blog-static/content/blog/02_spa_agda_combining_lattices.md
Danila Fedorin ee8b1f5dc0 Write a bit more, enable support for paragraph links
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-21 19:04:08 -07:00

106 lines
5.1 KiB
Markdown

---
title: "Implementing and Verifying \"Static Program Analysis\" in Agda, Part 2: Combining Lattices"
series: "Static Program Analysis in Agda"
date: 2024-04-13T14:23:03-07:01
draft: true
tags: ["Agda", "Programming Languages"]
---
In the previous post, I wrote about how lattices arise when tracking, comparing
and combining static information about programs. I then showed two simple lattices:
the natural numbers, and the (parameterized) "above-below" lattice, which
modified an arbitrary set with "bottom" and "top" elements (\(\bot\) and \(\top\)
respectively). One instance of the "above-below" lattice was the sign lattice,
which could be used to reason about the signs (positive, negative, or zero)
of variables in a program.
At the end of that post, I introduced a source of complexity: the "full"
lattices that we want to use for the program analysis aren't signs or numbers,
but maps of states and variables to lattices-based states. The full lattice
for sign analysis might something in the form:
{{< latex >}}
\text{Info} \triangleq \text{ProgramStates} \to (\text{Variables} \to \text{Sign})
{{< /latex >}}
Thus, we have to compare and find least upper bounds (e.g.) of not just
signs, but maps! Proving the various lattice laws for signs was not too
challenging, but for for a two-level map like \(\text{info}\) above, we'd
need to do a lot more work. We need tools to build up such complicated lattices!
The way to do this, it turns out, is by using simpler lattices as building blocks.
To start with, let's take a look at a very simple way of combining lattices:
taking the Cartesian product.
### The Cartesian Product Lattice
Suppose you have two lattices \(L_1\) and \(L_2\). As I covered in the previous
post, each lattice comes equipped with a "least upper bound" operator \((\sqcup)\)
and a "greatest lower bound" operator \((\sqcap)\). Since we now have two lattices,
let's use numerical suffixes to disambiguate between the operators
of the first and second lattice: \((\sqcup_1)\) will be the LUB operator of
the first lattice \(L_1\), and \((\sqcup_2)\) of the second lattice \(L_2\).
Then, let's take the Cartesian product of the elements of \(L_1\) and \(L_2\);
mathematically, we'll write this as \(L_1 \times L_2\), and in Agda, we can
just use the standard [`Data.Product`](https://agda.github.io/agda-stdlib/master/Data.Product.html)
module. In Agda, I'll define the lattice as another [parameterized module](https://agda.readthedocs.io/en/latest/language/module-system.html#parameterised-modules). Since both \(L_1\) and \(L_2\)
are lattices, this parameterized module will require `IsLattice` instances
for both types:
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 1 7 >}}
Elements of \(L_1 \times L_2\) are in the form \((l_1, l_2)\), where
\(l_1 \in L_1\) and \(l_2 \in L_2\). The first thing we can get out of the
way is define what it means for two such elements to be equal. Recall that
we opted for a [custom equivalence relation]({{< relref "01_spa_agda_lattices#definitional-equality" >}})
instead of definitional equality to allow similar elements to be considered
equal; we'll have to define a similar relation for our new product lattice.
That's easy enough: we have an equality predicate `_≈₁_` that checks if an element
of \(L_1\) is equal to another, and we have `_≈₂_` that does the same for \(L_2\).
It's reasonable to say that _pairs_ of elements are equal if their respective
first and second elements are equal:
{{< latex >}}
(l_1, l_2) \approx (j_1, j_2) \iff l_1 \approx_1 j_1 \land l_2 \approx_2 j_2
{{< /latex >}}
In Agda:
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 39 40 >}}
Verifying that this relation has the properties of an equivalence relation
boils down to the fact that `_≈₁_` and `_≈₂_` are themselves equivalence
relations.
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 42 48 >}}
In fact, defining \((\sqcup)\) and \((\sqcap)\) by simply applying the
corresponding operators from \(L_1\) and \(L_2\) seems quite natural as well.
{{< latex >}}
(l_1, l_2) \sqcup (j_1, j_2) \triangleq (l_1 \sqcup_1 j_1, l_2 \sqcup_2 j_2) \\
(l_1, l_2) \sqcap (j_1, j_2) \triangleq (l_1 \sqcap_1 j_1, l_2 \sqcap_2 j_2)
{{< /latex >}}
In Agda:
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 50 54 >}}
All that's left is to prove the various (semi)lattice properties. Intuitively,
we can see that since the "combined" operator `_≈_` just independently applies
the element operators `_≈₁_` and `_≈₂_`, as long as they are idempotent,
commutative, and associative, so is the "combined" operator itself.
Moreover, the proofs that `_⊔_` and `_⊓_` form semilattices are identical
up to replacing \((\sqcup)\) with \((\sqcap)\). Thus, in Agda, we can write
the code once, parameterizing it by the binary operators involved (and proofs
that these operators obey the semilattice laws).
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 56 82 >}}
Similarly to the semilattice properties, proving lattice properties boils
down to applying the lattice properties of \(L_1\) and \(L_2\) to
individual components.
{{< codelines "Agda" "agda-spa/Lattice/Prod.agda" 84 96 >}}