawn", "Coq", "Programming Languages"]
|
||||||
|
---
|
||||||
|
|
||||||
|
Earlier, I wrote [an article]({{< relref "./coq_dawn" >}}) in which I used Coq to
|
||||||
|
encode the formal semantics of [Dawn's Untyped Concatenative Calculus](https://www.dawn-lang.org/posts/foundations-ucc/),
|
||||||
|
and to prove a few things about the mini-language. Though I'm quite happy with how that turned out,
|
||||||
|
my article was missing something that's present on the original Dawn page -- an evaluator. In this article, I'll define
|
||||||
|
an evaluator function in Coq, prove that it's equivalent to Dawn's formal semantics,
|
||||||
|
and extract all of this into usable Haskell code.
|
||||||
|
|
||||||
|
### Changes Since Last Time
|
||||||
|
In trying to write and verify this evaluator, I decided to make changes to the way I formalized
|
||||||
|
the UCC. Remember how we used a predicate, `IsValue`, to tag expressions that were values?
|
||||||
|
It turns out that this is a very cumbersome approach. For one thing, this formalization
|
||||||
|
allows for the case in which the exact same expression is a value for two different
|
||||||
|
reasons. Although `IsValue` has only one constructor (`Val_quote`), it's actually
|
||||||
|
{{< sidenote "right" "hott-note" "not provable" >}}
|
||||||
|
Interestingly, it's also not provable that any two proofs of \(a = b\) are equal,
|
||||||
|
even though equality only has one constructor, \(\text{refl}\ :\ a \rightarrow (a = a) \).
|
||||||
|
Under the <a href="https://homotopytypetheory.org/book/">homotopic interpretation</a>
|
||||||
|
of type theory, this corresponds to the fact that two paths from \(a\) to \(b\) need
|
||||||
|
not be homotopic (continuously deformable) to each other.<br>
|
||||||
|
<br>
|
||||||
|
As an intuitive example, imagine wrapping a string around a pole. Holding the ends of
|
||||||
|
the string in place, there's nothing you can do to "unwrap" the string. This string
|
||||||
|
is thus not deformable into a string that starts and stops at the same points,
|
||||||
|
but does not go around the pole.
|
||||||
|
{{< /sidenote >}}
|
||||||
|
that any two proofs of `IsValue e` are equal. I ended up getting into a lot of losing
|
||||||
|
arguments with the Coq runtime about whether or not two stacks are actually the same.
|
||||||
|
Also, some of the semantic rules expected a value on the stack with a particular proof
|
||||||
|
for `IsValue`, and rejected the exact same stack with a generic value.
|
||||||
|
|
||||||
|
Thus, I switched from our old implementation:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Dawn.v" 19 22 >}}
|
||||||
|
|
||||||
|
To the one I originally had in mind:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnV2.v" 19 19 >}}
|
||||||
|
|
||||||
|
I then had the following function to convert a value back into an equivalent expression:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnV2.v" 22 25 >}}
|
||||||
|
|
||||||
|
I replaced instances of `projT1` with instances of `value_to_expr`.
|
||||||
|
|
||||||
|
### Where We Are
|
||||||
|
At the end of my previous article, we ended up with a Coq encoding of the big-step
|
||||||
|
[operational semantics](https://en.wikipedia.org/wiki/Operational_semantics)
|
||||||
|
of UCC, as well as some proofs of correctness about the derived forms from
|
||||||
|
the article (like \\(\\text{quote}_3\\) and \\(\\text{rotate}_3\\)). The trouble
|
||||||
|
is, despite having our operational semantics, we can't make our Coq
|
||||||
|
code run anything. This is for several reasons:
|
||||||
|
|
||||||
|
1. Our definitions only let us to _confirm_ that given some
|
||||||
|
initial stack, a program ends up in some other final stack. We even have a
|
||||||
|
little `Ltac2` tactic to help us automate this kind of proof. However, in an evaluator,
|
||||||
|
the final stack is not known until the program finishes running. We can't
|
||||||
|
confirm the result of evaluation, we need to _find_ it.
|
||||||
|
2. To address the first point, we could try write a function that takes a program
|
||||||
|
and an initial stack, and produces a final stack, as well as a proof that
|
||||||
|
the program would evaluate to this stack under our semantics. However,
|
||||||
|
it's quite easy to write a non-terminating UCC program, whereas functions
|
||||||
|
in Coq _have to terminate!_ We can't write a terminating function to
|
||||||
|
run non-terminating code.
|
||||||
|
|
||||||
|
So, is there anything we can do? No, there isn't. Writing an evaluator in Coq
|
||||||
|
is just not possible. The end, thank you for reading.
|
||||||
|
|
||||||
|
Just kidding -- there's definitely a way to get our code evaluating, but it
|
||||||
|
will look a little bit strange.
|
||||||
|
|
||||||
|
### A Step-by-Step Evaluator
|
||||||
|
The trick is to recognize that program evaluation
|
||||||
|
occurs in steps. There may well be an infinite number of steps, if the program
|
||||||
|
is non-terminating, but there's always a step we can take. That is, unless
|
||||||
|
an invalid instruction is run, like trying to clone from an empty stack, or unless
|
||||||
|
the program finished running. You don't need a non-terminating function to just
|
||||||
|
give you a next step, if one exists. We can write such a function in Coq.
|
||||||
|
|
||||||
|
Here's a new data type that encodes the three situations we mentioned in the
|
||||||
|
previous paragraph. Its constructors (one per case) are as follows:
|
||||||
|
|
||||||
|
1. `err` - there are no possible evaluation steps due to an error.
|
||||||
|
3. `middle e s` - the evaluation took a step; the stack changed to `s`, and the rest of the program is `e`.
|
||||||
|
2. `final s` - there are no possible evaluation steps because the evaluation is complete,
|
||||||
|
leaving a final stack `s`.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 6 9 >}}
|
||||||
|
|
||||||
|
We can now write a function that tries to execute a single step given an expression.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 11 27 >}}
|
||||||
|
|
||||||
|
Most intrinsics, by themselves, complete after just one step. For instance, a program
|
||||||
|
consisting solely of \\(\\text{swap}\\) will either fail (if the stack doesn't have enough
|
||||||
|
values), or it will swap the top two values and be done. We list only "correct" cases,
|
||||||
|
and resort to a "catch-all" case on line 26 that returns an error. The one multi-step
|
||||||
|
intrinsic is \\(\\text{apply}\\), which can evaluate an arbitrary expression from the stack.
|
||||||
|
In this case, the "one step" consists of popping the quoted value from the stack; the
|
||||||
|
"remaining program" is precisely the expression that was popped.
|
||||||
|
|
||||||
|
Quoting an expression also always completes in one step (it simply places the quoted
|
||||||
|
expression on the stack). The really interesting case is composition. Expressions
|
||||||
|
are evaluated left-to-right, so we first determine what kind of step the left expression (`e1`)
|
||||||
|
can take. We may need more than one step to finish up with `e1`, so there's a good chance it
|
||||||
|
returns a "rest program" `e1'` and a stack `vs'`. If this happens, to complete evaluation of
|
||||||
|
\\(e_1\\ e_2\\), we need to first finish evaluating \\(e_1'\\), and then evaluate \\(e_2\\).
|
||||||
|
Thus, the "rest of the program" is \\(e_1'\\ e_2\\), or `e_comp e1' e2`. On the other hand,
|
||||||
|
if `e1` finished evaluating, we still need to evaluate `e2`, so our "rest of the program"
|
||||||
|
is \\(e_2\\), or `e2`. If evaluating `e1` led to an error, then so did evaluating `e_comp e1 e2`,
|
||||||
|
and we return `err`.
|
||||||
|
|
||||||
|
### Extracting Code
|
||||||
|
Just knowing a single step is not enough to run the code. We need something that repeatedly
|
||||||
|
tries to take a step, as long as it's possible. However, this part is once again
|
||||||
|
not possible in Coq, as it brings back the possibility of non-termination. So if we can't use
|
||||||
|
Coq, why don't we use another language? Coq's extraction mechanism allows us to do just that.
|
||||||
|
|
||||||
|
I added the following code to the end of my file:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 231 235 >}}
|
||||||
|
|
||||||
|
Coq happily produces a new file, `UccGen.hs` with a lot of code. It's not exactly the most
|
||||||
|
aesthetic; here's a quick peek:
|
||||||
|
|
||||||
|
```Haskell
|
||||||
|
data Intrinsic =
|
||||||
|
Swap
|
||||||
|
| Clone
|
||||||
|
| Drop
|
||||||
|
| Quote
|
||||||
|
| Compose
|
||||||
|
| Apply
|
||||||
|
|
||||||
|
data Expr =
|
||||||
|
E_int Intrinsic
|
||||||
|
| E_quote Expr
|
||||||
|
| E_comp Expr Expr
|
||||||
|
|
||||||
|
data Value =
|
||||||
|
V_quote Expr
|
||||||
|
|
||||||
|
-- ... more
|
||||||
|
```
|
||||||
|
|
||||||
|
All that's left is to make a new file, `Ucc.hs`. I use a different file so that
|
||||||
|
Coq doesn't overwrite my changes every time I re-run extraction. In this
|
||||||
|
file, we place the "glue code" that tries running one step after another:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/Ucc.hs" 46 51 >}}
|
||||||
|
|
||||||
|
Finally, loading up GHCi using `ghci Ucc.hs`, I can run the following commands:
|
||||||
|
|
||||||
|
```
|
||||||
|
ghci> fromList = foldl1 E_comp
|
||||||
|
ghci> test = eval [] $ fromList [true, false, UccGen.or]
|
||||||
|
ghci> :f test
|
||||||
|
test = Just [V_quote (E_comp (E_int Swap) (E_int Drop))]
|
||||||
|
```
|
||||||
|
|
||||||
|
That is, applying `or` to `true` and `false` results a stack with only `true` on top.
|
||||||
|
As expected, and proven by our semantics!
|
||||||
|
|
||||||
|
### Proving Equivalence
|
||||||
|
Okay, so `true false or` evaluates to `true`, much like our semantics claims.
|
||||||
|
However, does our evaluator _always_ match the semantics? So far, we have not
|
||||||
|
claimed or verified that it does. Let's try giving it a shot.
|
||||||
|
|
||||||
|
#### First Steps and Evaluation Chains
|
||||||
|
The first thing we can do is show that if we have a proof that `e` takes
|
||||||
|
initial stack `vs` to final stack `vs'`, then each
|
||||||
|
`eval_step` "makes progress" towards `vs'` (it doesn't simply _return_
|
||||||
|
`vs'`, since it only takes a single step and doesn't always complete
|
||||||
|
the evaluation). We also want to show that if the semantics dictates
|
||||||
|
`e` finishes in stack `vs'`, then `eval_step` will never return an error.
|
||||||
|
Thus, we have two possibilities:
|
||||||
|
|
||||||
|
* `eval_step` returns `final`. In this case, for it to match our semantics,
|
||||||
|
the final stack must be the same as `vs'`. Here's the relevant section
|
||||||
|
from the Coq file:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 30 30 >}}
|
||||||
|
* `eval_step` returns `middle`. In this case, the "rest of the program" needs
|
||||||
|
to evaluate to `vs'` according to our semantics (otherwise, taking a step
|
||||||
|
has changed the program's final outcome, which should not happen).
|
||||||
|
We need to quantify the new variables (specifically, the "rest of the
|
||||||
|
program", which we'll call `ei`, and the "stack after one step", `vsi`),
|
||||||
|
for which we use Coq's `exists` clause. The whole relevant statement is as
|
||||||
|
follows:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 31 33 >}}
|
||||||
|
|
||||||
|
The whole theorem statement is as follows:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 29 33 >}}
|
||||||
|
|
||||||
|
I have the Coq proof script for this (in fact, you can click the link
|
||||||
|
at the top of the code block to view the original source file). However,
|
||||||
|
there's something unsatisfying about this statement. In particular,
|
||||||
|
how do we prove that an entire sequence of steps evaluates
|
||||||
|
to something? We'd have to examine the first step, checking if
|
||||||
|
it's a "final" step or a "middle" step; if it's a "middle" step,
|
||||||
|
we'd have to move on to the "rest of the program" and repeat the process.
|
||||||
|
Each time we'd have to "retrieve" `ei` and `vsi` from `eval_step_correct`,
|
||||||
|
and feed it back to `eval_step`.
|
||||||
|
|
||||||
|
I'll do you one better: how do we even _say_ that an expression "evaluates
|
||||||
|
step-by-step to final stack `vs'`"? For one step, we can say:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
eval_step vs e = final vs'
|
||||||
|
```
|
||||||
|
|
||||||
|
Here's a picture so you can start visualizing what it looks like. The black line represents
|
||||||
|
a single "step".
|
||||||
|
|
||||||
|
{{< figure src="coq_eval_empty.png" caption="Visual representation of a single-step evaluation." class="small" alt="Two dots connected by a line. One dot is labeled \"vs\", and the other \"vs1\"." >}}
|
||||||
|
|
||||||
|
For two steps, we'd have to assert the existence of an intermediate
|
||||||
|
expression (the "rest of the program" after the first step):
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
exists ei vsi,
|
||||||
|
eval_step vs e = middle ei vsi /\ (* First step to intermediate expression. *)
|
||||||
|
eval_step vsi ei = final vs' (* Second step to final state. *)
|
||||||
|
```
|
||||||
|
|
||||||
|
Once again, here's a picture. I've highlighted the intermediate state, `vsi`, in
|
||||||
|
a brighter color.
|
||||||
|
{{< figure src="coq_eval_one.png" caption="Visual representation of a two-step evaluation." class="small" alt="Three dots connected by lines. The first dot is labeled \"vs\", the next \"vsi\", and the last \"vs1\". The second dot is highlighted." >}}
|
||||||
|
|
||||||
|
For three steps:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
exists ei1 ei2 vsi1 vsi2,
|
||||||
|
eval_step vs e = middle ei1 vsi1 /\ (* First step to intermediate expression. *)
|
||||||
|
eval_step vsi1 ei1 = middle ei2 vsi2 /\ (* Second intermediate step *)
|
||||||
|
eval_step vsi2 ei2 = final vs' (* Second step to final state. *)
|
||||||
|
```
|
||||||
|
|
||||||
|
I can imagine that you're getting the idea, but here's one last picture:
|
||||||
|
{{< figure src="coq_eval_two.png" caption="Visual representation of a three-step evaluation." class="small" alt="Four dots connected by lines. The first dot is labeled \"vs\", the next \"vsi1\", the one after \"vsi2\", and the last \"vs1\". The second and third dots are highlighted." >}}
|
||||||
|
|
||||||
|
The Coq code for this is awful! Not only is this a lot of writing, but it also makes various
|
||||||
|
sequences of steps have a different "shape". This way, we can't make
|
||||||
|
proofs about evaluations of an _arbitrary_ number of steps. Not all is lost, though: if we squint
|
||||||
|
a little at the last example (three steps), a pattern starts to emerge.
|
||||||
|
First, let's re-arrange the `exists` quantifiers:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
exists ei1 vsi1, eval_step vs e = middle ei1 vsi1 /\ (* Cons *)
|
||||||
|
exists ei2 vsi2, eval_step vsi1 ei1 = middle ei2 vsi2 /\ (* Cons *)
|
||||||
|
eval_step vsi2 ei2 = final vs' (* Nil *)
|
||||||
|
```
|
||||||
|
|
||||||
|
If you squint at this, it kind of looks like a list! The "empty"
|
||||||
|
part of a list is the final step, while the "cons" part is a middle step. The
|
||||||
|
analogy holds up for another reason: an "empty" sequence has zero intermediate
|
||||||
|
expressions, while each "cons" introduces a single new intermediate
|
||||||
|
program.
|
||||||
|
|
||||||
|
{{< figure src="coq_eval_lists.png" caption="Evaluation sequences as lists." class="large" alt="The three previous figures are drawn together, each next to its list representation." >}}
|
||||||
|
|
||||||
|
Perhaps we can define a new data type that matches this? Indeed
|
||||||
|
we can!
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 64 67 >}}
|
||||||
|
|
||||||
|
The new data type is parameterized by the initial and final stacks, as well
|
||||||
|
as the expression that starts in the former and ends in the latter.
|
||||||
|
Then, consider the following _type_:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
eval_chain nil (e_comp (e_comp true false) or) (true :: nil)
|
||||||
|
```
|
||||||
|
|
||||||
|
This is the type of sequences (or chains) of steps corresponding to the
|
||||||
|
evaluation of the program \\(\\text{true}\\ \\text{false}\\ \\text{or}\\),
|
||||||
|
starting in an empty stack and evaluating to a stack with only
|
||||||
|
\\(\\text{true}\\) on top. Thus to say that an expression evaluates to some
|
||||||
|
final stack `vs'`, in _some unknown number of steps_, it's sufficient to write:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
eval_chain vs e vs'
|
||||||
|
```
|
||||||
|
|
||||||
|
Evaluation chains have a couple of interesting properties. First and foremost,
|
||||||
|
they can be "concatenated". This is analogous to the `Sem_e_comp` rule
|
||||||
|
in our original semantics: if an expression `e1` starts in stack `vs`
|
||||||
|
and finishes in stack `vs'`, and another expression starts in stack `vs'`
|
||||||
|
and finishes in stack `vs''`, then we can compose these two expressions,
|
||||||
|
and the result will start in `vs` and finish in `vs''`.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 69 75 >}}
|
||||||
|
|
||||||
|
{{< figure src="coq_eval_chain_merge.png" caption="Merging evaluation chains." class="large" alt="Two evaluation chains, one starting in \"vs\" and ending in \"vs'\", and one starting in \"vs'\" and ending in \"vs''\", are combined into one. The new chain starts in \"vs\", ends in \"vs''\", and has \"vs'\" in the middle. " >}}
|
||||||
|
|
||||||
|
The proof is very short. We go
|
||||||
|
{{< sidenote "right" "concat-note" "by induction on the left evaluation chain" >}}
|
||||||
|
It's not a coincidence that defining something like <code>(++)</code>
|
||||||
|
(list concatenation) in Haskell typically starts by pattern matching
|
||||||
|
on the <em>left</em> list. In fact, proofs by <code>induction</code>
|
||||||
|
actually correspond to recursive functions! It's tough putting code blocks
|
||||||
|
in sidenotes, but if you're playing with the
|
||||||
|
<a href="https://dev.danilafe.com/Web-Projects/blog-static/src/branch/master/code/dawn/DawnEval.v"><code>DawnEval.v</code></a> file, try running
|
||||||
|
<code>Print eval_chain_ind</code>, and note the presence of <code>fix</code>,
|
||||||
|
the <a href="https://en.wikipedia.org/wiki/Fixed-point_combinator">fixed point
|
||||||
|
combinator</a> used to implement recursion.
|
||||||
|
{{< /sidenote >}}
|
||||||
|
(the one for `e1`). Coq takes care of most of the rest with `auto`.
|
||||||
|
The key to this proof is that whatever `P` is contained within a "node"
|
||||||
|
in the left chain determines how `eval_step (e_comp e1 e2)` behaves. Whether
|
||||||
|
`e1` evaluates to `final` or `middle`, the composition evaluates to `middle`
|
||||||
|
(a composition of two expressions cannot be done in one step), so we always
|
||||||
|
{{< sidenote "left" "cons-note" "create a new \"cons\" node." >}}
|
||||||
|
This is <em>unlike</em> list concatenation, since we typically don't
|
||||||
|
create new nodes when appending to an empty list.
|
||||||
|
{{< /sidenote >}} via `chain_middle`. Then, the two cases are as follows.
|
||||||
|
|
||||||
|
If the step was `final`, then
|
||||||
|
the rest of the steps use only `e2`, and good news, we already have a chain
|
||||||
|
for that!
|
||||||
|
{{< figure src="coq_eval_chain_base.png" caption="Merging evaluation chains when the first chain only has one step." class="large" alt="A single-step chain connected to another by a line labeled \"chain_middle\"." >}}
|
||||||
|
|
||||||
|
Otherwise, the step was `middle`, an we still have a chain for some
|
||||||
|
intermediate program `ei` that starts in some stack `vsi` and ends in `vs'`.
|
||||||
|
By induction, we know that _this_ chain can be concatenated with the one
|
||||||
|
for `e2`, resulting in a chain for `e_comp ei e2`. All that remains is to
|
||||||
|
attach to this sub-chain the one step from `(vs, e1)` to `(vsi, ei)`, which
|
||||||
|
is handled by `chain_middle`.
|
||||||
|
{{< figure src="coq_eval_chain_inductive.png" caption="Merging evaluation chains when the first chain has a middle step and others." class="large" alt="Visualization of the inductive case of merging chains." >}}
|
||||||
|
|
||||||
|
The `merge` operation is reversible; chains can be split into two pieces,
|
||||||
|
one for each composed expression:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 77 78 >}}
|
||||||
|
|
||||||
|
While interesting, this particular fact isn't used anywhere else in this
|
||||||
|
post, and I will omit the proof here.
|
||||||
|
|
||||||
|
#### The Forward Direction
|
||||||
|
Let's try rewording our very first proof, `eval_step_correct`, using
|
||||||
|
chains. The _direction_ remains the same: given that an expression
|
||||||
|
produces a final stack under the formal semantics, we need to
|
||||||
|
prove that this expression _evaluates_ to the same final stack using
|
||||||
|
a sequence of `eval_step`.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 93 96 >}}
|
||||||
|
|
||||||
|
The power of this theorem is roughly the same as that of
|
||||||
|
the original one: we can use `eval_step_correct` to build up a chain
|
||||||
|
by applying it over and over, and we can take the "first element"
|
||||||
|
of a chain to serve as a witness for `eval_step_correct`. However,
|
||||||
|
the formulation is arguably significantly cleaner, and contains
|
||||||
|
a proof for _all_ steps right away, rather than a single one.
|
||||||
|
|
||||||
|
Before we go through the proof, notice that there's actually _two_
|
||||||
|
theorems being stated here, which depend on each other. This
|
||||||
|
is not surprising given that our semantics are given using two
|
||||||
|
data types, `Sem_expr` and `Sem_int`, each of which contains the other.
|
||||||
|
Regular proofs by induction, which work on only one of the data types,
|
||||||
|
break down because we can't make claims "by induction" about the _other_
|
||||||
|
type. For example, while going by induction on `Sem_expr`, we run into
|
||||||
|
issues in the `e_int` case while handling \\(\\text{apply}\\). We know
|
||||||
|
a single step -- popping the value being run from the stack. But what then?
|
||||||
|
The rule for \\(\\text{apply}\\) in `Sem_int` contains another `Sem_expr`
|
||||||
|
which confirms that the quoted value properly evaluates. But this other
|
||||||
|
`Sem_expr` isn't directly a child of the "bigger" `Sem_expr`, and so we
|
||||||
|
don't get an inductive hypothesis about it. We know nothing about it; we're stuck.
|
||||||
|
|
||||||
|
We therefore have two theorems declared together using `with` (just like we
|
||||||
|
used `with` to declare `Sem_expr` and `Sem_int`). We have to prove both,
|
||||||
|
which is once again a surprisingly easy task thanks to Coq's `auto`. Let's
|
||||||
|
start with the first theorem, the one for expression semantics.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 98 107 >}}
|
||||||
|
|
||||||
|
We go by induction on the semantics data type. There are therefore three cases:
|
||||||
|
intrinsics, quotes, and composition. The intrinsic case is handed right
|
||||||
|
off to the second theorem (which we'll see momentarily). The quote case
|
||||||
|
is very simple since quoted expressions are simply pushed onto the stack in
|
||||||
|
a single step (we thus use `chain_final`). Finally, in the composition
|
||||||
|
case, we have two sub-proofs, one for each expression being evaluated.
|
||||||
|
By induction, we know that each of these sub-proofs can be turned into
|
||||||
|
a chain, and we use `eval_chain_merge` to combine these two chains into one.
|
||||||
|
That's it.
|
||||||
|
|
||||||
|
Now, let's try the second theorem. The code is even shorter:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 108 115 >}}
|
||||||
|
|
||||||
|
The first command, `inversion Hsem`, lets us go case-by-case on the various
|
||||||
|
ways an intrinsic can be evaluated. Most intrinsics are quite boring;
|
||||||
|
in our evaluator, they only need a single step, and their semantics
|
||||||
|
rules guarantee that the stack has the exact kind of data that the evaluator
|
||||||
|
expects. We dismiss such cases with `apply chain_final; auto`. The only
|
||||||
|
time this doesn't work is when we encounter the \\(\\text{apply}\\) intrinsic;
|
||||||
|
in that case, however, we can simply use the first theorem we proved.
|
||||||
|
|
||||||
|
#### A Quick Aside: Automation Using `Ltac2`
|
||||||
|
Going in the other direction will involve lots of situations in which we _know_
|
||||||
|
that `eval_step` evaluated to something. Here's a toy proof built around
|
||||||
|
one such case:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 237 246 "hl_lines=5-8">}}
|
||||||
|
|
||||||
|
The proof claims that if the `swap` instruction was evaluated to something,
|
||||||
|
then the initial stack must contain two values, and the final stack must
|
||||||
|
have those two values on top but flipped. This is very easy to prove, since
|
||||||
|
that's the exact behavior of `eval_step` for the `swap` intrinsic. However,
|
||||||
|
notice how much boilerplate we're writing: lines 241 through 244 deal entirely
|
||||||
|
with ensuring that our stack does, indeed, have two values. This is trivially true:
|
||||||
|
if the stack _didn't_ have two values, it wouldn't evaluate to `final`, but to `error`.
|
||||||
|
However, it takes some effort to convince Coq of this.
|
||||||
|
|
||||||
|
This was just for a single intrinsic. What if we're trying to prove something
|
||||||
|
for _every_ intrinsic? Things will get messy very quickly. We can't even re-use
|
||||||
|
our `destruct vs` code, because different intrinsics need stacks with different numbers
|
||||||
|
of values (they have a different _arity_); if we try to handle all cases with at most
|
||||||
|
2 values on the stack, we'd have to prove the same thing twice for simpler intrinsics.
|
||||||
|
In short, proofs will look like a mess.
|
||||||
|
|
||||||
|
Things don't have to be this way, though! The boilerplate code is very repetitive, and
|
||||||
|
this makes it a good candidate for automation. For this, Coq has `Ltac2`.
|
||||||
|
|
||||||
|
In short, `Ltac2` is another mini-language contained within Coq. We can use it to put
|
||||||
|
into code the decision making that we'd be otherwise doing on our own. For example,
|
||||||
|
here's a tactic that checks if the current proof has a hypothesis in which
|
||||||
|
an intrinsic is evaluated to something:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 141 148 >}}
|
||||||
|
|
||||||
|
`Ltac2` has a pattern matching construct much like Coq itself does, but it can
|
||||||
|
pattern match on Coq expressions and proof goals. When pattern matching
|
||||||
|
on goals, we use the following notation: `[ h1 : t1, ..., hn : tn |- g ]`, which reads:
|
||||||
|
|
||||||
|
> Given hypotheses `h1` through `hn`, of types `t1` through `tn` respectively,
|
||||||
|
we need to prove `g`.
|
||||||
|
|
||||||
|
In our pattern match, then, we're ignoring the actual thing we're supposed to prove
|
||||||
|
(the tactic we're writing won't be that smart; its user -- ourselves -- will need
|
||||||
|
to know when to use it). We are, however, searching for a hypothesis in the form
|
||||||
|
`eval_step ?a (e_int ?b) = ?c`. The three variables, `?a`, `?b`, and `?c` are placeholders
|
||||||
|
which can be matched with anything. Thus, we expect any hypothesis in which
|
||||||
|
an intrinsic is evaluated to anything else (by the way, Coq checks all hypotheses one-by-one,
|
||||||
|
starting at the most recent and finishing with the oldest). The code on lines 144 through 146 actually
|
||||||
|
performs the `destruct` calls, as well as the `inversion` attempts that complete
|
||||||
|
any proofs with an inconsistent assumption (like `err = final vs'`).
|
||||||
|
|
||||||
|
So how do these lines work? Well, first we need to get a handle on the hypothesis we found.
|
||||||
|
Various tactics can manipulate the proof state, and cause hypotheses to disappear;
|
||||||
|
by calling `Control.hyp` on `h`, we secure a more permanent hold on our evaluation assumption.
|
||||||
|
In the next line, we call _another_ `Ltac2` function, `destruct_int_stack`, which unpacks
|
||||||
|
the stack exactly as many times as necessary. We'll look at this function in a moment.
|
||||||
|
Finally, we use regular old tactics. Specifically, we use `inversion` (as mentioned before).
|
||||||
|
I use `fail` after `inversion` to avoid cluttering the proof in case there's _not_
|
||||||
|
a contradiction.
|
||||||
|
|
||||||
|
On to `destruct_int_stack`. The definition is very simple:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 139 139 >}}
|
||||||
|
|
||||||
|
The main novelty is that this function takes two arguments, both of which are Coq expressions:
|
||||||
|
`int`, or the intrinsic being evaluated, and `va`, the stack that's being analyzed. The `constr`
|
||||||
|
type in Coq holds terms. Let's look at `int_arity` next:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 128 137 >}}
|
||||||
|
|
||||||
|
This is a pretty standard pattern match that assigns to each expression its arity. However, we're
|
||||||
|
case analyzing over _literally any possible Coq expression_, so we need to handle the case in which
|
||||||
|
the expression isn't actually a specific intrinsic. For this, we use `Control.throw` with
|
||||||
|
the `Not_intrinsic` exception.
|
||||||
|
|
||||||
|
Wait a moment, does Coq just happen to include a `Not_intrinsic` exception? No, it does not.
|
||||||
|
We have to register that one ourselves. In `Ltac2`, the type of exception (`exn`) is _extensible_,
|
||||||
|
which means we can add on to it. We add just a single constructor with no arguments:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 118 118 >}}
|
||||||
|
|
||||||
|
Finally, unpacking the value stack. Here's the code for that:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 120 126 >}}
|
||||||
|
|
||||||
|
This function accepts the arity of an operation, and unpacks the stack that many times.
|
||||||
|
`Ltac2` doesn't have a way to pattern match on numbers, so we resort to good old "less than or equal",
|
||||||
|
and and `if`/`else`. If the arity is zero (or less than zero, since it's an integer), we don't
|
||||||
|
need to unpack anymore. This is our base case. Otherwise, we generate two new free variables
|
||||||
|
(we can't just hardcode `v1` and `v2`, since they may be in use elsewhere in the proof). To this
|
||||||
|
end we use `Fresh.in_goal` and give it a "base symbol" to build on. We then use
|
||||||
|
`destruct`, passing it our "scrutinee" (the expression being destructed) and the names
|
||||||
|
we generated for its components. This generates multiple goals; the `Control.enter` tactic
|
||||||
|
is used to run code for each one of these goals. In the non-empty list case, we try to break
|
||||||
|
apart its tail as necessary by recursively calling `destruct_n`.
|
||||||
|
|
||||||
|
That's pretty much it! We can now use our tactic from Coq like any other. Rewriting
|
||||||
|
our earlier proof about \\(\\text{swap}\\), we now only need to handle the valid case:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 248 254 >}}
|
||||||
|
|
||||||
|
We'll be using this new `ensure_valid_stack` tactic in our subsequent proofs.
|
||||||
|
|
||||||
|
#### The Backward Direction
|
||||||
|
After our last proof before the `Ltac2` diversion, we know that our evaluator matches our semantics, but only when a `Sem_expr`
|
||||||
|
object exists for our program. However, invalid programs don't have a `Sem_expr` object
|
||||||
|
(there's no way to prove that they evaluate to anything). Does our evaluator behave
|
||||||
|
properly on "bad" programs, too? We've not ruled out that our evaluator produces junk
|
||||||
|
`final` or `middle` outputs whenever it encounters an error. We need another theorem:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 215 216 >}}
|
||||||
|
|
||||||
|
That is, if our evalutor reaches a final state, this state matches our semantics.
|
||||||
|
This proof is most conveniently split into two pieces. The first piece says that
|
||||||
|
if our evaluator completes in a single step, then this step matches our semantics.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 158 175 >}}
|
||||||
|
|
||||||
|
The statement for a non-`final` step is more involved; the one step by itself need
|
||||||
|
not match the semantics, since it only carries out a part of a computation. However,
|
||||||
|
we _can_ say that if the "rest of the program" matches the semantics, then so does
|
||||||
|
the whole expression.
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 177 213 >}}
|
||||||
|
|
||||||
|
Finally, we snap these two pieces together in `eval_step_sem_back`:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 215 222 >}}
|
||||||
|
|
||||||
|
We have now proved complete equivalence: our evaluator completes in a final state
|
||||||
|
if and only if our semantics lead to this same final state. As a corollary of this,
|
||||||
|
we can see that if a program is invalid (it doesn't evaluate to anything under our semantics),
|
||||||
|
then our evaluator won't finish in a `final` state:
|
||||||
|
|
||||||
|
{{< codelines "Coq" "dawn/DawnEval.v" 224 229 >}}
|
||||||
|
|
||||||
|
### Making a Mini-REPL
|
||||||
|
We can now be pretty confident about our evaluator. However, this whole business with using GHCi
|
||||||
|
to run our programs is rather inconvenient; I'd rather write `[drop]` than `E_quote (E_int Drop)`.
|
||||||
|
I'd also rather _read_ the former instead of the latter. We can do some work in Haskell to make
|
||||||
|
playing with our interpreter more convenient.
|
||||||
|
|
||||||
|
#### Pretty Printing Code
|
||||||
|
Coq generated Haskell data types that correspond precisely to the data types we defined for our
|
||||||
|
proofs. We can use the standard type class mechanism in Haskell to define how they should be
|
||||||
|
printed:
|
||||||
|
|
||||||
|
{{< codelines "Haskell" "dawn/Ucc.hs" 8 22 >}}
|
||||||
|
|
||||||
|
Now our expressions and values print a lot nicer:
|
||||||
|
|
||||||
|
```
|
||||||
|
ghci> true
|
||||||
|
[swap drop]
|
||||||
|
ghci> false
|
||||||
|
[drop]
|
||||||
|
ghci> UccGen.or
|
||||||
|
clone apply
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Reading Code In
|
||||||
|
The Parsec library in Haskell can be used to convert text back into data structures.
|
||||||
|
It's not too hard to create a parser for UCC:
|
||||||
|
|
||||||
|
{{< codelines "Haskell" "dawn/Ucc.hs" 24 44 >}}
|
||||||
|
|
||||||
|
Now, `parseExpression` can be used to read code:
|
||||||
|
|
||||||
|
```
|
||||||
|
ghci> parseExpression "[drop] [drop]"
|
||||||
|
Right [drop] [drop]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### The REPL
|
||||||
|
We now literally have the three pieces of a read-evaluate-print loop. All that's left
|
||||||
|
is putting them together:
|
||||||
|
|
||||||
|
{{< codelines "Haskell" "dawn/Ucc.hs" 53 64 >}}
|
||||||
|
|
||||||
|
We now have our own little verified evaluator:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ ghci Ucc
|
||||||
|
$ ghc -main-is Ucc Ucc
|
||||||
|
$ ./Ucc
|
||||||
|
> [drop] [drop] clone apply
|
||||||
|
[[drop]]
|
||||||
|
> [drop] [swap drop] clone apply
|
||||||
|
[[swap drop]]
|
||||||
|
> [swap drop] [drop] clone apply
|
||||||
|
[[swap drop]]
|
||||||
|
> [swap drop] [swap drop] clone apply
|
||||||
|
[[swap drop]]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Potential Future Work
|
||||||
|
We now have a verified UCC evaluator in Haskell. What next?
|
||||||
|
|
||||||
|
1. We only verified the evaluation component of our REPL. In fact,
|
||||||
|
the whole thing is technically a bit buggy due to the parser:
|
||||||
|
```
|
||||||
|
> [drop] drop coq is a weird name to say out loud in interviews
|
||||||
|
[]
|
||||||
|
```
|
||||||
|
Shouldn't this be an error? Do you see why it's not? There's work in
|
||||||
|
writing formally verified parsers; some time ago I saw a Galois
|
||||||
|
talk about a [formally verified parser generator](https://galois.com/blog/2019/09/tech-talk-a-verified-ll1-parser-generator/).
|
||||||
|
We could use this formally verified parser generator to create our parsers, and then be
|
||||||
|
sure that our grammar is precisely followed.
|
||||||
|
2. We could try make our evaluator a bit smarter. One thing we could definitely do
|
||||||
|
is maker our REPL support variables. Then, we would be able to write:
|
||||||
|
```
|
||||||
|
> true = [swap drop]
|
||||||
|
> false = [drop]
|
||||||
|
> or = clone apply
|
||||||
|
> true false or
|
||||||
|
[swap drop]
|
||||||
|
```
|
||||||
|
There are different ways to go about this. One way is to extend our `expr` data type
|
||||||
|
with a variable constructor. This would complicate the semantics (a _lot_), but it would
|
||||||
|
allow us to prove facts about variables. Alternatively, we could implement expressions
|
||||||
|
as syntax sugar in our parser. Using a variable would be the same as simply
|
||||||
|
pasting in the variable's definition. This is pretty much what the Dawn article
|
||||||
|
seems to be doing.
|
||||||
|
3. We could prove more things. Can we confirm, once and for all, the correctness of \\(\\text{quote}_n\\),
|
||||||
|
for _any_ \\(n\\)? Is there is a generalized way of converting inductive data types into a UCC encoding?
|
||||||
|
Or could we perhaps formally verify the following comment from Lobsters:
|
||||||
|
|
||||||
|
> with the encoding of natural numbers given, n+1 contains the definition of n duplicated two times.
|
||||||
|
This means that the encoding of n has size exponential in n, which seems extremely impractical.
|
||||||
|
|
||||||
|
The world's our oyster!
|
||||||
|
|
||||||
|
Despite all of these exciting possibilities, this is where I stop, for now. I hope you enjoyed this article,
|
||||||
|
and thank you for reading!
|
||||||
84
content/blog/coq_docs/index.md
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
---
|
||||||
|
title: "I Don't Like Coq's Documentation"
|
||||||
|
date: 2021-11-24T21:48:59-08:00
|
||||||
|
expirydate: 2021-11-24T21:48:59-08:00
|
||||||
|
draft: true
|
||||||
|
tags: ["Coq"]
|
||||||
|
---
|
||||||
|
|
||||||
|
Recently, I wrote an article on [Formalizing Dawn's Core Calculus in Coq]({{< relref "./coq_dawn.md" >}}).
|
||||||
|
One of the proofs (specifically, correctness of \\(\\text{quote}_3\\)) was the best candidate I've ever
|
||||||
|
encountered for proof automation. I knew that proof automation was possible from the second book of Software
|
||||||
|
Foundations, [Programming Language Foundations](https://softwarefoundations.cis.upenn.edu/plf-current/index.html).
|
||||||
|
I went there to learn more, and started my little journey in picking up Coq's `Ltac2`.
|
||||||
|
|
||||||
|
Before I go any further, let me say that I'd self-describe as an "advanced beginner" in Coq, maybe "intermediate"
|
||||||
|
on a good day. I am certainly far from a master. I will also say that I am quite young, and thus possibly spoiled
|
||||||
|
by the explosion of well-documented languages, tools, and libraries. I don't frequently check `man` pages, and I don't
|
||||||
|
often read straight up technical manuals. Maybe the fault lies with me.
|
||||||
|
Nevertheles, I feel like I am where I am in the process of learning Coq
|
||||||
|
in part because of the state of its learning resources.
|
||||||
|
As a case study, let's take my attempt to automate away a pretty simple proof.
|
||||||
|
|
||||||
|
### Grammars instead of Examples
|
||||||
|
I did not specifically remember the chapter of Software Foundation in which tactics were introduced.
|
||||||
|
Instead of skimming through chapters until I found it, I tried to look up "coq custom tactic". The
|
||||||
|
first thing that comes up is the page for `Ltac`.
|
||||||
|
|
||||||
|
After a brief explanation of what `Ltac` is, the documentation jumps straight into the grammar of the entire
|
||||||
|
tactic language. Here' a screenshot of what that looks like:
|
||||||
|
|
||||||
|
{{< figure src="ltac_grammar.png" caption="The grammar of Ltac from the Coq page." class="large" alt="A grammar for the `Ltac` language within Coq. The grammar is in Backus–Naur form, and has 9 nonterminals." >}}
|
||||||
|
|
||||||
|
Good old Backus-Naur form. Now, my two main areas of interest are programming language theory and compilers, and so I'm no stranger to BNF. In fact, the first
|
||||||
|
time I saw such a documentation page (most pages describing Coq language feature have some production rules), I didn't even consciously process that I was looking
|
||||||
|
at grammar rules. However, and despite CompCert (a compiler) being probably the most well known example of a project in Coq, I don't think that Coq is made _just_
|
||||||
|
for people familiar with PLT or compilers. I don't think it should be expected for the average newcomer to Coq (or the average beginner-ish person like me) to know how to read production rules, or to know
|
||||||
|
what terminals and nonterminals are. Logical Founadtions sure managed to explain Gallina without resorting to BNFs.
|
||||||
|
|
||||||
|
And even if I, as a newcomer, know what BNF is, and how to read the rules, there's another layer to this specification:
|
||||||
|
the precedence of various operators is encoded in the BNF rules. This is a pretty common pattern
|
||||||
|
for writing down programming language grammars; for each level of operator precedence, there's another
|
||||||
|
nonterminal. We have `ltac_expr4` for sequencing (the least binding operator), and `ltac_expr3` for "level 3 tactics",
|
||||||
|
`ltac_expr2` for addition, logical "or", and "level 2 tactics". The creators of this documentation page clearly knew
|
||||||
|
what they were getting at here, and I've seen this pattern enough times to recognize it right away. But if you
|
||||||
|
_haven't_ seen this pattern before (and why should you have?), you'll need to take some time to decipher the rules.
|
||||||
|
That's time that you'd rather spend trying to write your tactic.
|
||||||
|
|
||||||
|
The page could just as well have mentioned the types of constructs in `Ltac`, and given a table of their relative precedence.
|
||||||
|
This could be an opportunity to give an example of what a program in `Ltac` looks like. Instead, despite having seen all of these nonterminals,
|
||||||
|
I still don't have an image in my mind's eye of what the language looks like. And better yet, I think that the grammar's incorrect:
|
||||||
|
|
||||||
|
```
|
||||||
|
ltac_expr4 ::= ltac_expr3 ; ltac_expr3|binder_tactic
|
||||||
|
```
|
||||||
|
|
||||||
|
The way this is written, there's no way to sequence (using a semicolon) more than two things. The semicolon
|
||||||
|
only occurs on level four, and both nonterminals in this rule are level three. However, Coq is perfectly happy
|
||||||
|
to accept the following:
|
||||||
|
|
||||||
|
```Coq
|
||||||
|
Ltac test := auto; auto; auto.
|
||||||
|
```
|
||||||
|
|
||||||
|
In the `Ltac2` grammar, this is written the way I'd expect:
|
||||||
|
|
||||||
|
```
|
||||||
|
ltac2_expr ::= ltac2_expr5 ; ltac2_expr
|
||||||
|
```
|
||||||
|
|
||||||
|
Let's do a quick recap. We have an encoding that requires a degree of experience with grammars and
|
||||||
|
programming languages to be useful to the reader, _and_ this encoding
|
||||||
|
{{< sidenote "right" "errors-note" "leaves room for errors," >}}
|
||||||
|
Here's a question to ponder: how come this error has gone unnoticed? Surely
|
||||||
|
people used this page to learn <code>Ltac</code>. I believe that part of the reason is
|
||||||
|
pattern matching: an experienced reader will recognize the "precedence trick", and quickly
|
||||||
|
scan the grammar levels to estblish precedence. The people writing and proofreading this
|
||||||
|
documentation likely read it this way, too.
|
||||||
|
{{< /sidenote >}}
|
||||||
|
errors that _actually appear in practice_.
|
||||||
|
{{< sidenote "left" "achilles-note" "We have a very precise, yet incorrect definition." >}}
|
||||||
|
Amusingly, I think this is very close to what is considered the achilles heel of formal verification:
|
||||||
|
software that precisely adheres to an incorrect or incomplete specification.
|
||||||
|
{{< /sidenote >}}
|
||||||
|
Somehow, "a sequence of statements separated by a semicolon" seems like a simpler explanation.
|
||||||
BIN
content/blog/coq_docs/ltac_grammar.png
Normal file
|
After Width: | Height: | Size: 188 KiB |
@@ -21,7 +21,7 @@ GHC IDE is a Haskell-based program that uses the
|
|||||||
{{< sidenote "right" "lsp-note" "language server protocol" >}}
|
{{< sidenote "right" "lsp-note" "language server protocol" >}}
|
||||||
You don't really need to know what the language server protocol (LSP) is
|
You don't really need to know what the language server protocol (LSP) is
|
||||||
to use GHC IDE. If you are nonetheless interested, I wrote a little
|
to use GHC IDE. If you are nonetheless interested, I wrote a little
|
||||||
bit about it <a href="{{< ref "/blog/haskell_language_server" >}}#prelude-language-server-protocol">in the previous iteration of this post.</a>
|
bit about it <a href="{{< relref "/blog/haskell_language_server" >}}#prelude-language-server-protocol">in the previous iteration of this post.</a>
|
||||||
If you want more information, check out the <a href="https://microsoft.github.io/language-server-protocol/">official Microsoft page on LSP.</a>
|
If you want more information, check out the <a href="https://microsoft.github.io/language-server-protocol/">official Microsoft page on LSP.</a>
|
||||||
{{< /sidenote >}} to communicate with any editor that supports it. Editors
|
{{< /sidenote >}} to communicate with any editor that supports it. Editors
|
||||||
with support the the LSP include Atom, Visual Studio Code, Emacs, and Vim. Thus,
|
with support the the LSP include Atom, Visual Studio Code, Emacs, and Vim. Thus,
|
||||||
@@ -61,7 +61,7 @@ export PATH=$PATH:/home/<yourusername>/.local/bin
|
|||||||
On Windows, this is done by
|
On Windows, this is done by
|
||||||
{{< sidenote "right" "path-note" "editing your PATH variable." >}}
|
{{< sidenote "right" "path-note" "editing your PATH variable." >}}
|
||||||
If you need to know how to change your <code>PATH</code>, I wrote
|
If you need to know how to change your <code>PATH</code>, I wrote
|
||||||
about it briefly in the <a href="{{< ref "/blog/haskell_language_server" >}}
|
about it briefly in the <a href="{{< relref "/blog/haskell_language_server" >}}
|
||||||
#installation-of-v0-5-0-0-windows-systems">previous iteration of this post.</a>
|
#installation-of-v0-5-0-0-windows-systems">previous iteration of this post.</a>
|
||||||
{{< /sidenote >}} I don't run Windows,
|
{{< /sidenote >}} I don't run Windows,
|
||||||
so I don't know where `cabal install` will place the executable, but I do know
|
so I don't know where `cabal install` will place the executable, but I do know
|
||||||
|
|||||||
112
content/blog/introducing_highlight/index.md
Normal file
@@ -0,0 +1,112 @@
|
|||||||
|
---
|
||||||
|
title: "Introducing Matrix Highlight"
|
||||||
|
date: 2021-12-13T16:49:42-08:00
|
||||||
|
tags: ["Matrix", "Project", "Matrix Highlight"]
|
||||||
|
---
|
||||||
|
|
||||||
|
I wanted to briefly introduce a project that I've been working on in my spare time over the past couple of months.
|
||||||
|
It's called __Matrix Highlight__, though this is a working title. However, it does exactly what the title claims:
|
||||||
|
this little project is a browser extension to annotate the web, using [Matrix](https://matrix.org) as a communication and storage protocol.
|
||||||
|
My goal with this project is a __decentralized, federated,
|
||||||
|
collaborative annotation system for web pages and documents (that can be self-hosted).__
|
||||||
|
See the image below for a quick sneak peek at what it looks like.
|
||||||
|
|
||||||
|
{{< figure src="mhl_many.png" caption="Text randomly highlighted with Matrix Highlight" class="fullwide" >}}
|
||||||
|
|
||||||
|
### Project Goals
|
||||||
|
#### Decentralized
|
||||||
|
Quite literally, the word "decentralized" lies in opposition to "centralized". In a centralized application, the data,
|
||||||
|
or computation, or anything really, is controlled by a single entity. An example of this might be Google Docs: Google
|
||||||
|
is in charge of Docs, and no one else. You log in through Google, and Google manages your various documents and edits
|
||||||
|
to them authoritatively.
|
||||||
|
|
||||||
|
I don't think that's a good idea. Although convenient, this kind of arrangement shifts control out of your hands
|
||||||
|
as a user, and into the hands of the entity running your software. Google has the power, if they wanted, to ban you from
|
||||||
|
using Google Docs, or to manage your content in ways you don't like. They can (and do) impose storage limits. You are,
|
||||||
|
in a sense, at their mercy. Furthermore, in the (admittedly unlikely) case that Google goes down, Google Docs goes down
|
||||||
|
for everyone. There's a single point of failure. Whereas it's hard to imagine Google itself having any real trouble (although
|
||||||
|
the recent AWS outage proves that such a thing is possible), most services aren't Google.
|
||||||
|
|
||||||
|
A decentralized application does not suffer from these problems.
|
||||||
|
The failure of a single server in a decentralized system does not bring it down for everyone. Furthermore, users have
|
||||||
|
the ability to switch between different servers or providers if one becomes abusive (or simply stops existing). Users
|
||||||
|
have more choices, and more control.
|
||||||
|
|
||||||
|
__For Matrix Highlight specifically__, this means not having to rely on one specific group or company
|
||||||
|
for storing and managing your annotations or notes.
|
||||||
|
|
||||||
|
#### Federated
|
||||||
|
Decentralization by itself does not make for useful software. There might very well be multiple servers providing access
|
||||||
|
to a particular piece of software. However, there's no guarantee that users of one such server can meaningfully interact
|
||||||
|
with users of another server. Microsoft's Office 365 has collaborative document editing, and so does Google Docs. However,
|
||||||
|
users of the two services cannot collaborate with _each other_.
|
||||||
|
|
||||||
|
In a federated system, the various providers establish a way of working together. The [Fediverse](https://en.wikipedia.org/wiki/Fediverse)
|
||||||
|
is a big example of this. Users of various [Mastodon](https://joinmastodon.org/) servers can see each other's messages and posts,
|
||||||
|
despite residing on servers with differing rules and administration. Users of Matrix can send messages between servers, with only
|
||||||
|
one account.
|
||||||
|
|
||||||
|
__For Matrix Highlight__, this means that users who choose to use different servers or providers are still able to collaboratively highlight
|
||||||
|
and annotate pages together.
|
||||||
|
|
||||||
|
#### Self-Hosted
|
||||||
|
Self-hosting is the practice of running the various software you use yourself. This allows you yourself to be in charge of your data,
|
||||||
|
instead of _any_ other entity, however trustworthy. A popular self-hosted solution is [Nextcloud](https://nextcloud.com/), which
|
||||||
|
may be used, among other things, as a Google Drive replacement that you run on your own server. With Nextcloud, your files
|
||||||
|
are completely under your own management, rather than that of some other person or company elsewhere.
|
||||||
|
|
||||||
|
__For Matrix Highlight__, this means that users can choose to run all the necessary software themselves, and thus remain in complete
|
||||||
|
control of their annotation and other data.
|
||||||
|
|
||||||
|
### What it Looks Like
|
||||||
|
First of all, you can watch a little demo video I recorded here:
|
||||||
|
|
||||||
|
{{< youtube Q3h5A0DsE1s >}}
|
||||||
|
|
||||||
|
You already got a little taste of Matrix Highlight in the opening screenshot. However, I'd like to show you some more of what I have
|
||||||
|
so far. The most important aspect of the tool is the ability to annotate web pages. The tool can be brought up on any page;
|
||||||
|
I typically test it on my blog, but that's just because it's convenient. Selecting some text brings up a little highlighting tooltip:
|
||||||
|
|
||||||
|
{{< figure src="mhl_tooltip.png" caption="A matrix highlighting tooltip appearing over one of the sidenotes in a different article." >}}
|
||||||
|
|
||||||
|
Selecting one of the colors in the tooltip creates a new highlight of the text you had selected:
|
||||||
|
|
||||||
|
{{< figure src="mhl_highlight.png" caption="The result of clicking a color in the previous screenshot." >}}
|
||||||
|
|
||||||
|
Annotations applied in this way are shared across all active instances of a Matrix Highlight page, including those shared with other users.
|
||||||
|
|
||||||
|
{{< figure src="mhl_multi.png" caption="Two chrome windows with the same annotations." class="fullwide" >}}
|
||||||
|
|
||||||
|
Highlights created by users can also be browsed as a list:
|
||||||
|
|
||||||
|
{{< figure src="mhl_quotelist.png" caption="A list of highlights from another page." class="medium" >}}
|
||||||
|
|
||||||
|
Highlights are stored in Matrix rooms. Since Matrix rooms are effectively chat rooms, they are built for being shared with other users.
|
||||||
|
Thus, it is very simple to give another user access to the current list of highlights.
|
||||||
|
|
||||||
|
{{< figure src="mhl_userlist.png" caption="A list of users for a particular page." class="medium" >}}
|
||||||
|
|
||||||
|
This also means that a single page can have multiple
|
||||||
|
independent sets of highlights, allowing you to organize them however you like. For instance, if you're proofreading a page of your own,
|
||||||
|
you may have a highlight set (Matrix room) for every editing pass. The rooms can be switched at a moment's notice:
|
||||||
|
|
||||||
|
{{< figure src="mhl_roomlist.png" caption="A list of rooms for a particular page." class="medium" >}}
|
||||||
|
|
||||||
|
### Current and Planned Features
|
||||||
|
|
||||||
|
The following are the current and planned features for Matrix Highlight:
|
||||||
|
|
||||||
|
* __Current__: Create and send website annotations over Matrix.
|
||||||
|
* __Current__: Store data in a decentralized and federated manner.
|
||||||
|
* __Current__: Share highlights with other users, including those on other servers.
|
||||||
|
* __Current__: Group annotations together and create multiple annotation groups
|
||||||
|
* __Planned__: Use Matrix's End-to-End encryption to ensure the secure transmission and storage of highlight data.
|
||||||
|
* __Planned__: Leverage the new [`m.thread` MSC](https://github.com/matrix-org/matrix-doc/blob/gsouquet/threading-via-relations/proposals/3440-threading-via-relations.md) to allow users to comment on and discuss
|
||||||
|
highlights.
|
||||||
|
* __Planned__: Use something like [ArchiveBox](https://archivebox.io/) to cache the current version of a website and prevent annotations from breaking.
|
||||||
|
* __Planned__ Highlight PDFs in addition to web pages.
|
||||||
|
|
||||||
|
### Project Status and Conclusion
|
||||||
|
For the moment, I'm refraining from publishing the project's source or output extensions. This is a hobby project, and I don't want to share
|
||||||
|
something half-baked with the world. However, I fully intend to share the code for the project as soon as I think it's ready (which would probably
|
||||||
|
be when I feel perfectly comfortable using it for my own needs).
|
||||||
BIN
content/blog/introducing_highlight/mhl_highlight.png
Normal file
|
After Width: | Height: | Size: 180 KiB |
BIN
content/blog/introducing_highlight/mhl_many.png
Normal file
|
After Width: | Height: | Size: 110 KiB |
BIN
content/blog/introducing_highlight/mhl_multi.png
Normal file
|
After Width: | Height: | Size: 595 KiB |
BIN
content/blog/introducing_highlight/mhl_quotelist.png
Normal file
|
After Width: | Height: | Size: 127 KiB |
BIN
content/blog/introducing_highlight/mhl_roomlist.png
Normal file
|
After Width: | Height: | Size: 99 KiB |
BIN
content/blog/introducing_highlight/mhl_toolbar.png
Normal file
|
After Width: | Height: | Size: 11 KiB |
BIN
content/blog/introducing_highlight/mhl_tooltip.png
Normal file
|
After Width: | Height: | Size: 183 KiB |
BIN
content/blog/introducing_highlight/mhl_userlist.png
Normal file
|
After Width: | Height: | Size: 91 KiB |
728
content/blog/modulo_patterns/index.md
Normal file
@@ -0,0 +1,728 @@
|
|||||||
|
---
|
||||||
|
title: Digit Sum Patterns and Modular Arithmetic
|
||||||
|
date: 2021-12-30T15:42:40-08:00
|
||||||
|
tags: ["Ruby", "Mathematics"]
|
||||||
|
description: "In this article, we explore the patterns created by remainders from division."
|
||||||
|
---
|
||||||
|
|
||||||
|
When I was in elementary school, our class was briefly visited by our school's headmaster.
|
||||||
|
He was there for a demonstration, probably intended to get us to practice our multiplication tables.
|
||||||
|
_"Pick a number"_, he said, _"And I'll teach you how to draw a pattern from it."_
|
||||||
|
|
||||||
|
The procedure was rather simple:
|
||||||
|
|
||||||
|
1. Pick a number between 2 and 8 (inclusive).
|
||||||
|
2. Start generating positive multiples of this number. If you picked 8,
|
||||||
|
your multiples would be 8, 16, 24, and so on.
|
||||||
|
3. If a multiple is more than one digit long, sum its digits. For instance, for 16, write 1+6=7.
|
||||||
|
If the digits add up to a number that's still more than 1 digit long, add up the digits of _that_
|
||||||
|
number (and so on).
|
||||||
|
4. Start drawing on a grid. For each resulting number, draw that many squares in one direction,
|
||||||
|
and then "turn". Using 8 as our example, we could draw 8 up, 7 to the right, 6 down, 5 to the left,
|
||||||
|
and so on.
|
||||||
|
5. As soon as you come back to where you started (_"And that will always happen"_, said my headmaster),
|
||||||
|
you're done. You should have drawn a pretty pattern!
|
||||||
|
|
||||||
|
Sticking with our example of 8, the pattern you'd end up with would be something like this:
|
||||||
|
|
||||||
|
{{< figure src="pattern_8.svg" caption="Pattern generated by the number 8." class="tiny" alt="Pattern generated by the number 8." >}}
|
||||||
|
|
||||||
|
Before we go any further, let's observe that it's not too hard to write code to do this.
|
||||||
|
For instance, the "add digits" algorithm can be naively
|
||||||
|
written by turning the number into a string (`17` becomes `"17"`), splitting that string into
|
||||||
|
characters (`"17"` becomes `["1", "7"]`), turning each of these character back into numbers
|
||||||
|
(the array becomes `[1, 7]`) and then computing the sum of the array, leaving `8`.
|
||||||
|
|
||||||
|
{{< codelines "Ruby" "patterns/patterns.rb" 3 8 >}}
|
||||||
|
|
||||||
|
We may now encode the "drawing" logic. At any point, there's a "direction" we're going - which
|
||||||
|
I'll denote by the Ruby symbols `:top`, `:bottom`, `:left`, and `:right`. Each step, we take
|
||||||
|
the current `x`,`y` coordinates (our position on the grid), and shift them by `n` in a particular
|
||||||
|
direction `dir`. We also return the new direction alongside the new coordinates.
|
||||||
|
|
||||||
|
{{< codelines "Ruby" "patterns/patterns.rb" 10 21 >}}
|
||||||
|
|
||||||
|
The top-level algorithm is captured by the following code, which produces a list of
|
||||||
|
coordinates in the order that you'd visit them.
|
||||||
|
|
||||||
|
{{< codelines "Ruby" "patterns/patterns.rb" 23 35 >}}
|
||||||
|
|
||||||
|
I will omit the code for generating SVGs from the body of the article -- you can always find the complete
|
||||||
|
source code in this blog's Git repo (or by clicking the link in the code block above). Let's run the code on a few other numbers. Here's one for 4, for instance:
|
||||||
|
|
||||||
|
{{< figure src="pattern_4.svg" caption="Pattern generated by the number 4." class="tiny" alt="Pattern generated by the number 4." >}}
|
||||||
|
|
||||||
|
And one more for 2, which I don't find as pretty.
|
||||||
|
|
||||||
|
{{< figure src="pattern_2.svg" caption="Pattern generated by the number 2." class="tiny" alt="Pattern generated by the number 2." >}}
|
||||||
|
|
||||||
|
It really does always work out! Young me was amazed, though I would often run out of space on my
|
||||||
|
grid paper to complete the pattern, or miscount the length of my lines partway in. It was only
|
||||||
|
recently that I started thinking about _why_ it works, and I think I figured it out. Let's take a look!
|
||||||
|
|
||||||
|
### Is a number divisible by 3?
|
||||||
|
You might find the whole "add up the digits of a number" thing familiar, and for good reason:
|
||||||
|
it's one way to check if a number is divisible by 3. The quick summary of this result is,
|
||||||
|
|
||||||
|
> If the sum of the digits of a number is divisible by 3, then so is the whole number.
|
||||||
|
|
||||||
|
For example, the sum of the digits of 72 is 9, which is divisible by 3; 72 itself is correspondingly
|
||||||
|
also divisible by 3, since 24*3=72. On the other hand, the sum of the digits of 82 is 10, which
|
||||||
|
is _not_ divisible by 3; 82 isn't divisible by 3 either (it's one more than 81, which _is_ divisible by 3).
|
||||||
|
|
||||||
|
Why does _this_ work? Let's talk remainders.
|
||||||
|
|
||||||
|
If a number doesn't cleanly divide another (we're sticking to integers here),
|
||||||
|
what's left behind is the remainder. For instance, dividing 7 by 3 leaves us with a remainder 1.
|
||||||
|
On the other hand, if the remainder is zero, then that means that our dividend is divisible by the
|
||||||
|
divisor (what a mouthful). In mathematics, we typically use
|
||||||
|
\\(a|b\\) to say \\(a\\) divides \\(b\\), or, as we have seen above, that the remainder of dividing
|
||||||
|
\\(b\\) by \\(a\\) is zero.
|
||||||
|
|
||||||
|
Working with remainders actually comes up pretty frequently in discrete math. A well-known
|
||||||
|
example I'm aware of is the [RSA algorithm](https://en.wikipedia.org/wiki/RSA_(cryptosystem)),
|
||||||
|
which works with remainders resulting from dividing by a product of two large prime numbers.
|
||||||
|
But what's a good way to write, in numbers and symbols, the claim that "\\(a\\) divides \\(b\\)
|
||||||
|
with remainder \\(r\\)"? Well, we know that dividing yields a quotient (possibly zero) and a remainder
|
||||||
|
(also possibly zero). Let's call the quotient \\(q\\).
|
||||||
|
{{< sidenote "right" "r-less-note" "Then, we know that when dividing \(b\) by \(a\) we have:" >}}
|
||||||
|
It's important to point out that for the equation in question to represent division
|
||||||
|
with quotient \(q\) and remainder \(r\), it must be that \(r\) is less than \(a\).
|
||||||
|
Otherwise, you could write \(r = s + a\) for some \(s\), and end up with
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& b = qa + r \\
|
||||||
|
\Rightarrow\ & b = qa + (s + a) \\
|
||||||
|
\Rightarrow\ & b = (q+1)a + s
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
In plain English, if \(r\) is bigger than \(a\) after you've divided, you haven't
|
||||||
|
taken out "as much \(a\) from your dividend as you could", and the actual quotient is
|
||||||
|
larger than \(q\).
|
||||||
|
{{< /sidenote >}}
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& b = qa + r \\
|
||||||
|
\Rightarrow\ & b-r = qa \\
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We only really care about the remainder here, not the quotient, since it's the remainder
|
||||||
|
that determines if something is divisible or not. From the form of the second equation, we can
|
||||||
|
deduce that \\(b-r\\) is divisible by \\(a\\) (it's literally equal to \\(a\\) times \\(q\\),
|
||||||
|
so it must be divisible). Thus, we can write:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
a|(b-r)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
There's another notation for this type of statement, though. To say that the difference between
|
||||||
|
two numbers is divisible by a third number, we write:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
b \equiv r\ (\text{mod}\ a)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Some things that _seem_ like they would work from this "equation-like" notation do, indeed, work.
|
||||||
|
For instance, we can "add two equations" (I'll omit the proof here; jump down to [this
|
||||||
|
section](#adding-two-congruences) to see how it works):
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\textbf{if}\ a \equiv b\ (\text{mod}\ k)\ \textbf{and}\ c \equiv d, (\text{mod}\ k),\ \textbf{then}\
|
||||||
|
a+c \equiv b+d\ (\text{mod}\ k).
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Multiplying both sides by the same number (call it \\(n\\)) also works (once
|
||||||
|
again, you can find the proof in [this section below](#multiplying-both-sides-of-a-congruence)).
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\textbf{if}\ a \equiv b\ (\text{mod}\ k),\ \textbf{then}\ na \equiv nb\ (\text{mod}\ k).
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Ok, that's a lot of notation and other _stuff_. Let's talk specifics. Of particular interest
|
||||||
|
is the number 10, since our number system is _base ten_ (the value of a digit is multiplied by 10
|
||||||
|
for every place it moves to the left). The remainder of 10 when dividing by 3 is 1. Thus,
|
||||||
|
we have:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
10 \equiv 1\ (\text{mod}\ 3)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
From this, we can deduce that multiplying by 10, when it comes to remainders from dividing by 3,
|
||||||
|
is the same as multiplying by 1. We can clearly see this by multiplying both sides by \\(n\\).
|
||||||
|
In our notation:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
10n \equiv n\ (\text{mod}\ 3)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
But wait, there's more. Take any power of ten, be it a hundred, a thousand, or a million.
|
||||||
|
Multiplying by that number is _also_ equivalent to multiplying by 1!
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
10^kn = 10\times10\times...\times 10n \equiv n\ (\text{mod}\ 3)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We can put this to good use. Let's take a large number that's divisible by 3. This number
|
||||||
|
will be made of multiple digits, like \\(d_2d_1d_0\\). Note that I do __not__ mean multiplication
|
||||||
|
here, but specifically that each \\(d_i\\) is a number between 0 and 9 in a particular place
|
||||||
|
in the number -- it's a digit. Now, we can write:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
0 &\equiv d_2d_1d_0 \\
|
||||||
|
& = 100d_2 + 10d_1 + d_0 \\
|
||||||
|
& \equiv d_2 + d_1 + d_0
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We have just found that \\(d_2+d_1+d_0 \\equiv 0\\ (\\text{mod}\ 3)\\), or that the sum of the digits
|
||||||
|
is also divisible by 3. The logic we use works in the other direction, too: if the sum of the digits
|
||||||
|
is divisible, then so is the actual number.
|
||||||
|
|
||||||
|
There's only one property of the number 3 we used for this reasoning: that \\(10 \\equiv 1\\ (\\text{mod}\\ 3)\\). But it so happens that there's another number that has this property: 9. This means
|
||||||
|
that to check if a number is divisible by _nine_, we can also check if the sum of the digits is
|
||||||
|
divisible by 9. Try it on 18, 27, 81, and 198.
|
||||||
|
|
||||||
|
Here's the main takeaway: __summing the digits in the way described by my headmaster is
|
||||||
|
the same as figuring out the remainder of the number from dividing by 9__. Well, almost.
|
||||||
|
The difference is the case of 9 itself: the __remainder__ here is 0, but we actually use 9
|
||||||
|
to draw our line. We can actually try just using 0. Here's the updated `sum_digits` code:
|
||||||
|
|
||||||
|
```Ruby
|
||||||
|
def sum_digits(n)
|
||||||
|
n % 9
|
||||||
|
end
|
||||||
|
```
|
||||||
|
|
||||||
|
The results are similarly cool:
|
||||||
|
|
||||||
|
{{< figure src="pattern_8_mod.svg" caption="Pattern generated by the number 8." class="tiny" alt="Pattern generated by the number 8 by just using remainders." >}}
|
||||||
|
{{< figure src="pattern_4_mod.svg" caption="Pattern generated by the number 4." class="tiny" alt="Pattern generated by the number 4 by just using remainders." >}}
|
||||||
|
{{< figure src="pattern_2_mod.svg" caption="Pattern generated by the number 2." class="tiny" alt="Pattern generated by the number 2 by just using remainders." >}}
|
||||||
|
|
||||||
|
### Sequences of Remainders
|
||||||
|
So now we know what the digit-summing algorithm is really doing. But that algorithm isn't all there
|
||||||
|
is to it! We're repeatedly applying this algorithm over and over to multiples of another number. How
|
||||||
|
does this work, and why does it always loop around? Why don't we ever spiral farther and farther
|
||||||
|
from the center?
|
||||||
|
|
||||||
|
First, let's take a closer look at our sequence of multiples. Suppose we're working with multiples
|
||||||
|
of some number \\(n\\). Let's write \\(a_i\\) for the \\(i\\)th multiple. Then, we end up with:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
a_1 &= n \\
|
||||||
|
a_2 &= 2n \\
|
||||||
|
a_3 &= 3n \\
|
||||||
|
a_4 &= 4n \\
|
||||||
|
... \\
|
||||||
|
a_i &= in
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
This is actually called an [arithmetic sequence](https://mathworld.wolfram.com/ArithmeticProgression.html);
|
||||||
|
for each multiple, the number increases by \\(n\\).
|
||||||
|
|
||||||
|
Here's a first seemingly trivial point: at some time, the remainder of \\(a_i\\) will repeat.
|
||||||
|
There are only so many remainders when dividing by nine: specifically, the only possible remainders
|
||||||
|
are the numbers 0 through 8. We can invoke the [pigeonhole principle](https://en.wikipedia.org/wiki/Pigeonhole_principle) and say that after 9 multiples, we will have to have looped. Another way
|
||||||
|
of seeing this is as follows:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& 9 \equiv 0\ (\text{mod}\ 9) \\
|
||||||
|
\Rightarrow\ & 9n \equiv 0\ (\text{mod}\ 9) \\
|
||||||
|
\Rightarrow\ & 10n \equiv n\ (\text{mod}\ 9) \\
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
The 10th multiple is equivalent to n, and will thus have the same remainder. The looping may
|
||||||
|
happen earlier: the simplest case is if we pick 9 as our \\(n\\), in which case the remainder
|
||||||
|
will always be 0.
|
||||||
|
|
||||||
|
Repeating remainders alone do not guarantee that we will return to the center. The repeating sequence 1,2,3,4
|
||||||
|
will certainly cause a spiral. The reason is that, if we start facing "up", we will always move up 1
|
||||||
|
and down 3 after four steps, leaving us 2 steps below where we started. Next, the cycle will repeat,
|
||||||
|
and since turning four times leaves us facing "up" again, we'll end up getting _further_ away. Here's
|
||||||
|
a picture that captures this behvior:
|
||||||
|
|
||||||
|
{{< figure src="pattern_1_4.svg" caption="Spiral generated by the number 1 with divisor 4." class="tiny" alt="Spiral generated by the number 1 by summing digits." >}}
|
||||||
|
|
||||||
|
And here's one more where the cycle repeats after 8 steps instead of 4. You can see that it also
|
||||||
|
leads to a spiral:
|
||||||
|
|
||||||
|
{{< figure src="pattern_1_8.svg" caption="Spiral generated by the number 1 with divisor 8." class="tiny" alt="Spiral generated by the number 1 by summing digits." >}}
|
||||||
|
|
||||||
|
From this, we can devise a simple condition to prevent spiraling -- the _length_ of the sequence before
|
||||||
|
it repeats _cannot be a multiple of 4_. This way, whenever the cycle restarts, it will do so in a
|
||||||
|
different direction: backwards, turned once to the left, or turned once to the right. Clearly repeating
|
||||||
|
the sequence backwards is guaranteed to take us back to the start. The same is true for the left and right-turn sequences, though it's less obvious. If drawing our sequence once left us turned to the right,
|
||||||
|
drawing our sequence twice will leave us turned more to the right. On a grid, two right turns are
|
||||||
|
the same as turning around. The third repetition will then undo the effects of the first one
|
||||||
|
(since we're facing backwards now), and the fourth will undo the effects of the second.
|
||||||
|
|
||||||
|
There is an exception to this
|
||||||
|
multiple-of-4 rule: if a sequence makes it back to the origin right before it starts over.
|
||||||
|
In that case, even if it's facing the very same direction it started with, all is well -- things
|
||||||
|
are just like when it first started, and the cycle repeats. I haven't found a sequence that does this,
|
||||||
|
so for our purposes, we'll stick with avoiding multiples of 4.
|
||||||
|
|
||||||
|
Okay, so we want to avoid cycles with lengths divisible by four. What does it mean for a cycle to be of length _k_? It effectively means the following:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& a_{k+1} \equiv a_1\ (\text{mod}\ 9) \\
|
||||||
|
\Rightarrow\ & (k+1)n \equiv n\ (\text{mod}\ 9) \\
|
||||||
|
\Rightarrow\ & kn \equiv 0\ (\text{mod}\ 9) \\
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
If we could divide both sides by \\(k\\), we could go one more step:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
n \equiv 0\ (\text{mod}\ 9) \\
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
That is, \\(n\\) would be divisible by 9! This would contradict our choice of \\(n\\) to be
|
||||||
|
between 2 and 8. What went wrong? Turns out, it's that last step: we can't always divide by \\(k\\).
|
||||||
|
Some values of \\(k\\) are special, and it's only _those_ values that can serve as cycle lengths
|
||||||
|
without causing a contradiction. So, what are they?
|
||||||
|
|
||||||
|
They're values that have a common factor with 9 (an incomplete explanation is in
|
||||||
|
[this section below](#invertible-numbers-textmod-d-share-no-factors-with-d)). There are many numbers that have a common
|
||||||
|
factor with 9; 3, 6, 9, 12, and so on. However, those can't all serve as cycle lengths: as we said,
|
||||||
|
cycles can't get longer than 9. This leaves us with 3, 6, and 9 as _possible_ cycle lengths,
|
||||||
|
none of which are divisible by 4. We've eliminated the possibility of spirals!
|
||||||
|
|
||||||
|
### Generalizing to Arbitrary Divisors
|
||||||
|
The trick was easily executable on paper because there's an easy way to compute the remainder of a number
|
||||||
|
when dividing by 9 (adding up the digits). However, we have a computer, and we don't need to fall back on such
|
||||||
|
cool-but-complicated techniques. To replicate our original behavior, we can just write:
|
||||||
|
|
||||||
|
```Ruby
|
||||||
|
def sum_digits(n)
|
||||||
|
x = n % 9
|
||||||
|
x == 0 ? 9 : x
|
||||||
|
end
|
||||||
|
```
|
||||||
|
|
||||||
|
But now, we can change the `9` to something else. There are some numbers we'd like to avoid - specifically,
|
||||||
|
we want to avoid those numbers that would allow for cycles of length 4 (or of a length divisible by 4).
|
||||||
|
If we didn't avoid them, we might run into infinite loops, where our pencil might end up moving
|
||||||
|
further and further from the center.
|
||||||
|
|
||||||
|
Actually, let's revisit that. When we were playing with paths of length \\(k\\) while dividing by 9,
|
||||||
|
we noted that the only _possible_ values of \\(k\\) are those that share a common factor with 9,
|
||||||
|
specifically 3, 6 and 9. But that's not quite as strong as it could be: try as you might, but
|
||||||
|
you will not find a cycle of length 6 when dividing by 9. The same is true if we pick 6 instead of 9,
|
||||||
|
and try to find a cycle of length 4. Even though 4 _does_ have a common factor with 6, and thus
|
||||||
|
is not ruled out as a valid cycle by our previous condition, we don't find any cycles of length 4.
|
||||||
|
|
||||||
|
So what is it that _really_ determines if there can be cycles or not?
|
||||||
|
|
||||||
|
Let's do some more playing around. What are the actual cycle lengths when we divide by 9?
|
||||||
|
For all but two numbers, the cycle lengths are 9. The two special numbers are 6 and 3, and they end up
|
||||||
|
with a cycle length of 3. From this, we can say that the cycle length seems to depend on whether or
|
||||||
|
not our \\(n\\) has any common factors with the divisor.
|
||||||
|
|
||||||
|
Let's explore this some more with a different divisor, say 12. We fill find that 8 has a cycle length
|
||||||
|
of 3, 7 has a cycle length of 12, 9 has a cycle length of 4. What's
|
||||||
|
happening here? To see, let's divide 12 __by these cycle lengths__. For 8, we get (12/3) = 4.
|
||||||
|
For 7, this works out to 1. For 9, it works out to 3. These new numbers, 4, 1, and 3, are actually
|
||||||
|
the __greatest common factors__ of 8, 7, and 3 with 12, respectively. The greatest common factor
|
||||||
|
of two numbers is the largest number that divides them both. We thus write down our guess
|
||||||
|
for the length of a cycle:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
k = \frac{d}{\text{gcd}(d,n)}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Where \\(d\\) is our divisor, which has been 9 until just recently, and \\(\\text{gcd}(d,n)\\)
|
||||||
|
is the greatest common factor of \\(d\\) and \\(n\\). This equation is in agreement
|
||||||
|
with our experiment for \\(d = 9\\), too. Why might this be? Recall that sequences with
|
||||||
|
period \\(k\\) imply the following congruence:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kn \equiv 0\ (\text{mod}\ d)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Here I've replaced 9 with \\(d\\), since we're trying to make it work for _any_ divisor, not just 9.
|
||||||
|
Now, suppose the greatest common divisor of \\(n\\) and \\(d\\) is some number \\(f\\). Then,
|
||||||
|
since this number divides \\(n\\) and \\(d\\), we can write \\(n=fm\\) for some \\(m\\), and
|
||||||
|
\\(d=fg\\) for some \\(g\\). We can rewrite our congruence as follows:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kfm \equiv 0\ (\text{mod}\ fg)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We can simplify this a little bit. Recall that what this congruence really means is that the
|
||||||
|
difference of \\(kfm\\) and \\(0\\), which is just \\(kfm\\), is divisible by \\(fg\\):
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
fg|kfm
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
But if \\(fg\\) divides \\(kfm\\), it must be that \\(g\\) divides \\(km\\)! This, in turn, means
|
||||||
|
we can write:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
g|km
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Can we distill this statement even further? It turns out that we can. Remember that we got \\(g\\)
|
||||||
|
and \\(m\\) by dividing \\(d\\) and \\(n\\) by their greatest common factor, \\(f\\). This, in
|
||||||
|
turn, means that \\(g\\) and \\(m\\) have no more common factors that aren't equal to 1 (see
|
||||||
|
[this section below](#numbers-divided-by-their-textgcd-have-no-common-factors)). From this, in turn, we can deduce that \\(m\\) is not
|
||||||
|
relevant to \\(g\\) dividing \\(km\\), and we get:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
g|k
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
That is, we get that \\(k\\) must be divisible by \\(g\\). Recall that we got \\(g\\) by dividing
|
||||||
|
\\(d\\) by \\(f\\), which is our largest common factor -- aka \\(\\text{gcd}(d,n)\\). We can thus
|
||||||
|
write:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\frac{d}{\text{gcd}(d,n)}|k
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Let's stop and appreciate this result. We have found a condition that is required for a sequnce
|
||||||
|
of remainders from dividing by \\(d\\) (which was 9 in the original problem) to repeat after \\(k\\)
|
||||||
|
numbers. Furthermore, all of our steps can be performed in reverse, which means that if a \\(k\\)
|
||||||
|
matches this conditon, we can work backwards and determine that a sequence of numbers has
|
||||||
|
to repeat after \\(k\\) steps.
|
||||||
|
|
||||||
|
Multiple \\(k\\)s will match this condition, and that's not surprising. If a sequence repeats after 5 steps,
|
||||||
|
it also repeats after 10, 15, and so on. We're interested in the first time our sequences repeat after
|
||||||
|
taking any steps, which means we have to pick the smallest possible non-zero value of \\(k\\). The smallest
|
||||||
|
number divisible by \\(d/\\text{gcd}(d,n)\\) is \\(d/\\text{gcd}(d,n)\\) itself. We thus confirm
|
||||||
|
our hypothesis:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
k = \frac{d}{\text{gcd}(d,n)}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Lastly, recall that our patterns would spiral away from the center whenever a \\(k\\) is a multiple of 4. Now that we know what
|
||||||
|
\\(k\\) is, we can restate this as "\\(d/\\text{gcd}(d,n)\\) is divisible by 4". But if we pick
|
||||||
|
\\(n=d-1\\), the greatest common factor has to be \\(1\\) (see [this section below](#divisors-of-n-and-n-1)), so we can even further simplify this "\\(d\\) is divisible by 4".
|
||||||
|
Thus, we can state simply that any divisor divisible by 4 is off-limits, as it will induce loops.
|
||||||
|
For example, pick \\(d=4\\). Running our algorithm
|
||||||
|
{{< sidenote "right" "constructive-note" "for \(n=d-1=3\)," >}}
|
||||||
|
Did you catch that? From our work above, we didn't just find a condition that would prevent spirals;
|
||||||
|
we also found the precise number that would result in a spiral if this condition were violated!
|
||||||
|
This is because our proof is <em>constructive</em>: instead of just claiming the existence
|
||||||
|
of a thing, it also shows how to get that thing. Our proof in the earlier section (which
|
||||||
|
claimed that the divisor 9 would never create spirals) went by contradiction, which was
|
||||||
|
<em>not</em> constructive. Repeating that proof for a general \(d\) wouldn't have told us
|
||||||
|
the specific numbers that would spiral.<br>
|
||||||
|
<br>
|
||||||
|
This is the reason that direct proofs tend to be preferred over proofs by contradiction.
|
||||||
|
{{< /sidenote >}} we indeed find an infinite
|
||||||
|
spiral:
|
||||||
|
|
||||||
|
{{< figure src="pattern_3_4.svg" caption="Spiral generated by the number 3 with divisor 4." class="tiny" alt="Spiral generated by the number 3 by summing digits." >}}
|
||||||
|
|
||||||
|
Let's try again. Pick \\(d=8\\); then, for \\(n=d-1=7\\), we also get a spiral:
|
||||||
|
|
||||||
|
{{< figure src="pattern_7_8.svg" caption="Spiral generated by the number 7 with divisor 8." class="tiny" alt="Spiral generated by the number 7 by summing digits." >}}
|
||||||
|
|
||||||
|
A poem comes to mind:
|
||||||
|
> Turning and turning in the widening gyre
|
||||||
|
>
|
||||||
|
> The falcon cannot hear the falconner;
|
||||||
|
|
||||||
|
Fortunately, there are plenty of numbers that are not divisible by four, and we can pick
|
||||||
|
any of them! I'll pick primes for good measure. Here are a few good ones from using 13
|
||||||
|
(which corresponds to summing digits of base-14 numbers):
|
||||||
|
|
||||||
|
{{< figure src="pattern_8_13.svg" caption="Pattern generated by the number 8 in base 14." class="tiny" alt="Pattern generated by the number 8 by summing digits." >}}
|
||||||
|
{{< figure src="pattern_4_13.svg" caption="Pattern generated by the number 4 in base 14." class="tiny" alt="Pattern generated by the number 4 by summing digits." >}}
|
||||||
|
|
||||||
|
Here's one from dividing by 17 (base-18 numbers).
|
||||||
|
|
||||||
|
{{< figure src="pattern_5_17.svg" caption="Pattern generated by the number 5 in base 18." class="tiny" alt="Pattern generated by the number 5 by summing digits." >}}
|
||||||
|
|
||||||
|
Finally, base-30:
|
||||||
|
|
||||||
|
{{< figure src="pattern_2_29.svg" caption="Pattern generated by the number 2 in base 30." class="tiny" alt="Pattern generated by the number 2 by summing digits." >}}
|
||||||
|
|
||||||
|
{{< figure src="pattern_6_29.svg" caption="Pattern generated by the number 6 in base 30." class="tiny" alt="Pattern generated by the number 6 by summing digits." >}}
|
||||||
|
|
||||||
|
### Generalizing to Arbitrary Numbers of Directions
|
||||||
|
What if we didn't turn 90 degrees each time? What, if, instead, we turned 120 degrees (so that
|
||||||
|
turning 3 times, not 4, would leave you facing the same direction you started)? We can pretty easily
|
||||||
|
do that, too. Let's call this number of turns \\(c\\). Up until now, we had \\(c=4\\).
|
||||||
|
|
||||||
|
First, let's update our condition. Before, we had "\\(d\\) cannot be divisible by 4". Now,
|
||||||
|
we aren't constraining ourselves to only 4, but rather using a generic variable \\(c\\).
|
||||||
|
We then end up with "\\(d\\) cannot be divisible by \\(c\\)". For instance, suppose we kept
|
||||||
|
our divisor as 9 for the time being, but started turning 3 times instead of 4. This
|
||||||
|
violates our divisibility condtion, and we once again end up with a spiral:
|
||||||
|
|
||||||
|
{{< figure src="pattern_8_9_t3.svg" caption="Pattern generated by the number 8 in base 10 while turning 3 times." class="tiny" alt="Pattern generated by the number 3 by summing digits and turning 120 degrees." >}}
|
||||||
|
|
||||||
|
If, on the other hand, we pick \\(d=8\\) and \\(c=3\\), we get patterns for all numbers just like we hoped.
|
||||||
|
Here's one such pattern:
|
||||||
|
|
||||||
|
{{< figure src="pattern_7_8_t3.svg" caption="Pattern generated by the number 7 in base 9 while turning 3 times." class="tiny" alt="Pattern generated by the number 7 by summing digits in base 9 and turning 120 degrees." >}}
|
||||||
|
|
||||||
|
Hold on a moment; it's actully not so obvious why our condition _still_ works. When we just turned
|
||||||
|
on a grid, things were simple. As long as we didn't end up facing the same way we started, we will
|
||||||
|
eventually perform the exact same motions in reverse. The same is not true when turning 120 degrees, like
|
||||||
|
we suggested. Here's an animated circle all of the turns we would make:
|
||||||
|
|
||||||
|
{{< figure src="turn_3_1.gif" caption="Orientations when turning 120 degrees" class="small" alt="Possible orientations when turning 120 degrees." >}}
|
||||||
|
|
||||||
|
We never quite do the exact _opposite_ of any one of our movements. So then, will we come back to the
|
||||||
|
origin anyway? Well, let's start simple. Suppose we always turn by exactly one 120-degree increment
|
||||||
|
(we might end up turning more or less, just like we may end up turning left, right, or back in the
|
||||||
|
90 degree case). Each time you face a particular direciton, after performing a cycle, you will have
|
||||||
|
moved some distance away from when you started, and turned 120 degrees. If you then repeat the
|
||||||
|
cycle, you will once again move by the same offset as before, but this time the offset will
|
||||||
|
be rotated 120 degrees, and you will have rotated a total of 240 degrees. Finally, performing
|
||||||
|
the cycle a third time, you'll have moved by the same offset (rotated 240 degrees).
|
||||||
|
|
||||||
|
If you overaly each offset such that their starting points overlap, they will look very similar
|
||||||
|
to that circle above. And now, here's the beauty: you can arrange these rotated offsets into
|
||||||
|
a triangle:
|
||||||
|
|
||||||
|
{{< figure src="turn_3_anim.gif" caption="Triangle formed by three 120-degree turns." class="small" alt="Triangle formed by three 120-degree turns." >}}
|
||||||
|
|
||||||
|
As long as you rotate by the same amount each time (and you will, since the cycle length determines
|
||||||
|
how many times you turn, and the cycle length never changes), you can do so for any number
|
||||||
|
of directions. For instance, here's a similar visualization in which
|
||||||
|
there are 5 possible directions, and where each turn is consequently 72 degrees:
|
||||||
|
|
||||||
|
{{< figure src="turn_5_anim.gif" caption="Pentagon formed by five 72-degree turns." class="small" alt="Pentagon formed by five 72-degree turns." >}}
|
||||||
|
|
||||||
|
Each of these polygon shapes forms a loop. If you walk along its sides, you will eventually end up exactly
|
||||||
|
where you started. This confirms that if you end up making one turn at the end of each cycle, you
|
||||||
|
will eventually end up right where you started.
|
||||||
|
|
||||||
|
Things aren't always as simple as making a single turn, though. Let's go back to the version
|
||||||
|
of the problem in which we have 3 possible directions, and think about what would happen if we turned by 240 degrees at a time: 2 turns
|
||||||
|
instead of 1?
|
||||||
|
|
||||||
|
Even though we first turn a whole 240 degrees, the second time we turn we "overshoot" our initial bearing, and end up at 120 degrees
|
||||||
|
compared to it. As soon as we turn 240 more degrees (turning the third time), we end up back at 0.
|
||||||
|
In short, even though we "visited" each bearing in a different order, we visited them all, and
|
||||||
|
exactly once at that. Here's a visualization:
|
||||||
|
|
||||||
|
{{< figure src="turn_3_2.gif" caption="Orientations when turning 120 degrees, twice at a time" class="small" alt="Possible orientations when turning 120 degrees, twice at a time." >}}
|
||||||
|
|
||||||
|
Note that even though in the above picture it looks like we're just turning left instead of right,
|
||||||
|
that's not the case; a single turn of 240 degrees is more than half the circle, so our second
|
||||||
|
bearing ends up on the left side of the circle even though we turn right.
|
||||||
|
|
||||||
|
Just to make sure we really see what's happening, let's try this when there are 5 possible directions,
|
||||||
|
and when we still make two turns (now of 72 degrees each)
|
||||||
|
|
||||||
|
{{< figure src="turn_5_2.gif" caption="Orientations when turning 72 degrees, twice at a time" class="small" alt="Possible orientations when turning 72 degrees, twice at a time." >}}
|
||||||
|
|
||||||
|
Let's try put some mathematical backing to this "visited them all" idea, and turning in general.
|
||||||
|
First, observe that as soon as we turn 360 degrees, it's as good as not turning at all - we end
|
||||||
|
up facing up again. If we turned 480 degrees (that is, two turns of 240 degrees each), the first
|
||||||
|
360 can be safely ignored, since it puts us where we started; only the 120 degrees that remain
|
||||||
|
are needed to figure out our final bearing. In short, the final direction we're facing is
|
||||||
|
the remainder from dividing by 360. We already know how to formulate this using modular arithmetic:
|
||||||
|
if we turn \\(t\\) degrees \\(k\\) times, and end up at final bearing (remainder) \\(b\\), this
|
||||||
|
is captured by:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kt \equiv b\ (\text{mod}\ 360)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Of course, if we end up facing the same way we started, we get the familiar equivalence:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kt \equiv 0\ (\text{mod}\ 360)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Even though the variables in this equivalence mean different things now than they did last
|
||||||
|
time we saw it, the mathematical properties remain the same. For instance, we can say that
|
||||||
|
after \\(360/\\text{gcd}(360, t)\\) turns, we'll end up facing the way that we started.
|
||||||
|
|
||||||
|
So far, so good. What I don't like about this, though, is that we have all of these
|
||||||
|
numbers of degrees all over our equations: 72 degrees, 144 degrees, and so forth. However,
|
||||||
|
something like 73 degrees (if there are five possible directions) is just not a valid bearing,
|
||||||
|
and nor is 71. We have so many possible degrees (360 of them, to be exact), but we're only
|
||||||
|
using a handful! That's wasteful. Instead, observe that for \\(c\\) possible turns,
|
||||||
|
the smallest possible turn angle is \\(360/c\\). Let's call this angle \\(\\theta\\) (theta).
|
||||||
|
Now, notice that we always turn in multiples of \\(\\theta\\): a single turn moves us \\(\\theta\\)
|
||||||
|
degrees, two turns move us \\(2\\theta\\) degrees, and so on. If we define \\(r\\) to be
|
||||||
|
the number of turns that we find ourselves rotated by after a single cycle,
|
||||||
|
we have \\(t=r\\theta\\), and our turning equation can be written as:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kr\theta \equiv 0\ (\text{mod}\ c\theta)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Now, once again, recall that the above equivalence is just notation for the following:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& c\theta|kr\theta \\
|
||||||
|
\Leftrightarrow\ & c|kr
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
And finally, observing that \\(kr=kr-0\\), we have:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kr \equiv 0\ (\text{mod}\ c)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
This equivalence says the same thing as our earlier one; however, instead of being in terms
|
||||||
|
of degrees, it's in terms of the number of turns \\(c\\) and the turns-per-cycle \\(r\\).
|
||||||
|
Now, recall once again that the smallest number of steps \\(k>0\\) for which this equivalence holds is
|
||||||
|
\\(k = c/\\text{gcd}(c,r)\\).
|
||||||
|
|
||||||
|
We're close now: we have a sequence of \\(k\\) steps that will lead us back to the beginning.
|
||||||
|
What's left is to show that these \\(k\\) steps are evenly distributed throughout our circle,
|
||||||
|
which is the key property that makes it possible for us to make a polygon out of them (and
|
||||||
|
thus end up back where we started).
|
||||||
|
|
||||||
|
To show this, say that we have a largest common divisor \\(f=\\text{gcd}(c,r)\\), and that \\(c=fe\\) and \\(r=fs\\). We can once again "divide through" by \\(f\\), and
|
||||||
|
get:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
ks \equiv 0\ (\text{mod}\ e)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
Now, we know that \\(\\text{gcd}(e,s)=1\\) ([see this section below](#numbers-divided-by-their-textgcd-have-no-common-factors)), and thus:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
k = e/\text{gcd}(e,s) = e
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
That is, our cycle will repeat after \\(e\\) remainders. But wait, we've only got \\(e\\) possible
|
||||||
|
remainders: the numbers \\(0\\) through \\(e-1\\)! Thus, for a cycle to repeat after \\(e\\) remainders,
|
||||||
|
all possible remainders must occur. For a concrete example, take \\(e=5\\); our remainders will
|
||||||
|
be the set \\(\\{0,1,2,3,4\\}\\). Now, let's "multiply back through"
|
||||||
|
by \\(f\\):
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
kfs \equiv 0\ (\text{mod}\ fe)
|
||||||
|
{{< /latex >}}
|
||||||
|
|
||||||
|
We still have \\(e\\) possible remainders, but this time they are multiplied by \\(f\\).
|
||||||
|
For example, taking \\(e\\) to once again be equal to \\(5\\), we have the set of possible remainders
|
||||||
|
\\(\\{0, f, 2f, 3f, 4f\\}\\). The important bit is that these remainders are all evenly spaced, and
|
||||||
|
that space between them is \\(f=\\text{gcd}(c,r)\\).
|
||||||
|
|
||||||
|
Let's recap: we have confirmed that for \\(c\\) possible turns (4 in our original formulation),
|
||||||
|
and \\(r\\) turns at a time, we will always loop after \\(k=c/\\text{gcd}(c,r)\\) steps,
|
||||||
|
evenly spaced out at \\(\\text{gcd}(c,r)\\) turns. No specific properties from \\(c\\) or \\(r\\)
|
||||||
|
are needed for this to work. Finally, recall from the previous
|
||||||
|
section that \\(r\\) is zero (and thus, our pattern breaks down) whenever the divisor \\(d\\) (9 in our original formulation) is itself
|
||||||
|
divisible by \\(c\\). And so, __as long as we pick a system with \\(c\\) possible directions
|
||||||
|
and divisor \\(d\\), we will always loop back and create a pattern as long as \\(c\\nmid d\\) (\\(c\\)
|
||||||
|
does not divide \\(d\\))__.
|
||||||
|
|
||||||
|
Let's try it out! There's a few pictures below. When reading the captions, keep in mind that the _base_
|
||||||
|
is one more than the _divisor_ (we started with numbers in the usual base 10, but divided by 9).
|
||||||
|
|
||||||
|
{{< figure src="pattern_1_7_t5.svg" caption="Pattern generated by the number 1 in base 8 while turning 5 times." class="tiny" alt="Pattern generated by the number 1 by summing digits in base 8 and turning 72 degrees." >}}
|
||||||
|
|
||||||
|
{{< figure src="pattern_3_4_t7.svg" caption="Pattern generated by the number 3 in base 5 while turning 7 times." class="tiny" alt="Pattern generated by the number 3 by summing digits in base 5 and turning 51 degrees." >}}
|
||||||
|
|
||||||
|
{{< figure src="pattern_3_11_t6.svg" caption="Pattern generated by the number 3 in base 12 while turning 6 times." class="tiny" alt="Pattern generated by the number 3 by summing digits in base 12 and turning 60 degrees." >}}
|
||||||
|
|
||||||
|
{{< figure src="pattern_2_11_t7.svg" caption="Pattern generated by the number 2 in base 12 while turning 7 times." class="tiny" alt="Pattern generated by the number 2 by summing digits in base 12 and turning 51 degrees." >}}
|
||||||
|
|
||||||
|
### Conclusion
|
||||||
|
Today we peeked under the hood of a neat mathematical trick that was shown to me by my headmaster
|
||||||
|
over 10 years ago now. Studying what it was that made this trick work led us to play with
|
||||||
|
the underlying mathematics some more, and extend the trick to more situations (and prettier
|
||||||
|
patterns). I hope you found this as interesting as I did!
|
||||||
|
|
||||||
|
By the way, the kind of math that we did in this article is most closely categorized as
|
||||||
|
_number theory_. Check it out if you're interested!
|
||||||
|
|
||||||
|
Finally, a huge thank you to Arthur for checking my math, helping me with proofs, and proofreading
|
||||||
|
the article.
|
||||||
|
|
||||||
|
All that remains are some proofs I omitted from the original article since they were taking
|
||||||
|
up a lot of space (and were interrupting the flow of the explanation). They are listed below.
|
||||||
|
|
||||||
|
### Referenced Proofs
|
||||||
|
|
||||||
|
#### Adding Two Congruences
|
||||||
|
__Claim__: If for some numbers \\(a\\), \\(b\\), \\(c\\), \\(d\\), and \\(k\\), we have
|
||||||
|
\\(a \\equiv b\\ (\\text{mod}\\ k)\\) and \\(c \\equiv d\\ (\\text{mod}\\ k)\\), then
|
||||||
|
it's also true that \\(a+c \\equiv b+d\\ (\\text{mod}\\ k)\\).
|
||||||
|
|
||||||
|
__Proof__: By definition, we have \\(k|(a-b)\\) and \\(k|(c-d)\\). This, in turn, means
|
||||||
|
that for some \\(i\\) and \\(j\\), \\(a-b=ik\\) and \\(c-d=jk\\). Add both sides to get:
|
||||||
|
{{< latex >}}
|
||||||
|
\begin{aligned}
|
||||||
|
& (a-b)+(c-d) = ik+jk \\
|
||||||
|
\Rightarrow\ & (a+c)-(b+d) = (i+j)k \\
|
||||||
|
\Rightarrow\ & k\ |\left[(a+c)-(b+d)\right]\\
|
||||||
|
\Rightarrow\ & a+c \equiv b+d\ (\text{mod}\ k) \\
|
||||||
|
\end{aligned}
|
||||||
|
{{< /latex >}}
|
||||||
|
\\(\\blacksquare\\)
|
||||||
|
|
||||||
|
#### Multiplying Both Sides of a Congruence
|
||||||
|
__Claim__: If for some numbers \\(a\\), \\(b\\), \\(n\\) and \\(k\\), we have
|
||||||
|
\\(a \\equiv b\\ (\\text{mod}\\ k)\\) then we also have that \\(an \\equiv bn\\ (\\text{mod}\\ k)\\).
|
||||||
|
|
||||||
|
__Proof__: By definition, we have \\(k|(a-b)\\). Since multiplying \\(a-b\\) but \\(n\\) cannot
|
||||||
|
make it _not_ divisible by \\(k\\), we also have \\(k|\\left[n(a-b)\\right]\\). Distributing
|
||||||
|
\\(n\\), we have \\(k|(na-nb)\\). By definition, this means \\(na\\equiv nb\\ (\\text{mod}\\ k)\\).
|
||||||
|
|
||||||
|
\\(\\blacksquare\\)
|
||||||
|
|
||||||
|
#### Invertible Numbers \\(\\text{mod}\\ d\\) Share no Factors with \\(d\\)
|
||||||
|
__Claim__: A number \\(k\\) is only invertible (can be divided by) in \\(\\text{mod}\\ d\\) if \\(k\\)
|
||||||
|
and \\(d\\) share no common factors (except 1).
|
||||||
|
|
||||||
|
__Proof__: Write \\(\\text{gcd}(k,d)\\) for the greatest common factor divisor of \\(k\\) and \\(d\\).
|
||||||
|
Another important fact (not proven here, but see something [like this](https://sharmaeklavya2.github.io/theoremdep/nodes/number-theory/gcd/gcd-is-min-lincomb.html)), is that if \\(\\text{gcd}(k,d) = r\\),
|
||||||
|
then the smallest possible number that can be made by adding and subtracting \\(k\\)s and \\(d\\)s
|
||||||
|
is \\(r\\). That is, for some \\(i\\) and \\(j\\), the smallest possible positive value of \\(ik + jd\\) is \\(r\\).
|
||||||
|
|
||||||
|
Now, note that \\(d \\equiv 0\\ (\\text{mod}\\ d)\\). Multiplying both sides by \\(j\\), get
|
||||||
|
\\(jd\\equiv 0\\ (\\text{mod}\\ d)\\). This, in turn, means that the smallest possible
|
||||||
|
value of \\(ik+jd \\equiv ik\\) is \\(r\\). If \\(r\\) is bigger than 1 (i.e., if
|
||||||
|
\\(k\\) and \\(d\\) have common factors), then we can't pick \\(i\\) such that \\(ik\\equiv1\\),
|
||||||
|
since we know that \\(r>1\\) is the least possible value we can make. There is therefore no
|
||||||
|
multiplicative inverse to \\(k\\). Alternatively worded, we cannot divide by \\(k\\).
|
||||||
|
|
||||||
|
\\(\\blacksquare\\)
|
||||||
|
|
||||||
|
#### Numbers Divided by Their \\(\\text{gcd}\\) Have No Common Factors
|
||||||
|
__Claim__: For any two numbers \\(a\\) and \\(b\\) and their largest common factor \\(f\\),
|
||||||
|
if \\(a=fc\\) and \\(b=fd\\), then \\(c\\) and \\(d\\) have no common factors other than 1 (i.e.,
|
||||||
|
\\(\\text{gcd}(c,d)=1\\)).
|
||||||
|
|
||||||
|
__Proof__: Suppose that \\(c\\) and \\(d\\) do have sommon factor, \\(e\\neq1\\). In that case, we have
|
||||||
|
\\(c=ei\\) and \\(d=ej\\) for some \\(i\\) and \\(j\\). Then, we have \\(a=fei\\), and \\(b=fej\\).
|
||||||
|
From this, it's clear that both \\(a\\) and \\(b\\) are divisible by \\(fe\\). Since \\(e\\)
|
||||||
|
is greater than \\(1\\), \\(fe\\) is greater than \\(f\\). But our assumptions state that
|
||||||
|
\\(f\\) is the greatest common divisor of \\(a\\) and \\(b\\)! We have arrived at a contradiction.
|
||||||
|
|
||||||
|
Thus, \\(c\\) and \\(d\\) cannot have a common factor other than 1.
|
||||||
|
|
||||||
|
\\(\\blacksquare\\)
|
||||||
|
|
||||||
|
#### Divisors of \\(n\\) and \\(n-1\\).
|
||||||
|
__Claim__: For any \\(n\\), \\(\\text{gcd}(n,n-1)=1\\). That is, \\(n\\) and \\(n-1\\) share
|
||||||
|
no common divisors.
|
||||||
|
|
||||||
|
__Proof__: Suppose some number \\(f\\) divides both \\(n\\) and \\(n-1\\).
|
||||||
|
In that case, we can write \\(n=af\\), and \\((n-1)=bf\\) for some \\(a\\) and \\(b\\).
|
||||||
|
Subtracting one equation from the other:
|
||||||
|
|
||||||
|
{{< latex >}}
|
||||||
|
1 = (a-b)f
|
||||||
|
{{< /latex >}}
|
||||||
|
But this means that 1 is divisible by \\(f\\)! That's only possible if \\(f=1\\). Thus, the only
|
||||||
|
number that divides \\(n\\) and \\(n-1\\) is 1; that's our greatest common factor.
|
||||||
|
|
||||||
|
\\(\\blacksquare\\)
|
||||||
42
content/blog/modulo_patterns/pattern_1_4.svg
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="220.0" height="200.0"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="169.99999999999997" x2="90.0" y2="169.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="169.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="169.99999999999997" x2="90.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="190.0" x2="50.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50.0" y1="190.0" x2="49.99999999999999" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="49.99999999999999" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="49.99999999999999" y1="130.0" x2="130.0" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="130.0" x2="130.0" y2="149.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="149.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="149.99999999999997" x2="90.0" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="150.0" x2="89.99999999999999" y2="89.99999999999999" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.99999999999999" cy="89.99999999999999" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.99999999999999" y1="89.99999999999999" x2="170.0" y2="89.99999999999999" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="89.99999999999999" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="89.99999999999999" x2="170.0" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="110.0" x2="130.0" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="110.0" x2="130.0" y2="50.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="50.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="50.0" x2="210.0" y2="50.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="50.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="50.0" x2="210.0" y2="70.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="70.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="70.0" x2="170.0" y2="70.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="70.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="70.0" x2="169.99999999999997" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="169.99999999999997" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 3.3 KiB |
80
content/blog/modulo_patterns/pattern_1_7_t5.svg
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="311.2461179749811" height="301.4817981115687"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="47.08203932499384" y1="78.81909602355867" x2="187.08203932499384" y2="78.81909602355867" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="187.08203932499384" cy="78.81909602355867" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="187.08203932499384" y1="78.81909602355867" x2="193.26237921249282" y2="97.84022634946174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="193.26237921249282" cy="97.84022634946174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="193.26237921249282" y1="97.84022634946174" x2="160.9016994374949" y2="121.35163644116068" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.9016994374949" cy="121.35163644116068" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.9016994374949" y1="121.35163644116068" x2="112.36067977499803" y2="86.08452130361229" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="112.36067977499803" cy="86.08452130361229" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="112.36067977499803" y1="86.08452130361229" x2="137.0820393249938" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="137.0820393249938" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="137.0820393249938" y1="10.0" x2="237.0820393249938" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="237.0820393249938" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="237.0820393249938" y1="10.0" x2="274.1640786499875" y2="124.12678195541842" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="274.1640786499875" cy="124.12678195541842" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="274.1640786499875" y1="124.12678195541842" x2="160.90169943749487" y2="206.41671727636466" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.90169943749487" cy="206.41671727636466" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.90169943749487" y1="206.41671727636466" x2="144.72135954999595" y2="194.6610122305152" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="144.72135954999595" cy="194.6610122305152" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="144.72135954999595" y1="194.6610122305152" x2="157.0820393249938" y2="156.61875157870907" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="157.0820393249938" cy="156.61875157870907" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="157.0820393249938" y1="156.61875157870907" x2="217.0820393249938" y2="156.61875157870907" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="217.0820393249938" cy="156.61875157870907" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="217.0820393249938" y1="156.61875157870907" x2="241.8033988749896" y2="232.70327288232136" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="241.8033988749896" cy="232.70327288232136" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="241.8033988749896" y1="232.70327288232136" x2="160.90169943749487" y2="291.4817981115687" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.90169943749487" cy="291.4817981115687" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.90169943749487" y1="291.4817981115687" x2="63.81966011250117" y2="220.94756783647193" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="63.81966011250117" cy="220.94756783647193" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="63.81966011250117" y1="220.94756783647193" x2="107.08203932499376" y2="87.7996555551504" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="107.08203932499376" cy="87.7996555551504" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="107.08203932499376" y1="87.7996555551504" x2="127.08203932499376" y2="87.7996555551504" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="127.08203932499376" cy="87.7996555551504" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="127.08203932499376" y1="87.7996555551504" x2="139.44271909999168" y2="125.84191620695655" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="139.44271909999168" cy="125.84191620695655" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="139.44271909999168" y1="125.84191620695655" x2="90.90169943749484" y2="161.10903134450496" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.90169943749484" cy="161.10903134450496" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.90169943749484" y1="161.10903134450496" x2="26.18033988749903" y2="114.0862111611071" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="26.18033988749903" cy="114.0862111611071" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="26.18033988749903" y1="114.0862111611071" x2="57.082039324993744" y2="18.98055953159174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="57.082039324993744" cy="18.98055953159174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="57.082039324993744" y1="18.98055953159174" x2="177.08203932499376" y2="18.98055953159174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="177.08203932499376" cy="18.98055953159174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="177.08203932499376" y1="18.98055953159174" x2="220.34441853748638" y2="152.12847181291323" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="220.34441853748638" cy="152.12847181291323" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="220.34441853748638" y1="152.12847181291323" x2="204.16407864998746" y2="163.88417685876271" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="204.16407864998746" cy="163.88417685876271" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="204.16407864998746" y1="163.88417685876271" x2="171.80339887498957" y2="140.37276676706375" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="171.80339887498957" cy="140.37276676706375" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="171.80339887498957" y1="140.37276676706375" x2="190.34441853748638" y2="83.30937578935456" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190.34441853748638" cy="83.30937578935456" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190.34441853748638" y1="83.30937578935456" x2="270.3444185374864" y2="83.30937578935456" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270.3444185374864" cy="83.30937578935456" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270.3444185374864" y1="83.30937578935456" x2="301.2461179749811" y2="178.4150274188699" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="301.2461179749811" cy="178.4150274188699" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="301.2461179749811" y1="178.4150274188699" x2="204.16407864998743" y2="248.94925769396673" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="204.16407864998743" cy="248.94925769396673" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="204.16407864998743" y1="248.94925769396673" x2="90.90169943749476" y2="166.65932237302047" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.90169943749476" cy="166.65932237302047" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.90169943749476" y1="166.65932237302047" x2="97.0820393249937" y2="147.6381920471174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="97.0820393249937" cy="147.6381920471174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="97.0820393249937" y1="147.6381920471174" x2="137.0820393249937" y2="147.6381920471174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="137.0820393249937" cy="147.6381920471174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="137.0820393249937" y1="147.6381920471174" x2="155.62305898749057" y2="204.70158302482662" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="155.62305898749057" cy="204.70158302482662" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="155.62305898749057" y1="204.70158302482662" x2="90.90169943749476" y2="251.7244032082245" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.90169943749476" cy="251.7244032082245" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.90169943749476" y1="251.7244032082245" x2="10.0" y2="192.9458779789772" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10.0" cy="192.9458779789772" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10.0" y1="192.9458779789772" x2="47.082039324993666" y2="78.81909602355874" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="47.082039324993666" cy="78.81909602355874" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 8.8 KiB |
74
content/blog/modulo_patterns/pattern_1_8.svg
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="459.9999999999999" height="399.99999999999994"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="329.99999999999994" x2="170.0" y2="329.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="329.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="329.99999999999994" x2="170.0" y2="349.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="349.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="349.99999999999994" x2="130.0" y2="349.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="349.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="349.99999999999994" x2="130.0" y2="289.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="289.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="289.99999999999994" x2="210.0" y2="289.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="289.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="289.99999999999994" x2="210.0" y2="389.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="389.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="389.99999999999994" x2="90.0" y2="389.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="389.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="389.99999999999994" x2="89.99999999999997" y2="249.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.99999999999997" cy="249.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.99999999999997" y1="249.99999999999994" x2="249.99999999999997" y2="249.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999997" cy="249.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999997" y1="249.99999999999994" x2="249.99999999999997" y2="269.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999997" cy="269.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999997" y1="269.99999999999994" x2="209.99999999999997" y2="269.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="209.99999999999997" cy="269.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="209.99999999999997" y1="269.99999999999994" x2="209.99999999999997" y2="209.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="209.99999999999997" cy="209.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="209.99999999999997" y1="209.99999999999997" x2="289.99999999999994" y2="209.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="209.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="209.99999999999997" x2="289.99999999999994" y2="309.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="309.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="309.99999999999994" x2="169.99999999999997" y2="309.99999999999994" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="169.99999999999997" cy="309.99999999999994" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="169.99999999999997" y1="309.99999999999994" x2="169.99999999999994" y2="169.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="169.99999999999994" cy="169.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="169.99999999999994" y1="169.99999999999997" x2="329.99999999999994" y2="169.99999999999997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="329.99999999999994" cy="169.99999999999997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="329.99999999999994" y1="169.99999999999997" x2="329.99999999999994" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="329.99999999999994" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="329.99999999999994" y1="190.0" x2="289.99999999999994" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="190.0" x2="289.99999999999994" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="130.0" x2="369.99999999999994" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="369.99999999999994" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="369.99999999999994" y1="130.0" x2="369.99999999999994" y2="230.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="369.99999999999994" cy="230.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="369.99999999999994" y1="230.0" x2="249.99999999999994" y2="230.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999994" cy="230.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999994" y1="230.0" x2="249.9999999999999" y2="90.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.9999999999999" cy="90.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.9999999999999" y1="90.0" x2="409.9999999999999" y2="90.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="409.9999999999999" cy="90.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="409.9999999999999" y1="90.0" x2="409.9999999999999" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="409.9999999999999" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="409.9999999999999" y1="110.0" x2="369.9999999999999" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="369.9999999999999" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="369.9999999999999" y1="110.0" x2="369.9999999999999" y2="50.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="369.9999999999999" cy="50.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="369.9999999999999" y1="50.0" x2="449.9999999999999" y2="50.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="449.9999999999999" cy="50.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="449.9999999999999" y1="50.0" x2="449.9999999999999" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="449.9999999999999" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="449.9999999999999" y1="150.0" x2="329.9999999999999" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="329.9999999999999" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="329.9999999999999" y1="150.0" x2="329.99999999999983" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="329.99999999999983" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 7.4 KiB |
82
content/blog/modulo_patterns/pattern_2.svg
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="520" height="520"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="330" y1="170" x2="330" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="210" x2="410" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="210" x2="410" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="90" x2="250" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="90" x2="250" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="110" x2="310" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="110" x2="310" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="10" x2="170" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="10" x2="170" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="190" x2="210" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="190" x2="210" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="110" x2="90" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="110" x2="90" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="270" x2="110" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="270" x2="110" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="210" x2="10" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="210" x2="10" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="350" x2="190" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="350" x2="190" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="310" x2="110" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="310" x2="110" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="430" x2="270" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="430" x2="270" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="410" x2="210" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="410" x2="210" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="510" x2="350" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="510" x2="350" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="330" x2="310" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="330" x2="310" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="410" x2="430" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="410" x2="430" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="250" x2="410" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="250" x2="410" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="310" x2="510" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="310" x2="510" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="170" x2="330" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.0 KiB |
164
content/blog/modulo_patterns/pattern_2_11_t7.svg
Normal file
@@ -0,0 +1,164 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="600.1996835705016" height="587.5080813062355"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="345.26009149615226" y1="178.29249583438352" x2="565.2600914961523" y2="178.29249583438352" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="565.2600914961523" cy="178.29249583438352" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="565.2600914961523" y1="178.29249583438352" x2="590.1996835705016" y2="209.5657551331047" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590.1996835705016" cy="209.5657551331047" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590.1996835705016" y1="209.5657551331047" x2="572.3980088539964" y2="287.55998810765055" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="572.3980088539964" cy="287.55998810765055" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="572.3980088539964" y1="287.55998810765055" x2="464.28174470570616" y2="339.6260368017576" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="464.28174470570616" cy="339.6260368017576" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="464.28174470570616" y1="339.6260368017576" x2="320.1267258413191" y2="270.20463854294826" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="320.1267258413191" cy="270.20463854294826" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="320.1267258413191" y1="270.20463854294826" x2="275.62253905005616" y2="75.21905610658354" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="275.62253905005616" cy="75.21905610658354" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="275.62253905005616" y1="75.21905610658354" x2="288.0923350872309" y2="59.58242645722294" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="288.0923350872309" cy="59.58242645722294" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="288.0923350872309" y1="59.58242645722294" x2="348.0923350872308" y2="59.58242645722294" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="348.0923350872308" cy="59.58242645722294" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="348.0923350872308" y1="59.58242645722294" x2="410.4413152731042" y2="137.76557470402594" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410.4413152731042" cy="137.76557470402594" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410.4413152731042" y1="137.76557470402594" x2="379.2883845192202" y2="274.25548240948126" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="379.2883845192202" cy="274.25548240948126" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="379.2883845192202" y1="274.25548240948126" x2="217.11398829678478" y2="352.35455545064167" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="217.11398829678478" cy="352.35455545064167" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="217.11398829678478" y1="352.35455545064167" x2="18.900837358252573" y2="256.9001328447789" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="18.900837358252573" cy="256.9001328447789" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="18.900837358252573" y1="256.9001328447789" x2="10.0" y2="217.90301635750598" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10.0" cy="217.90301635750598" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10.0" y1="217.90301635750598" x2="59.87918414869867" y2="155.3564977600636" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="59.87918414869867" cy="155.3564977600636" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="59.87918414869867" y1="155.3564977600636" x2="179.87918414869867" y2="155.3564977600636" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="179.87918414869867" cy="155.3564977600636" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="179.87918414869867" y1="155.3564977600636" x2="279.63755244609604" y2="280.4495349549484" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="279.63755244609604" cy="280.4495349549484" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="279.63755244609604" y1="280.4495349549484" x2="235.13336565483317" y2="475.4351173913131" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="235.13336565483317" cy="475.4351173913131" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="235.13336565483317" y1="475.4351173913131" x2="217.11398829678478" y2="484.1127921736643" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="217.11398829678478" cy="484.1127921736643" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="217.11398829678478" y1="484.1127921736643" x2="163.05585622263965" y2="458.0797678266108" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="163.05585622263965" cy="458.0797678266108" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="163.05585622263965" y1="458.0797678266108" x2="140.8037628270082" y2="360.58697660842836" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="140.8037628270082" cy="360.58697660842836" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="140.8037628270082" y1="360.58697660842836" x2="228.09233508723085" y2="251.13056906290424" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="228.09233508723085" cy="251.13056906290424" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="228.09233508723085" y1="251.13056906290424" x2="408.0923350872308" y2="251.13056906290424" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="408.0923350872308" cy="251.13056906290424" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="408.0923350872308" y1="251.13056906290424" x2="545.2600914961523" y2="423.1334952058708" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="545.2600914961523" cy="423.1334952058708" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="545.2600914961523" y1="423.1334952058708" x2="536.3592541378997" y2="462.1306116931437" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="536.3592541378997" cy="462.1306116931437" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="536.3592541378997" y1="462.1306116931437" x2="464.28174470570616" y2="496.8413108225484" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="464.28174470570616" cy="496.8413108225484" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="464.28174470570616" y1="496.8413108225484" x2="356.1654805574159" y2="444.7752621284414" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="356.1654805574159" cy="444.7752621284414" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="356.1654805574159" y1="444.7752621284414" x2="320.56213112440554" y2="288.7867961793496" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="320.56213112440554" cy="288.7867961793496" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="320.56213112440554" y1="288.7867961793496" x2="445.2600914961522" y2="132.42049968574366" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="445.2600914961522" cy="132.42049968574366" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="445.2600914961522" y1="132.42049968574366" x2="465.2600914961522" y2="132.42049968574366" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="465.2600914961522" cy="132.42049968574366" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="465.2600914961522" y1="132.42049968574366" x2="502.66947960767624" y2="179.33038863382546" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="502.66947960767624" cy="179.33038863382546" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="502.66947960767624" y1="179.33038863382546" x2="480.4173862120448" y2="276.8231798520078" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="480.4173862120448" cy="276.8231798520078" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="480.4173862120448" y1="276.8231798520078" x2="354.2817447057061" y2="337.566903328466" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="354.2817447057061" cy="337.566903328466" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="354.2817447057061" y1="337.566903328466" x2="192.10734848327067" y2="259.46783028730556" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="192.10734848327067" cy="259.46783028730556" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="192.10734848327067" y1="259.46783028730556" x2="143.1527430128815" y2="44.98368960730435" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="143.1527430128815" cy="44.98368960730435" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="143.1527430128815" y1="44.98368960730435" x2="168.09233508723082" y2="13.710430308583135" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="168.09233508723082" cy="13.710430308583135" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="168.09233508723082" y1="13.710430308583135" x2="248.09233508723082" y2="13.710430308583135" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="248.09233508723082" cy="13.710430308583135" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="248.09233508723082" y1="13.710430308583135" x2="322.91111131027884" y2="107.53020820474671" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="322.91111131027884" cy="107.53020820474671" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="322.91111131027884" y1="107.53020820474671" x2="287.30776187726855" y2="263.5186741538385" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="287.30776187726855" cy="263.5186741538385" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="287.30776187726855" y1="263.5186741538385" x2="107.11398829678475" y2="350.2954219773501" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="107.11398829678475" cy="350.2954219773501" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="107.11398829678475" y1="350.2954219773501" x2="89.09461093873638" y2="341.617747194999" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.09461093873638" cy="341.617747194999" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.09461093873638" y1="341.617747194999" x2="75.74335490135752" y2="283.12207246408957" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="75.74335490135752" cy="283.12207246408957" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="75.74335490135752" y1="283.12207246408957" x2="138.09233508723085" y2="204.93892421728657" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="138.09233508723085" cy="204.93892421728657" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="138.09233508723085" y1="204.93892421728657" x2="278.0923350872309" y2="204.93892421728657" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="278.0923350872309" cy="204.93892421728657" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="278.0923350872309" y1="204.93892421728657" x2="390.32049942180294" y2="345.66859106153186" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390.32049942180294" cy="345.66859106153186" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390.32049942180294" y1="345.66859106153186" x2="341.3658939514137" y2="560.1527317415331" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="341.3658939514137" cy="560.1527317415331" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="341.3658939514137" y1="560.1527317415331" x2="305.32713923531696" y2="577.5080813062355" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="305.32713923531696" cy="577.5080813062355" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="305.32713923531696" y1="577.5080813062355" x2="233.24962980312347" y2="542.7973821768308" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="233.24962980312347" cy="542.7973821768308" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="233.24962980312347" y1="542.7973821768308" x2="206.54711772836572" y2="425.8060327150119" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="206.54711772836572" cy="425.8060327150119" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="206.54711772836572" y1="425.8060327150119" x2="306.30548602576306" y2="300.71299552012715" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="306.30548602576306" cy="300.71299552012715" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="306.30548602576306" y1="300.71299552012715" x2="506.30548602576306" y2="300.71299552012715" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="506.30548602576306" cy="300.71299552012715" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="506.30548602576306" y1="300.71299552012715" x2="518.7752820629378" y2="316.34962516948775" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="518.7752820629378" cy="316.34962516948775" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="518.7752820629378" y1="316.34962516948775" x2="505.4240260255588" y2="374.8452999003972" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="505.4240260255588" cy="374.8452999003972" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="505.4240260255588" y1="374.8452999003972" x2="415.32713923531696" y2="418.2336738121529" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="415.32713923531696" cy="418.2336738121529" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="415.32713923531696" y1="418.2336738121529" x2="289.1914977289782" y2="357.48995033569486" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.1914977289782" cy="357.48995033569486" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.1914977289782" y1="357.48995033569486" x2="249.13772961684163" y2="182.00292614296657" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.13772961684163" cy="182.00292614296657" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.13772961684163" y1="182.00292614296657" x2="386.305486025763" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="386.305486025763" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="386.305486025763" y1="10.0" x2="426.305486025763" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="426.305486025763" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="426.305486025763" y1="10.0" x2="476.18467017446164" y2="72.5465185974424" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="476.18467017446164" cy="72.5465185974424" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="476.18467017446164" y1="72.5465185974424" x2="449.48215809970395" y2="189.5378680592612" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="449.48215809970395" cy="189.5378680592612" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="449.48215809970395" y1="189.5378680592612" x2="305.32713923531685" y2="258.95926631807055" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="305.32713923531685" cy="258.95926631807055" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="305.32713923531685" y1="258.95926631807055" x2="125.13336565483307" y2="172.18251849455896" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="125.13336565483307" cy="172.18251849455896" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="125.13336565483307" y1="172.18251849455896" x2="120.68294697570678" y2="152.68396025092247" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="120.68294697570678" cy="152.68396025092247" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="120.68294697570678" y1="152.68396025092247" x2="158.0923350872308" y2="105.7740713028407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="158.0923350872308" cy="105.7740713028407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="158.0923350872308" y1="105.7740713028407" x2="258.0923350872308" y2="105.7740713028407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="258.0923350872308" cy="105.7740713028407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="258.0923350872308" y1="105.7740713028407" x2="345.38090734745356" y2="215.23047884836487" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="345.38090734745356" cy="215.23047884836487" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="345.38090734745356" y1="215.23047884836487" x2="305.3271392353169" y2="390.71750304109315" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="305.3271392353169" cy="390.71750304109315" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="305.3271392353169" y1="390.71750304109315" x2="107.11398829678473" y2="486.1719256469559" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="107.11398829678473" cy="486.1719256469559" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="107.11398829678473" y1="486.1719256469559" x2="71.07523358068796" y2="468.8165760822536" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="71.07523358068796" cy="468.8165760822536" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="71.07523358068796" y1="468.8165760822536" x2="53.27355886418278" y2="390.82234310770775" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="53.27355886418278" cy="390.82234310770775" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="53.27355886418278" y1="390.82234310770775" x2="128.0923350872308" y2="297.00256521154415" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="128.0923350872308" cy="297.00256521154415" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="128.0923350872308" y1="297.00256521154415" x2="288.09233508723077" y2="297.00256521154415" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="288.09233508723077" cy="297.00256521154415" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="288.09233508723077" y1="297.00256521154415" x2="412.7902954589775" y2="453.36886170515015" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="412.7902954589775" cy="453.36886170515015" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="412.7902954589775" y1="453.36886170515015" x2="408.33987677985124" y2="472.8674199487866" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="408.33987677985124" cy="472.8674199487866" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="408.33987677985124" y1="472.8674199487866" x2="354.2817447057061" y2="498.9004442958401" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="354.2817447057061" cy="498.9004442958401" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="354.2817447057061" y1="498.9004442958401" x2="264.18485791546414" y2="455.5120703840844" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="264.18485791546414" cy="455.5120703840844" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="264.18485791546414" y1="455.5120703840844" x2="233.0319271615801" y2="319.022162678629" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="233.0319271615801" cy="319.022162678629" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="233.0319271615801" y1="319.022162678629" x2="345.26009149615214" y2="178.2924958343836" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="345.26009149615214" cy="178.2924958343836" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 19 KiB |
242
content/blog/modulo_patterns/pattern_2_29.svg
Normal file
@@ -0,0 +1,242 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="1120" height="1120"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="250" y1="270" x2="250" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="310" x2="330" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="310" x2="330" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="190" x2="170" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="190" x2="170" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="390" x2="410" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="390" x2="410" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="110" x2="90" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="110" x2="90" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="470" x2="490" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="470" x2="490" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="30" x2="10" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="30" x2="10" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="550" x2="570" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="550" x2="570" y2="530" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="530" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="530" x2="510" y2="530" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="530" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="530" x2="510" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="630" x2="650" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="630" x2="650" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="450" x2="430" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="450" x2="430" y2="710" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="710" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="710" x2="730" y2="710" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="710" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="710" x2="730" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="370" x2="350" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="370" x2="350" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="790" x2="810" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="790" x2="810" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="290" x2="270" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="290" x2="270" y2="870" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="870" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="870" x2="310" y2="870" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="870" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="870" x2="310" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="790" x2="190" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="790" x2="190" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="950" x2="390" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="950" x2="390" y2="710" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="710" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="710" x2="110" y2="710" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="710" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="710" x2="110" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="1030" x2="470" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="1030" x2="470" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="630" x2="30" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="630" x2="30" y2="1110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="1110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="1110" x2="550" y2="1110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="1110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="1110" x2="550" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="550" x2="530" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="530" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="530" y1="550" x2="530" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="530" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="530" y1="610" x2="630" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="610" x2="630" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="470" x2="450" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="470" x2="450" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="690" x2="710" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="710" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="710" y1="690" x2="710" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="710" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="710" y1="390" x2="370" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="390" x2="370" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="770" x2="790" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="770" x2="790" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="310" x2="290" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="310" x2="290" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="850" x2="870" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="870" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="870" y1="850" x2="870" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="870" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="870" y1="810" x2="790" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="810" x2="790" y2="930" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="930" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="930" x2="950" y2="930" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="930" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="930" x2="950" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="730" x2="710" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="710" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="710" y1="730" x2="710" y2="1010" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="710" cy="1010" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="710" y1="1010" x2="1030" y2="1010" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="1010" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="1010" x2="1030" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="650" x2="630" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="650" x2="630" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="1090" x2="1110" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1110" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1110" y1="1090" x2="1110" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1110" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1110" y1="570" x2="550" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="570" x2="550" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="590" x2="610" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="590" x2="610" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="490" x2="470" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="490" x2="470" y2="670" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="670" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="670" x2="690" y2="670" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="670" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="670" x2="690" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="410" x2="390" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="410" x2="390" y2="750" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="750" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="750" x2="770" y2="750" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="750" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="750" x2="770" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="330" x2="310" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="330" x2="310" y2="830" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="830" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="830" x2="850" y2="830" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="830" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="830" x2="850" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="250" x2="810" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="250" x2="810" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="330" x2="930" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="930" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="930" y1="330" x2="930" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="930" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="930" y1="170" x2="730" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="170" x2="730" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="410" x2="1010" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1010" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1010" y1="410" x2="1010" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1010" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1010" y1="90" x2="650" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="90" x2="650" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="490" x2="1090" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="490" x2="1090" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="10" x2="570" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="10" x2="570" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="570" x2="590" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="570" x2="590" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="510" x2="490" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="510" x2="490" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="650" x2="670" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="670" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="670" y1="650" x2="670" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="670" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="670" y1="430" x2="410" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="430" x2="410" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="730" x2="750" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="750" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="750" y1="730" x2="750" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="750" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="750" y1="350" x2="330" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="350" x2="330" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="810" x2="830" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="830" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="830" y1="810" x2="830" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="830" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="830" y1="270" x2="250" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 19 KiB |
80
content/blog/modulo_patterns/pattern_2_mod.svg
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="500" height="500"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="410" y1="250" x2="410" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="290" x2="490" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="290" x2="490" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="170" x2="330" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="170" x2="330" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="190" x2="390" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="190" x2="390" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="90" x2="250" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="90" x2="250" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="90" x2="290" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="90" x2="290" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="10" x2="170" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="10" x2="170" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="170" x2="190" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="170" x2="190" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="110" x2="90" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="110" x2="90" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="250" x2="90" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="250" x2="90" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="210" x2="10" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="210" x2="10" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="330" x2="170" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="330" x2="170" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="310" x2="110" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="310" x2="110" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="410" x2="250" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="410" x2="250" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="410" x2="210" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="410" x2="210" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="490" x2="330" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="490" x2="330" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="330" x2="310" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="330" x2="310" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="390" x2="410" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="390" x2="410" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 5.9 KiB |
142
content/blog/modulo_patterns/pattern_3_11_t6.svg
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="600.0000000000006" height="574.2562584220407"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="140.00000000000088" y1="287.12812921102045" x2="360.00000000000085" y2="287.12812921102045" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="360.00000000000085" cy="287.12812921102045" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="360.00000000000085" y1="287.12812921102045" x2="390.00000000000085" y2="339.08965343808677" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390.00000000000085" cy="339.08965343808677" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390.00000000000085" y1="339.08965343808677" x2="330.0000000000009" y2="443.0127018922194" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0000000000009" cy="443.0127018922194" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330.0000000000009" y1="443.0127018922194" x2="150.0000000000009" y2="443.0127018922194" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150.0000000000009" cy="443.0127018922194" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150.0000000000009" y1="443.0127018922194" x2="140.00000000000088" y2="425.6921938165306" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="140.00000000000088" cy="425.6921938165306" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="140.00000000000088" y1="425.6921938165306" x2="180.00000000000085" y2="356.4101615137755" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="180.00000000000085" cy="356.4101615137755" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="180.00000000000085" y1="356.4101615137755" x2="320.00000000000085" y2="356.4101615137755" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="320.00000000000085" cy="356.4101615137755" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="320.00000000000085" y1="356.4101615137755" x2="420.00000000000085" y2="529.6152422706632" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="420.00000000000085" cy="529.6152422706632" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="420.00000000000085" y1="529.6152422706632" x2="400.00000000000085" y2="564.2562584220407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="400.00000000000085" cy="564.2562584220407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="400.00000000000085" y1="564.2562584220407" x2="300.00000000000085" y2="564.2562584220407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="300.00000000000085" cy="564.2562584220407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="300.00000000000085" y1="564.2562584220407" x2="220.0000000000008" y2="425.69219381653056" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="220.0000000000008" cy="425.69219381653056" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="220.0000000000008" y1="425.69219381653056" x2="330.0000000000006" y2="235.166604983954" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0000000000006" cy="235.166604983954" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330.0000000000006" y1="235.166604983954" x2="390.0000000000006" y2="235.166604983954" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390.0000000000006" cy="235.166604983954" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390.0000000000006" y1="235.166604983954" x2="450.0000000000006" y2="339.0896534380866" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450.0000000000006" cy="339.0896534380866" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450.0000000000006" y1="339.0896534380866" x2="360.0000000000007" y2="494.97422611928556" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="360.0000000000007" cy="494.97422611928556" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="360.0000000000007" y1="494.97422611928556" x2="340.0000000000007" y2="494.97422611928556" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="340.0000000000007" cy="494.97422611928556" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="340.0000000000007" y1="494.97422611928556" x2="300.0000000000006" y2="425.69219381653056" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="300.0000000000006" cy="425.69219381653056" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="300.0000000000006" y1="425.69219381653056" x2="370.00000000000057" y2="304.4486372867091" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370.00000000000057" cy="304.4486372867091" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370.00000000000057" y1="304.4486372867091" x2="570.0000000000006" y2="304.4486372867091" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570.0000000000006" cy="304.4486372867091" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570.0000000000006" y1="304.4486372867091" x2="590.0000000000006" y2="339.0896534380866" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590.0000000000006" cy="339.0896534380866" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590.0000000000006" y1="339.0896534380866" x2="540.0000000000006" y2="425.6921938165305" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="540.0000000000006" cy="425.6921938165305" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="540.0000000000006" y1="425.6921938165305" x2="380.00000000000057" y2="425.6921938165305" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="380.00000000000057" cy="425.6921938165305" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="380.00000000000057" y1="425.6921938165305" x2="270.0000000000005" y2="235.16660498395402" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270.0000000000005" cy="235.16660498395402" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270.0000000000005" y1="235.16660498395402" x2="300.00000000000045" y2="183.2050807568877" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="300.00000000000045" cy="183.2050807568877" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="300.00000000000045" y1="183.2050807568877" x2="420.00000000000045" y2="183.2050807568877" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="420.00000000000045" cy="183.2050807568877" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="420.00000000000045" y1="183.2050807568877" x2="510.00000000000045" y2="339.08965343808666" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510.00000000000045" cy="339.08965343808666" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510.00000000000045" y1="339.08965343808666" x2="500.00000000000045" y2="356.4101615137754" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="500.00000000000045" cy="356.4101615137754" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="500.00000000000045" y1="356.4101615137754" x2="420.00000000000045" y2="356.4101615137754" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="420.00000000000045" cy="356.4101615137754" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="420.00000000000045" y1="356.4101615137754" x2="350.00000000000034" y2="235.16660498395407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350.00000000000034" cy="235.16660498395407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350.00000000000034" y1="235.16660498395407" x2="450.0000000000002" y2="61.96152422706625" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450.0000000000002" cy="61.96152422706625" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450.0000000000002" y1="61.96152422706625" x2="490.0000000000002" y2="61.96152422706625" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490.0000000000002" cy="61.96152422706625" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490.0000000000002" y1="61.96152422706625" x2="540.0000000000002" y2="148.5640646055101" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="540.0000000000002" cy="148.5640646055101" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="540.0000000000002" y1="148.5640646055101" x2="460.0000000000003" y2="287.1281292110203" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="460.0000000000003" cy="287.1281292110203" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="460.0000000000003" y1="287.1281292110203" x2="240.00000000000028" y2="287.12812921102034" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="240.00000000000028" cy="287.12812921102034" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="240.00000000000028" y1="287.12812921102034" x2="210.00000000000026" y2="235.16660498395402" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.00000000000026" cy="235.16660498395402" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.00000000000026" y1="235.16660498395402" x2="270.0000000000001" y2="131.24355652982135" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270.0000000000001" cy="131.24355652982135" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270.0000000000001" y1="131.24355652982135" x2="450.0000000000001" y2="131.24355652982135" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450.0000000000001" cy="131.24355652982135" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450.0000000000001" y1="131.24355652982135" x2="460.0000000000001" y2="148.5640646055101" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="460.0000000000001" cy="148.5640646055101" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="460.0000000000001" y1="148.5640646055101" x2="420.0000000000001" y2="217.84609690826522" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="420.0000000000001" cy="217.84609690826522" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="420.0000000000001" y1="217.84609690826522" x2="280.0000000000001" y2="217.84609690826525" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="280.0000000000001" cy="217.84609690826525" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="280.0000000000001" y1="217.84609690826525" x2="180.00000000000006" y2="44.64101615137757" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="180.00000000000006" cy="44.64101615137757" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="180.00000000000006" y1="44.64101615137757" x2="200.00000000000003" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="200.00000000000003" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="200.00000000000003" y1="10.0" x2="300.00000000000006" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="300.00000000000006" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="300.00000000000006" y1="10.0" x2="380.00000000000006" y2="148.56406460551017" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="380.00000000000006" cy="148.56406460551017" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="380.00000000000006" y1="148.56406460551017" x2="270.0000000000001" y2="339.08965343808677" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270.0000000000001" cy="339.08965343808677" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270.0000000000001" y1="339.08965343808677" x2="210.00000000000014" y2="339.08965343808677" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.00000000000014" cy="339.08965343808677" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.00000000000014" y1="339.08965343808677" x2="150.00000000000009" y2="235.1666049839541" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150.00000000000009" cy="235.1666049839541" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150.00000000000009" y1="235.1666049839541" x2="239.99999999999997" y2="79.28203230275507" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="239.99999999999997" cy="79.28203230275507" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="239.99999999999997" y1="79.28203230275507" x2="260.0" y2="79.28203230275507" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="260.0" cy="79.28203230275507" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="260.0" y1="79.28203230275507" x2="300.0" y2="148.56406460551017" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="300.0" cy="148.56406460551017" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="300.0" y1="148.56406460551017" x2="230.0" y2="269.8076211353316" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230.0" cy="269.8076211353316" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230.0" y1="269.8076211353316" x2="30.000000000000018" y2="269.8076211353316" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30.000000000000018" cy="269.8076211353316" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30.000000000000018" y1="269.8076211353316" x2="10.0" y2="235.16660498395407" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10.0" cy="235.16660498395407" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10.0" y1="235.16660498395407" x2="59.99999999999993" y2="148.56406460551017" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="59.99999999999993" cy="148.56406460551017" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="59.99999999999993" y1="148.56406460551017" x2="219.99999999999994" y2="148.56406460551017" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="219.99999999999994" cy="148.56406460551017" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="219.99999999999994" y1="148.56406460551017" x2="329.99999999999994" y2="339.08965343808666" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="329.99999999999994" cy="339.08965343808666" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="329.99999999999994" y1="339.08965343808666" x2="299.99999999999994" y2="391.051177665153" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="299.99999999999994" cy="391.051177665153" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="299.99999999999994" y1="391.051177665153" x2="179.99999999999997" y2="391.051177665153" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="179.99999999999997" cy="391.051177665153" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="179.99999999999997" y1="391.051177665153" x2="89.99999999999989" y2="235.1666049839541" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.99999999999989" cy="235.1666049839541" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.99999999999989" y1="235.1666049839541" x2="99.99999999999987" y2="217.8460969082653" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="99.99999999999987" cy="217.8460969082653" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="99.99999999999987" y1="217.8460969082653" x2="179.99999999999986" y2="217.8460969082653" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="179.99999999999986" cy="217.8460969082653" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="179.99999999999986" y1="217.8460969082653" x2="249.9999999999999" y2="339.08965343808677" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.9999999999999" cy="339.08965343808677" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.9999999999999" y1="339.08965343808677" x2="149.99999999999994" y2="512.2947341949745" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="149.99999999999994" cy="512.2947341949745" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="149.99999999999994" y1="512.2947341949745" x2="109.99999999999993" y2="512.2947341949745" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="109.99999999999993" cy="512.2947341949745" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="109.99999999999993" y1="512.2947341949745" x2="59.99999999999987" y2="425.6921938165306" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="59.99999999999987" cy="425.6921938165306" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="59.99999999999987" y1="425.6921938165306" x2="139.99999999999977" y2="287.12812921102034" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="139.99999999999977" cy="287.12812921102034" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 16 KiB |
42
content/blog/modulo_patterns/pattern_3_4.svg
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="220.0" height="200.0"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="10" x2="90.0" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="10.0" x2="90.0" y2="70.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="70.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="70.0" x2="50.0" y2="70.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50.0" cy="70.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50.0" y1="70.0" x2="49.99999999999999" y2="50.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="49.99999999999999" cy="50.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="49.99999999999999" y1="50.00000000000001" x2="130.0" y2="50.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="50.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="50.00000000000001" x2="130.0" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="110.0" x2="90.0" y2="110.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="110.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="110.0" x2="90.0" y2="90.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90.0" cy="90.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90.0" y1="90.0" x2="170.0" y2="90.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="90.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="90.0" x2="170.0" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="150.0" x2="130.0" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="150.0" x2="130.0" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="130.0" x2="210.0" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="130.0" x2="210.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="190.0" x2="170.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="190.0" x2="170.0" y2="170.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="170.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 3.1 KiB |
66
content/blog/modulo_patterns/pattern_3_4_t7.svg
Normal file
@@ -0,0 +1,66 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="159.48689754371753" height="158.3975428930541"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="22.46979603717472" y1="39.89495294132937" x2="102.46979603717472" y2="39.89495294132937" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="102.46979603717472" cy="39.89495294132937" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="102.46979603717472" y1="39.89495294132937" x2="139.87918414869876" y2="86.80484188941116" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="139.87918414869876" cy="86.80484188941116" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="139.87918414869876" y1="86.80484188941116" x2="130.97834679044615" y2="125.8019583766841" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.97834679044615" cy="125.8019583766841" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.97834679044615" y1="125.8019583766841" x2="112.9589694323978" y2="134.47963315903525" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="112.9589694323978" cy="134.47963315903525" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="112.9589694323978" y1="134.47963315903525" x2="40.88146000020426" y2="99.7689340296306" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="40.88146000020426" cy="99.7689340296306" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="40.88146000020426" y1="99.7689340296306" x2="27.53020396282538" y2="41.2732592987212" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="27.53020396282538" cy="41.2732592987212" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="27.53020396282538" y1="41.2732592987212" x2="52.46979603717471" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="52.46979603717471" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="52.46979603717471" y1="10.0" x2="72.46979603717472" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="72.46979603717472" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="72.46979603717472" y1="10.0" x2="122.34898018587339" y2="72.54651859744239" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="122.34898018587339" cy="72.54651859744239" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="122.34898018587339" y1="72.54651859744239" x2="108.99772414849453" y2="131.0421933283518" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="108.99772414849453" cy="131.0421933283518" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="108.99772414849453" y1="131.0421933283518" x2="72.95896943239777" y2="148.3975428930541" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="72.95896943239777" cy="148.3975428930541" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="72.95896943239777" y1="148.3975428930541" x2="54.93959207434939" y2="139.71986811070295" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="54.93959207434939" cy="139.71986811070295" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="54.93959207434939" y1="139.71986811070295" x2="37.13791735784422" y2="61.72563513615707" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="37.13791735784422" cy="61.72563513615707" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="37.13791735784422" y1="61.72563513615707" x2="74.54730546936823" y2="14.815746188075272" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="74.54730546936823" cy="14.815746188075272" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="74.54730546936823" y1="14.815746188075272" x2="114.54730546936823" y2="14.815746188075272" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="114.54730546936823" cy="14.815746188075272" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="114.54730546936823" y1="14.815746188075272" x2="127.0171015065429" y2="30.45237583743587" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="127.0171015065429" cy="30.45237583743587" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="127.0171015065429" y1="30.45237583743587" x2="109.21542679003775" y2="108.44660881198178" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="109.21542679003775" cy="108.44660881198178" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="109.21542679003775" y1="108.44660881198178" x2="55.157294715892604" y2="134.47963315903525" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="55.157294715892604" cy="134.47963315903525" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="55.157294715892604" y1="134.47963315903525" x2="19.11853999979584" y2="117.12428359433292" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="19.11853999979584" cy="117.12428359433292" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="19.11853999979584" y1="117.12428359433292" x2="14.668121320669547" y2="97.62572535069648" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="14.668121320669547" cy="97.62572535069648" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="14.668121320669547" y1="97.62572535069648" x2="64.54730546936821" y2="35.07920675325408" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="64.54730546936821" cy="35.07920675325408" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="64.54730546936821" y1="35.07920675325408" x2="124.54730546936821" y2="35.07920675325408" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="124.54730546936821" cy="35.07920675325408" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="124.54730546936821" y1="35.07920675325408" x2="149.48689754371753" y2="66.35246605197526" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="149.48689754371753" cy="66.35246605197526" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="149.48689754371753" y1="66.35246605197526" x2="145.03647886459126" y2="85.85102429561174" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="145.03647886459126" cy="85.85102429561174" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="145.03647886459126" y1="85.85102429561174" x2="72.95896943239774" y2="120.5617234250164" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="72.95896943239774" cy="120.5617234250164" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="72.95896943239774" y1="120.5617234250164" x2="18.90083735825258" y2="94.52869907796291" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="18.90083735825258" cy="94.52869907796291" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="18.90083735825258" y1="94.52869907796291" x2="10.0" y2="55.53158259068997" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10.0" cy="55.53158259068997" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10.0" y1="55.53158259068997" x2="22.469796037174667" y2="39.89495294132938" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="22.469796037174667" cy="39.89495294132938" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 7.0 KiB |
82
content/blog/modulo_patterns/pattern_4.svg
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="280" height="280"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="50" x2="10" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="130" x2="170" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="130" x2="170" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="70" x2="30" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="70" x2="30" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="110" x2="150" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="110" x2="150" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="90" x2="50" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="90" x2="50" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="270" x2="130" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="270" x2="130" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="110" x2="70" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="110" x2="70" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="250" x2="110" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="250" x2="110" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="130" x2="90" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="130" x2="90" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="230" x2="270" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="230" x2="270" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="150" x2="110" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="150" x2="110" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="210" x2="250" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="210" x2="250" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="170" x2="130" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="170" x2="130" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="190" x2="230" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="190" x2="230" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="10" x2="150" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="10" x2="150" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="170" x2="210" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="170" x2="210" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="30" x2="170" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="30" x2="170" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="150" x2="190" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="150" x2="190" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="50" x2="10" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.0 KiB |
114
content/blog/modulo_patterns/pattern_4_13.svg
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="600" height="600"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="130" y1="170" x2="130" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="250" x2="290" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="250" x2="290" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="10" x2="230" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="10" x2="230" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="150" x2="450" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="150" x2="450" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="110" x2="330" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="110" x2="330" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="310" x2="350" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="310" x2="350" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="210" x2="170" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="210" x2="170" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="470" x2="250" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="470" x2="250" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="310" x2="10" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="310" x2="10" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="370" x2="150" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="370" x2="150" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="150" x2="110" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="150" x2="110" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="270" x2="310" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="270" x2="310" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="250" x2="210" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="250" x2="210" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="430" x2="470" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="430" x2="470" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="350" x2="310" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="350" x2="310" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="590" x2="370" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="590" x2="370" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="450" x2="150" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="450" x2="150" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="490" x2="270" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="490" x2="270" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="290" x2="250" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="290" x2="250" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="390" x2="430" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="390" x2="430" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="130" x2="350" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="130" x2="350" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="290" x2="590" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="290" x2="590" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="230" x2="450" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="230" x2="450" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="450" x2="490" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="450" x2="490" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="330" x2="290" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="330" x2="290" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="350" x2="390" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="350" x2="390" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="170" x2="130" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 8.6 KiB |
80
content/blog/modulo_patterns/pattern_4_mod.svg
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="260" height="260"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="90" y1="130" x2="90" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="210" x2="250" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="210" x2="250" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="150" x2="110" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="150" x2="110" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="190" x2="230" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="190" x2="230" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="170" x2="130" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="170" x2="130" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="170" x2="210" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="170" x2="210" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="10" x2="150" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="10" x2="150" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="150" x2="190" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="150" x2="190" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="30" x2="170" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="30" x2="170" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="130" x2="170" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="130" x2="170" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="50" x2="10" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="50" x2="10" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="110" x2="150" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="110" x2="150" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="70" x2="30" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="70" x2="30" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="90" x2="130" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="90" x2="130" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="90" x2="50" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="90" x2="50" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="250" x2="110" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="250" x2="110" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="110" x2="70" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="110" x2="70" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="230" x2="90" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="230" x2="90" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 5.8 KiB |
146
content/blog/modulo_patterns/pattern_5_17.svg
Normal file
@@ -0,0 +1,146 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="800" height="800"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="230" x2="10" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="330" x2="210" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="330" x2="210" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="30" x2="150" y2="30" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="30" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="30" x2="150" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="190" x2="410" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="190" x2="410" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="170" x2="290" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="170" x2="290" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="390" x2="610" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="390" x2="610" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="310" x2="430" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="310" x2="430" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="590" x2="470" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="590" x2="470" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="450" x2="230" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="450" x2="230" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="790" x2="330" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="790" x2="330" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="590" x2="30" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="590" x2="30" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="30" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="30" y1="650" x2="190" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="650" x2="190" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="390" x2="170" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="390" x2="170" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="510" x2="390" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="510" x2="390" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="190" x2="310" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="190" x2="310" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="370" x2="590" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="370" x2="590" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="330" x2="450" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="330" x2="450" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="570" x2="790" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="570" x2="790" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="470" x2="590" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="470" x2="590" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="770" x2="650" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="770" x2="650" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="610" x2="390" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="610" x2="390" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="630" x2="510" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="630" x2="510" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="410" x2="190" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="410" x2="190" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="490" x2="370" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="490" x2="370" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="210" x2="330" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="210" x2="330" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="350" x2="570" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="350" x2="570" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="10" x2="470" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="10" x2="470" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="470" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="470" y1="210" x2="770" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="210" x2="770" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="150" x2="610" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="150" x2="610" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="410" x2="630" y2="410" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="410" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="410" x2="630" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="290" x2="410" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="290" x2="410" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410" y1="610" x2="490" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="610" x2="490" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="430" x2="210" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="430" x2="210" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="470" x2="350" y2="470" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="470" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="470" x2="350" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="230" x2="10" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 11 KiB |
242
content/blog/modulo_patterns/pattern_6_29.svg
Normal file
@@ -0,0 +1,242 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="1640" height="1640"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="1050" y1="530" x2="1050" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1050" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1050" y1="650" x2="1290" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1290" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1290" y1="650" x2="1290" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1290" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1290" y1="290" x2="810" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="290" x2="810" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="810" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="810" y1="310" x2="950" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="310" x2="950" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="50" x2="570" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="50" x2="570" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="550" x2="610" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="550" x2="610" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="390" x2="330" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="390" x2="330" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="790" x2="850" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="790" x2="850" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="730" x2="670" y2="730" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="670" cy="730" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="670" y1="730" x2="670" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="670" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="670" y1="1030" x2="1090" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="1030" x2="1090" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="490" x2="1010" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1010" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1010" y1="490" x2="1010" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1010" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1010" y1="690" x2="1330" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1330" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1330" y1="690" x2="1330" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1330" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1330" y1="250" x2="770" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="250" x2="770" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="770" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="770" y1="350" x2="990" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="990" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="990" y1="350" x2="990" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="990" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="990" y1="10" x2="530" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="530" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="530" y1="10" x2="530" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="530" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="530" y1="590" x2="650" y2="590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="590" x2="650" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="350" x2="290" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="350" x2="290" y2="830" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="830" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="830" x2="310" y2="830" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="830" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="830" x2="310" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="690" x2="50" y2="690" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="690" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="690" x2="50" y2="1070" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="1070" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="1070" x2="550" y2="1070" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="1070" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="1070" x2="550" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="1030" x2="390" y2="1030" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="1030" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="1030" x2="390" y2="1310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="1310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="1310" x2="790" y2="1310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="1310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="1310" x2="790" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="790" x2="730" y2="790" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="790" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="790" x2="730" y2="970" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="730" cy="970" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="730" y1="970" x2="1030" y2="970" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="970" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="970" x2="1030" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="550" x2="490" y2="550" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="550" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="550" x2="490" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="630" x2="690" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="630" x2="690" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="310" x2="250" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="310" x2="250" y2="870" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="870" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="870" x2="350" y2="870" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="870" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="870" x2="350" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="650" x2="10" y2="650" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="650" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="650" x2="10" y2="1110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="1110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="1110" x2="590" y2="1110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="1110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="1110" x2="590" y2="990" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="590" cy="990" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="590" y1="990" x2="350" y2="990" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="990" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="990" x2="350" y2="1350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="1350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="1350" x2="830" y2="1350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="830" cy="1350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="830" y1="1350" x2="830" y2="1330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="830" cy="1330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="830" y1="1330" x2="690" y2="1330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="1330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="1330" x2="690" y2="1590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="690" cy="1590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="690" y1="1590" x2="1070" y2="1590" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1070" cy="1590" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1070" y1="1590" x2="1070" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1070" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1070" y1="1090" x2="1030" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="1090" x2="1030" y2="1250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1030" cy="1250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1030" y1="1250" x2="1310" y2="1250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1310" cy="1250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1310" y1="1250" x2="1310" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1310" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1310" y1="850" x2="790" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="850" x2="790" y2="910" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="790" cy="910" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="790" y1="910" x2="970" y2="910" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="970" cy="910" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="970" y1="910" x2="970" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="970" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="970" y1="610" x2="550" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="610" x2="550" y2="1150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="550" cy="1150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="550" y1="1150" x2="630" y2="1150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="1150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="1150" x2="630" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="950" x2="310" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="950" x2="310" y2="1390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="1390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="1390" x2="870" y2="1390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="870" cy="1390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="870" y1="1390" x2="870" y2="1290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="870" cy="1290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="870" y1="1290" x2="650" y2="1290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="1290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="1290" x2="650" y2="1630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="650" cy="1630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="650" y1="1630" x2="1110" y2="1630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1110" cy="1630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1110" y1="1630" x2="1110" y2="1050" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1110" cy="1050" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1110" y1="1050" x2="990" y2="1050" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="990" cy="1050" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="990" y1="1050" x2="990" y2="1290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="990" cy="1290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="990" y1="1290" x2="1350" y2="1290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1350" cy="1290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1350" y1="1290" x2="1350" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1350" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1350" y1="810" x2="1330" y2="810" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1330" cy="810" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1330" y1="810" x2="1330" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1330" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1330" y1="950" x2="1590" y2="950" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1590" cy="950" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1590" y1="950" x2="1590" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1590" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1590" y1="570" x2="1090" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="570" x2="1090" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1090" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1090" y1="610" x2="1250" y2="610" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1250" cy="610" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1250" y1="610" x2="1250" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1250" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1250" y1="330" x2="850" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="330" x2="850" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="850" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="850" y1="850" x2="910" y2="850" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="910" cy="850" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="910" y1="850" x2="910" y2="670" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="910" cy="670" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="910" y1="670" x2="610" y2="670" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="670" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="670" x2="610" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="610" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="610" y1="1090" x2="1150" y2="1090" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1150" cy="1090" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1150" y1="1090" x2="1150" y2="1010" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1150" cy="1010" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1150" y1="1010" x2="950" y2="1010" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="1010" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="1010" x2="950" y2="1330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="950" cy="1330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="950" y1="1330" x2="1390" y2="1330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1390" cy="1330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1390" y1="1330" x2="1390" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1390" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1390" y1="770" x2="1290" y2="770" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1290" cy="770" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1290" y1="770" x2="1290" y2="990" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1290" cy="990" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1290" y1="990" x2="1630" y2="990" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1630" cy="990" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1630" y1="990" x2="1630" y2="530" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1630" cy="530" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="1630" y1="530" x2="1050" y2="530" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="1050" cy="530" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 19 KiB |
74
content/blog/modulo_patterns/pattern_7_8.svg
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="420.0" height="400.0"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="10" x2="170.0" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="10.0" x2="170.0" y2="150.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="150.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="150.0" x2="50.0" y2="150.00000000000003" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50.0" cy="150.00000000000003" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50.0" y1="150.00000000000003" x2="49.999999999999986" y2="50.000000000000014" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="49.999999999999986" cy="50.000000000000014" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="49.999999999999986" y1="50.000000000000014" x2="130.0" y2="50.000000000000014" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="50.000000000000014" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="50.000000000000014" x2="130.0" y2="110.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="110.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="110.00000000000001" x2="89.99999999999999" y2="110.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.99999999999999" cy="110.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.99999999999999" y1="110.00000000000001" x2="89.99999999999999" y2="90.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="89.99999999999999" cy="90.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="89.99999999999999" y1="90.00000000000001" x2="250.0" y2="90.00000000000001" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250.0" cy="90.00000000000001" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250.0" y1="90.00000000000001" x2="250.0" y2="230.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250.0" cy="230.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250.0" y1="230.0" x2="130.0" y2="230.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="230.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="230.0" x2="130.0" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="130.0" x2="210.0" y2="130.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="130.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="130.0" x2="210.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="190.0" x2="170.0" y2="190.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="190.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="190.0" x2="170.0" y2="170.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0" cy="170.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0" y1="170.0" x2="330.0" y2="170.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0" cy="170.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330.0" y1="170.0" x2="330.0" y2="310.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0" cy="310.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330.0" y1="310.0" x2="210.0" y2="310.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210.0" cy="310.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210.0" y1="310.0" x2="209.99999999999997" y2="210.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="209.99999999999997" cy="210.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="209.99999999999997" y1="210.0" x2="289.99999999999994" y2="210.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="210.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="210.0" x2="289.99999999999994" y2="270.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="270.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="270.0" x2="249.99999999999997" y2="270.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999997" cy="270.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999997" y1="270.0" x2="249.99999999999997" y2="250.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999997" cy="250.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999997" y1="250.0" x2="410.0" y2="250.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410.0" cy="250.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410.0" y1="250.0" x2="410.0" y2="390.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="410.0" cy="390.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="410.0" y1="390.0" x2="290.0" y2="390.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290.0" cy="390.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290.0" y1="390.0" x2="289.99999999999994" y2="290.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999994" cy="290.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999994" y1="290.0" x2="370.0" y2="290.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370.0" cy="290.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370.0" y1="290.0" x2="370.0" y2="350.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370.0" cy="350.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370.0" y1="350.0" x2="330.0" y2="350.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0" cy="350.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330.0" y1="350.0" x2="330.0" y2="330.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330.0" cy="330.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.4 KiB |
58
content/blog/modulo_patterns/pattern_7_8_t3.svg
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="240.00000000000014" height="227.84609690826517"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="70.00000000000014" y1="96.60254037844375" x2="230.00000000000014" y2="96.60254037844375" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230.00000000000014" cy="96.60254037844375" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230.00000000000014" y1="96.60254037844375" x2="160.00000000000017" y2="217.84609690826517" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.00000000000017" cy="217.84609690826517" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.00000000000017" y1="217.84609690826517" x2="100.00000000000011" y2="113.92304845413257" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="100.00000000000011" cy="113.92304845413257" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="100.00000000000011" y1="113.92304845413257" x2="200.0000000000001" y2="113.92304845413257" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="200.0000000000001" cy="113.92304845413257" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="200.0000000000001" y1="113.92304845413257" x2="160.00000000000014" y2="183.20508075688767" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.00000000000014" cy="183.20508075688767" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.00000000000014" y1="183.20508075688767" x2="130.0000000000001" y2="131.24355652982138" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0000000000001" cy="131.24355652982138" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0000000000001" y1="131.24355652982138" x2="170.0000000000001" y2="131.24355652982138" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170.0000000000001" cy="131.24355652982138" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170.0000000000001" y1="131.24355652982138" x2="160.0000000000001" y2="148.56406460551014" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.0000000000001" cy="148.56406460551014" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.0000000000001" y1="148.56406460551014" x2="80.00000000000003" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="80.00000000000003" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="80.00000000000003" y1="10.0" x2="220.00000000000003" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="220.00000000000003" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="220.00000000000003" y1="10.0" x2="160.00000000000006" y2="113.92304845413264" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.00000000000006" cy="113.92304845413264" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.00000000000006" y1="113.92304845413264" x2="110.00000000000001" y2="27.320508075688803" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110.00000000000001" cy="27.320508075688803" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110.00000000000001" y1="27.320508075688803" x2="190.00000000000003" y2="27.320508075688803" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190.00000000000003" cy="27.320508075688803" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190.00000000000003" y1="27.320508075688803" x2="160.00000000000003" y2="79.28203230275513" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.00000000000003" cy="79.28203230275513" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.00000000000003" y1="79.28203230275513" x2="140.00000000000003" y2="44.641016151377585" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="140.00000000000003" cy="44.641016151377585" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="140.00000000000003" y1="44.641016151377585" x2="160.00000000000003" y2="44.641016151377585" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="160.00000000000003" cy="44.641016151377585" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="160.00000000000003" y1="44.641016151377585" x2="80.00000000000006" y2="183.20508075688778" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="80.00000000000006" cy="183.20508075688778" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="80.00000000000006" y1="183.20508075688778" x2="10.0" y2="61.961524227066406" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10.0" cy="61.961524227066406" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10.0" y1="61.961524227066406" x2="130.0" y2="61.961524227066406" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130.0" cy="61.961524227066406" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130.0" y1="61.961524227066406" x2="80.00000000000001" y2="148.56406460551028" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="80.00000000000001" cy="148.56406460551028" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="80.00000000000001" y1="148.56406460551028" x2="39.999999999999986" y2="79.28203230275521" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="39.999999999999986" cy="79.28203230275521" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="39.999999999999986" y1="79.28203230275521" x2="99.99999999999999" y2="79.28203230275521" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="99.99999999999999" cy="79.28203230275521" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="99.99999999999999" y1="79.28203230275521" x2="79.99999999999999" y2="113.92304845413277" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="79.99999999999999" cy="113.92304845413277" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="79.99999999999999" y1="113.92304845413277" x2="69.99999999999999" y2="96.60254037844399" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="69.99999999999999" cy="96.60254037844399" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.1 KiB |
82
content/blog/modulo_patterns/pattern_8.svg
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="360" height="360"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="90" x2="10" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="250" x2="150" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="250" x2="150" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="130" x2="50" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="130" x2="50" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="210" x2="110" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="210" x2="110" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="170" x2="90" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="170" x2="90" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="350" x2="250" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="350" x2="250" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="210" x2="130" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="210" x2="130" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="310" x2="210" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="310" x2="210" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="250" x2="170" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="250" x2="170" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="270" x2="350" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="270" x2="350" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="110" x2="210" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="110" x2="210" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="230" x2="310" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="230" x2="310" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="150" x2="250" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="150" x2="250" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="190" x2="270" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="190" x2="270" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="10" x2="110" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="10" x2="110" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="150" x2="230" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="150" x2="230" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="50" x2="150" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="50" x2="150" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="110" x2="190" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="110" x2="190" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="90" x2="10" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.0 KiB |
114
content/blog/modulo_patterns/pattern_8_13.svg
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="640" height="640"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="370" y1="190" x2="370" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="370" y1="350" x2="430" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="350" x2="430" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="130" x2="310" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="130" x2="310" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="310" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="310" y1="150" x2="490" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="150" x2="490" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="70" x2="250" y2="70" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="70" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="70" x2="250" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="210" x2="290" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="210" x2="290" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="10" x2="190" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="10" x2="190" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="270" x2="350" y2="270" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="270" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="270" x2="350" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="210" x2="130" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="210" x2="130" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="330" x2="150" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="330" x2="150" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="150" x2="70" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="150" x2="70" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="70" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="70" y1="390" x2="210" y2="390" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="390" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="390" x2="210" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="350" x2="10" y2="350" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="350" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="350" x2="10" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="450" x2="270" y2="450" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="450" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="450" x2="270" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="270" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="270" y1="290" x2="210" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="290" x2="210" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="510" x2="330" y2="510" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="510" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="510" x2="330" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="490" x2="150" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="490" x2="150" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="570" x2="390" y2="570" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="570" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="570" x2="390" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="390" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="390" y1="430" x2="350" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="430" x2="350" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="350" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="350" y1="630" x2="450" y2="630" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="630" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="630" x2="450" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="450" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="450" y1="370" x2="290" y2="370" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="370" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="370" x2="290" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="430" x2="510" y2="430" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="430" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="430" x2="510" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="510" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="510" y1="310" x2="490" y2="310" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="310" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="310" x2="490" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="490" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="490" y1="490" x2="570" y2="490" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="490" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="490" x2="570" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="570" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="570" y1="250" x2="430" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="250" x2="430" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="430" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="430" y1="290" x2="630" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="290" x2="630" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="630" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="630" y1="190" x2="370" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="370" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 8.6 KiB |
64
content/blog/modulo_patterns/pattern_8_9_t3.svg
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="379.9999999999999" height="262.487113059643"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="10" y1="10" x2="190.0" y2="10.0" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190.0" cy="10.0" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190.0" y1="10.0" x2="110.00000000000003" y2="148.5640646055102" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110.00000000000003" cy="148.5640646055102" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110.00000000000003" y1="148.5640646055102" x2="39.99999999999997" y2="27.32050807568882" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="39.99999999999997" cy="27.32050807568882" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="39.99999999999997" y1="27.32050807568882" x2="159.99999999999997" y2="27.32050807568882" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="159.99999999999997" cy="27.32050807568882" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="159.99999999999997" y1="27.32050807568882" x2="109.99999999999999" y2="113.9230484541327" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="109.99999999999999" cy="113.9230484541327" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="109.99999999999999" y1="113.9230484541327" x2="69.99999999999994" y2="44.64101615137763" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="69.99999999999994" cy="44.64101615137763" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="69.99999999999994" y1="44.64101615137763" x2="129.99999999999994" y2="44.64101615137763" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="129.99999999999994" cy="44.64101615137763" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="129.99999999999994" y1="44.64101615137763" x2="109.99999999999997" y2="79.28203230275517" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="109.99999999999997" cy="79.28203230275517" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="109.99999999999997" y1="79.28203230275517" x2="99.99999999999997" y2="61.961524227066406" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="99.99999999999997" cy="61.961524227066406" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="99.99999999999997" y1="61.961524227066406" x2="279.99999999999994" y2="61.961524227066406" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="279.99999999999994" cy="61.961524227066406" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="279.99999999999994" y1="61.961524227066406" x2="200.0" y2="200.5255888325766" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="200.0" cy="200.5255888325766" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="200.0" y1="200.5255888325766" x2="129.99999999999994" y2="79.28203230275523" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="129.99999999999994" cy="79.28203230275523" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="129.99999999999994" y1="79.28203230275523" x2="249.99999999999994" y2="79.28203230275523" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999994" cy="79.28203230275523" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999994" y1="79.28203230275523" x2="199.99999999999994" y2="165.8845726811991" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="199.99999999999994" cy="165.8845726811991" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="199.99999999999994" y1="165.8845726811991" x2="159.9999999999999" y2="96.60254037844403" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="159.9999999999999" cy="96.60254037844403" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="159.9999999999999" y1="96.60254037844403" x2="219.9999999999999" y2="96.60254037844403" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="219.9999999999999" cy="96.60254037844403" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="219.9999999999999" y1="96.60254037844403" x2="199.9999999999999" y2="131.2435565298216" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="199.9999999999999" cy="131.2435565298216" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="199.9999999999999" y1="131.2435565298216" x2="189.9999999999999" y2="113.92304845413281" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="189.9999999999999" cy="113.92304845413281" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="189.9999999999999" y1="113.92304845413281" x2="369.9999999999999" y2="113.92304845413281" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="369.9999999999999" cy="113.92304845413281" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="369.9999999999999" y1="113.92304845413281" x2="289.9999999999999" y2="252.48711305964298" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.9999999999999" cy="252.48711305964298" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.9999999999999" y1="252.48711305964298" x2="219.99999999999983" y2="131.2435565298216" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="219.99999999999983" cy="131.2435565298216" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="219.99999999999983" y1="131.2435565298216" x2="339.9999999999999" y2="131.2435565298216" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="339.9999999999999" cy="131.2435565298216" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="339.9999999999999" y1="131.2435565298216" x2="289.9999999999999" y2="217.8460969082655" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.9999999999999" cy="217.8460969082655" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.9999999999999" y1="217.8460969082655" x2="249.99999999999983" y2="148.56406460551042" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="249.99999999999983" cy="148.56406460551042" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="249.99999999999983" y1="148.56406460551042" x2="309.99999999999983" y2="148.56406460551042" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="309.99999999999983" cy="148.56406460551042" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="309.99999999999983" y1="148.56406460551042" x2="289.99999999999983" y2="183.20508075688795" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="289.99999999999983" cy="183.20508075688795" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="289.99999999999983" y1="183.20508075688795" x2="279.99999999999983" y2="165.8845726811992" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="279.99999999999983" cy="165.8845726811992" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 6.8 KiB |
80
content/blog/modulo_patterns/pattern_8_mod.svg
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
<?xml version="1.0" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
|
||||||
|
<svg width="340" height="340"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
|
||||||
|
|
||||||
|
<line x1="90" y1="170" x2="90" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="330" x2="230" y2="330" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="330" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="330" x2="230" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="230" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="230" y1="210" x2="130" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="210" x2="130" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="290" x2="190" y2="290" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="290" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="290" x2="190" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="190" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="190" y1="250" x2="170" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="250" x2="170" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="250" x2="330" y2="250" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="250" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="250" x2="330" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="330" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="330" y1="110" x2="210" y2="110" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="110" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="110" x2="210" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="210" x2="290" y2="210" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="210" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="210" x2="290" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="290" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="290" y1="150" x2="250" y2="150" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="150" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="150" x2="250" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="170" x2="250" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="170" x2="250" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="250" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="250" y1="10" x2="110" y2="10" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="10" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="10" x2="110" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="110" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="110" y1="130" x2="210" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="130" x2="210" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="210" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="210" y1="50" x2="150" y2="50" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="50" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="50" x2="150" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="150" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="150" y1="90" x2="170" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="90" x2="170" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="170" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="170" y1="90" x2="10" y2="90" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="90" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="90" x2="10" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="10" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="10" y1="230" x2="130" y2="230" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="230" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="230" x2="130" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="130" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="130" y1="130" x2="50" y2="130" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="130" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="130" x2="50" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="50" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="50" y1="190" x2="90" y2="190" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="190" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
<line x1="90" y1="190" x2="90" y2="170" style="stroke:black; stroke-width:5"/>
|
||||||
|
<circle cx="90" cy="170" r="3" style="stroke:black; stroke-width:5" fill="black"/>
|
||||||
|
|
||||||
|
</svg>
|
||||||
|
After Width: | Height: | Size: 5.9 KiB |
BIN
content/blog/modulo_patterns/turn_3_1.gif
Normal file
|
After Width: | Height: | Size: 63 KiB |
BIN
content/blog/modulo_patterns/turn_3_2.gif
Normal file
|
After Width: | Height: | Size: 63 KiB |
BIN
content/blog/modulo_patterns/turn_3_anim.gif
Normal file
|
After Width: | Height: | Size: 3.9 MiB |
BIN
content/blog/modulo_patterns/turn_5_2.gif
Normal file
|
After Width: | Height: | Size: 104 KiB |
BIN
content/blog/modulo_patterns/turn_5_anim.gif
Normal file
|
After Width: | Height: | Size: 4.5 MiB |
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: "A Typesafe Representation of an Imperative Language"
|
title: "A Typesafe Representation of an Imperative Language"
|
||||||
date: 2020-11-02T01:07:21-08:00
|
date: 2020-11-02T01:07:21-08:00
|
||||||
tags: ["Idris"]
|
tags: ["Idris", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
A recent homework assignment for my university's programming languages
|
A recent homework assignment for my university's programming languages
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: Meaningfully Typechecking a Language in Idris
|
title: Meaningfully Typechecking a Language in Idris
|
||||||
date: 2020-02-27T21:58:55-08:00
|
date: 2020-02-27T21:58:55-08:00
|
||||||
tags: ["Haskell", "Idris"]
|
tags: ["Haskell", "Idris", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
This term, I'm a TA for Oregon State University's Programming Languages course.
|
This term, I'm a TA for Oregon State University's Programming Languages course.
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: Meaningfully Typechecking a Language in Idris, Revisited
|
title: Meaningfully Typechecking a Language in Idris, Revisited
|
||||||
date: 2020-07-22T14:37:35-07:00
|
date: 2020-07-22T14:37:35-07:00
|
||||||
tags: ["Idris"]
|
tags: ["Idris", "Programming Languages"]
|
||||||
favorite: true
|
favorite: true
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
title: Meaningfully Typechecking a Language in Idris, With Tuples
|
title: Meaningfully Typechecking a Language in Idris, With Tuples
|
||||||
date: 2020-08-12T15:48:04-07:00
|
date: 2020-08-12T15:48:04-07:00
|
||||||
tags: ["Idris"]
|
tags: ["Idris", "Programming Languages"]
|
||||||
---
|
---
|
||||||
|
|
||||||
Some time ago, I wrote a post titled
|
Some time ago, I wrote a post titled
|
||||||
|
|||||||
120
content/blog/typescript_typesafe_events.md
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
---
|
||||||
|
title: "Type-Safe Event Emitter in TypeScript"
|
||||||
|
date: 2021-09-04T17:18:49-07:00
|
||||||
|
tags: ["TypeScript"]
|
||||||
|
---
|
||||||
|
|
||||||
|
I've been playing around with TypeScript recently, and enjoying it too.
|
||||||
|
Nearly all of my compile-time type safety desires have been accomodated
|
||||||
|
by the language, and in a rather intuitive and clean way. Today, I'm going
|
||||||
|
to share a little trick I've discovered which allows me to do something that
|
||||||
|
I suspect would normally require [dependent types](https://en.wikipedia.org/wiki/Dependent_type).
|
||||||
|
|
||||||
|
### The Problem
|
||||||
|
Suppose you want to write a class that emits events. Clients can then install handlers,
|
||||||
|
functions that are notified whenever an event is emitted. Easy enough; in JavaScript,
|
||||||
|
this would look something like the following:
|
||||||
|
|
||||||
|
{{< codelines "JavaScript" "typescript-emitter/js1.js" 1 17 >}}
|
||||||
|
|
||||||
|
We can even write some code to test that this works (just to ease my nerves):
|
||||||
|
|
||||||
|
{{< codelines "JavaScript" "typescript-emitter/js1.js" 19 23 >}}
|
||||||
|
|
||||||
|
As expected, we get:
|
||||||
|
|
||||||
|
```
|
||||||
|
Ended!
|
||||||
|
Started!
|
||||||
|
```
|
||||||
|
|
||||||
|
As you probably guessed, we're going to build on this problem a little bit.
|
||||||
|
In certain situations, you don't just care that an event occured; you also
|
||||||
|
care about additional event data. For instance, when a number changes, you
|
||||||
|
may want to know the number's new value. In JavaScript, this is a trivial change:
|
||||||
|
|
||||||
|
{{< codelines "JavaScript" "typescript-emitter/js2.js" 1 17 "hl_lines = 6-8" >}}
|
||||||
|
|
||||||
|
That's literally it. Once again, let's ensure that this works by sending two new events:
|
||||||
|
`stringChange` and `numberChange`.
|
||||||
|
|
||||||
|
{{< codelines "JavaScript" "typescript-emitter/js2.js" 19 23 >}}
|
||||||
|
|
||||||
|
The result of this code is once again unsurprising:
|
||||||
|
|
||||||
|
```
|
||||||
|
New number value is: 1
|
||||||
|
New string value is: 3
|
||||||
|
```
|
||||||
|
|
||||||
|
But now, how would one go about encoding this in TypeScript? In particular, what is the
|
||||||
|
type of a handler? We could, of course, give each handler the type `(value: any) => void`.
|
||||||
|
This, however, makes handlers unsafe. We could very easily write:
|
||||||
|
|
||||||
|
```TypeScript
|
||||||
|
emitter.addHandler("numberChanged", (value: string) => {
|
||||||
|
console.log("String length is", value.length);
|
||||||
|
});
|
||||||
|
emitted.emit("numberChanged", 1);
|
||||||
|
```
|
||||||
|
|
||||||
|
Which would print out:
|
||||||
|
|
||||||
|
```
|
||||||
|
String length is undefined
|
||||||
|
```
|
||||||
|
|
||||||
|
No, I don't like this. TypeScript is supposed to be all about adding type safety to our code,
|
||||||
|
and this is not at all type safe. We could do all sorts of weird things! There is a way,
|
||||||
|
however, to make this use case work.
|
||||||
|
|
||||||
|
### The Solution
|
||||||
|
|
||||||
|
Let me show you what I came up with:
|
||||||
|
|
||||||
|
{{< codelines "TypeScript" "typescript-emitter/ts.ts" 1 19 "hl_lines=1 2 8 12">}}
|
||||||
|
|
||||||
|
The important changes are on lines 1, 2, 8, and 12 (highlighted in the above code block).
|
||||||
|
Let's go through each one of them step-by-step.
|
||||||
|
|
||||||
|
* __Line 1__: Parameterize the `EventEmitter` by some type `T`. We will use this type `T`
|
||||||
|
to specify the exact kind of events that our `EventEmitter` will be able to emit and handle.
|
||||||
|
Specifically, this type will be in the form `{ event: EventValueType }`. For example,
|
||||||
|
for a `mouseClick` event, we may write `{ mouseClick: { x: number, y: number }}`.
|
||||||
|
* __Line 2__: Add a proper type to `handlers`. This requires several ingredients of its own:
|
||||||
|
* We use [index signatures](https://www.typescriptlang.org/docs/handbook/2/objects.html#index-signatures)
|
||||||
|
to limit the possible names to which handlers can be assigned. We limit these names
|
||||||
|
to the keys of our type `T`; in the preceding example, `keyof T` would be `"mouseClick"`.
|
||||||
|
* We also limit the values: `T[eventName]` retrieves the type of the value associated with
|
||||||
|
key `eventName`. In the mouse example, this type would be `{ x: number, y: number }`. We require
|
||||||
|
that a key can only be associated with an array of functions to void, each of which accepts
|
||||||
|
`T[K]` as first argument. This is precisely what we want; for example, `mouseClick` would map to
|
||||||
|
an array of functions that accept the mouse click location.
|
||||||
|
* __Line 8__: We restrict the type of `emit` to only accept values that correspond to the keys
|
||||||
|
of the type `T`. We can't simply write `event: keyof T`, because this would not give us enough
|
||||||
|
information to retrieve the type of `value`: if `event` is just `keyof T`,
|
||||||
|
then `value` can be any of the values of `T`. Instead, we use generics; this way, when the
|
||||||
|
function is called with `"mouseClick"`, the type of `K` is inferred to also be `"mouseClick"`, which
|
||||||
|
gives TypeScript enough information to narrow the type of `value`.
|
||||||
|
* __Line 12__: We use the exact same trick here as we did on line 8.
|
||||||
|
|
||||||
|
Let's give this a spin with our `numberChange`/`stringChange` example from earlier:
|
||||||
|
|
||||||
|
{{< codelines "TypeScript" "typescript-emitter/ts.ts" 21 27 >}}
|
||||||
|
|
||||||
|
The function calls on lines 24 and 25 are correct, but the subsequent two (on lines 26 and 27)
|
||||||
|
are not, as they attempt to emit the _opposite_ type of the one they're supposed to. And indeed,
|
||||||
|
TypeScript complains about only these two lines:
|
||||||
|
|
||||||
|
```
|
||||||
|
code/typescript-emitter/ts.ts:26:30 - error TS2345: Argument of type 'string' is not assignable to parameter of type 'number'.
|
||||||
|
26 emitter.emit("numberChange", "1");
|
||||||
|
~~~
|
||||||
|
code/typescript-emitter/ts.ts:27:30 - error TS2345: Argument of type 'number' is not assignable to parameter of type 'string'.
|
||||||
|
27 emitter.emit("stringChange", 3);
|
||||||
|
~
|
||||||
|
Found 2 errors.
|
||||||
|
```
|
||||||
|
|
||||||
|
And there you have it! This approach is now also in use in [Hydrogen](https://github.com/vector-im/hydrogen-web),
|
||||||
|
a lightweight chat client for the [Matrix](https://matrix.org/) protocol. In particular, check out [`EventEmitter.ts`](https://github.com/vector-im/hydrogen-web/blob/master/src/utils/EventEmitter.ts).
|
||||||