agda-spa/Map.agda

263 lines
12 KiB
Agda
Raw Normal View History

open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (Dec; yes; no)
open import Agda.Primitive using (Level; _⊔_)
module Map {a b : Level} (A : Set a) (B : Set b)
(≡-dec-A : Decidable (_≡_ {a} {A}))
where
import Data.List.Membership.Propositional as MemProp
open import Relation.Nullary using (¬_)
open import Data.Nat using ()
open import Data.List using (List; map; []; _∷_; _++_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
open import Data.Empty using ()
keys : List (A × B) List A
keys = map proj₁
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : forall {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
Unique-append : {c} {C : Set c} {x : C} {xs : List C}
¬ MemProp._∈_ x xs Unique xs Unique (xs ++ (x []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' xs'} x∉xs (push x'≢ uxs') =
push (help x'≢) (Unique-append (λ x∈xs' x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} All (λ x'' ¬ x' x'') l All (λ x'' ¬ x' x'') (l ++ (x []))
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
absurd : {a} {A : Set a} A
absurd ()
private module _ where
open MemProp using (_∈_)
unique-not-in : {k : A} {v : B} {l : List (A × B)}
¬ (All (λ k' ¬ k k') (keys l) × (k , v) l)
unique-not-in {l = (k' , _) xs} (k≢k' _ , here k',≡x) =
k≢k' (cong proj₁ k',≡x)
unique-not-in {l = _ xs} (_ rest , there k,v'∈xs) =
unique-not-in (rest , k,v'∈xs)
ListAB-functional : {k : A} {v v' : B} {l : List (A × B)}
Unique (keys l) (k , v) l (k , v') l v v'
ListAB-functional _ (here k,v≡x) (here k,v'≡x) =
cong proj₂ (trans k,v≡x (sym k,v'≡x))
ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs)
rewrite sym k,v≡x = absurd (unique-not-in (k≢xs , k,v'∈xs))
ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x)
rewrite sym k,v'≡x = absurd (unique-not-in (k≢xs , k,v∈xs))
ListAB-functional {l = _ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) =
ListAB-functional uxs k,v∈xs k,v'∈xs
private module ImplRelation (_≈_ : B B Set b) where
open MemProp using (_∈_)
subset : List (A × B) List (A × B) Set (a b)
subset m₁ m₂ = (k : A) (v : B) (k , v) m₁
Σ B (λ v' v v' × ((k , v') m₂))
private module ImplInsert (f : B B B) where
open import Data.List using (map)
open MemProp using (_∈_)
private
_∈k_ : A List (A × B) Set a
_∈k_ k m = k (keys m)
foldr : {c} {C : Set c} (A B C C) -> C -> List (A × B) -> C
foldr f b [] = b
foldr f b ((k , v) xs) = f k v (foldr f b xs)
insert : A B List (A × B) List (A × B)
insert k v [] = (k , v) []
insert k v (x@(k' , v') xs) with ≡-dec-A k k'
... | yes _ = (k' , f v v') xs
... | no _ = x insert k v xs
merge : List (A × B) List (A × B) List (A × B)
merge m₁ m₂ = foldr insert m₂ m₁
insert-keys-∈ : (k : A) (v : B) (l : List (A × B))
k ∈k l keys l keys (insert k v l)
insert-keys-∈ k v ((k' , v') xs) (here k≡k')
with (≡-dec-A k k')
... | yes _ = refl
... | no k≢k' = absurd (k≢k' k≡k')
insert-keys-∈ k v ((k' , _) xs) (there k∈kxs)
with (≡-dec-A k k')
... | yes _ = refl
... | no _ = cong (λ xs' k' xs') (insert-keys-∈ k v xs k∈kxs)
insert-keys-∉ : (k : A) (v : B) (l : List (A × B))
¬ (k ∈k l) (keys l ++ (k [])) keys (insert k v l)
insert-keys-∉ k v [] _ = refl
insert-keys-∉ k v ((k' , v') xs) k∉kl
with (≡-dec-A k k')
... | yes k≡k' = absurd (k∉kl (here k≡k'))
... | no _ = cong (λ xs' k' xs')
(insert-keys-∉ k v xs (λ k∈kxs k∉kl (there k∈kxs)))
∈k-dec : (k : A) (l : List (A × B)) Dec (k ∈k l)
∈k-dec k [] = no (λ ())
∈k-dec k ((k' , v) xs)
with (≡-dec-A k k')
... | yes k≡k' = yes (here k≡k')
... | no k≢k' with (∈k-dec k xs)
... | yes k∈kxs = yes (there k∈kxs)
... | no k∉kxs = no witness
where
witness : ¬ k ∈k ((k' , v) xs)
witness (here k≡k') = k≢k' k≡k'
witness (there k∈kxs) = k∉kxs k∈kxs
∈-cong : {c d} {C : Set c} {D : Set d} {c : C} {l : List C}
(f : C D) c l f c map f l
∈-cong f (here c≡c') = here (cong f c≡c')
∈-cong f (there c∈xs) = there (∈-cong f c∈xs)
insert-preserves-Unique : (k : A) (v : B) (l : List (A × B))
Unique (keys l) Unique (keys (insert k v l))
insert-preserves-Unique k v l u
with (∈k-dec k l)
... | yes k∈kl rewrite insert-keys-∈ k v l k∈kl = u
... | no k∉kl rewrite sym (insert-keys-∉ k v l k∉kl) = Unique-append k∉kl u
merge-preserves-Unique : (l₁ l₂ : List (A × B))
Unique (keys l₂) Unique (keys (merge l₁ l₂))
merge-preserves-Unique [] l₂ u₂ = u₂
merge-preserves-Unique ((k₁ , v₁) xs₁) l₂ u₂ =
insert-preserves-Unique k₁ v₁ (merge xs₁ l₂)
(merge-preserves-Unique xs₁ l₂ u₂)
insert-preserves-other-keys : (k k' : A) (v v' : B) (l : List (A × B))
¬ k k' (k , v) l (k , v) insert k' v' l
insert-preserves-other-keys k k' v v' (x xs) k≢k' (here k,v=x)
rewrite sym k,v=x with ≡-dec-A k' k
... | yes k'≡k = absurd (k≢k' (sym k'≡k))
... | no _ = here refl
insert-preserves-other-keys k k' v v' ((k'' , _) xs) k≢k' (there k,v∈xs)
with ≡-dec-A k' k''
... | yes _ = there k,v∈xs
... | no _ = there (insert-preserves-other-keys k k' v v' xs k≢k' k,v∈xs)
merge-preserves-keys₁ : (k : A) (v : B) (l₁ l₂ : List (A × B))
¬ k ∈k l₁ (k , v) l₂ (k , v) merge l₁ l₂
merge-preserves-keys₁ k v [] l₂ _ k,v∈l₂ = k,v∈l₂
merge-preserves-keys₁ k v ((k' , v') xs₁) l₂ k∉kl₁ k,v∈l₂ =
let recursion = merge-preserves-keys₁ k v xs₁ l₂ (λ k∈xs₁ k∉kl₁ (there k∈xs₁)) k,v∈l₂
in insert-preserves-other-keys k k' v v' _ (λ k≡k' k∉kl₁ (here k≡k')) recursion
insert-preserves-other-key : (k : A) (v : B) (l : List (A × B))
¬ k ∈k l (k , v) insert k v l
insert-preserves-other-key k v [] k∉kl = here refl
insert-preserves-other-key k v ((k' , v') xs) k∉kl
with ≡-dec-A k k'
... | yes k≡k' = absurd (k∉kl (here k≡k'))
... | no _ = there (insert-preserves-other-key k v xs (λ k∈kxs k∉kl (there k∈kxs)))
-- prove that ¬ k ∈k m → (k , v) ∈ insert k v m
merge-preserves-keys₂ : (k : A) (v : B) (l₁ l₂ : List (A × B))
Unique (keys l₁) (k , v) l₁ ¬ k ∈k l₂ (k , v) merge l₁ l₂
merge-preserves-keys₂ k v ((k' , v') xs₁) l₂ (push k'≢xs₁ uxs₁) (here _) k∉kl₂ = {!!} -- hard!
-- where
-- rest : ∀ (l l' : List (A × B)) → All (λ k'' → ¬ k ≡ k'') (keys l) → ¬ k ∈k l' → ¬ k ∈k merge l l'
-- rest [] l' _ k∉kl' = k∉kl'
-- rest l [] (k≢l) _ = help
-- where
-- help : ∀ (l : List (A × B)) → All (λ k'' → ¬ k ≡ k'') (keys l) → ¬ k ∈k l
-- help [] _ ()
-- help ((k'' , _) ∷ xs) (k≢k'' ∷ k≢xs) (here k≡k'') = k≢k'' k≡k''
-- help ((k'' , _) ∷ xs) (k≢k'' ∷ k≢xs) (there k∈kxs) = help xs k≢xs k∈kxs
-- -- rest (x@(k'' , _) ∷ xs) l' (k≢k'' ∷ k≢xs) k∉kl' with (≡-dec-A k'' = (rest xs l' k≢xs k∉kl')
-- -- where
-- -- help : ¬ k ∈k (merge (x ∷ xs) l') -- insert x (merge xs l')
-- -- help (here k≡k'') = {!!}
-- -- help (there k∈) = {!!}
-- -- let nested = (rest xs l' k≢xs k∉kl')
Map : Set (a b)
Map = Σ (List (A × B)) (λ l Unique (keys l))
_∈_ : (A × B) Map Set (a b)
_∈_ p (kvs , _) = MemProp._∈_ p kvs
_∈k_ : A Map Set a
_∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs)
Map-functional : {k : A} {v v' : B} {m : Map} (k , v) m (k , v') m v v'
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
data Provenance (k : A) (m₁ m₂ : Map) : Set (a b) where
both : (v₁ v₂ : B) (k , v₁) m₁ (k , v₂) m₂ Provenance k m₁ m₂
in₁ : (v₁ : B) (k , v₁) m₁ ¬ k ∈k m₂ Provenance k m₁ m₂
in₂ : (v₂ : B) ¬ k ∈k m₁ (k , v₂) m₂ Provenance k m₁ m₂
module _ (f : B B B) where
open ImplInsert f renaming
( insert to insert-impl
; merge to merge-impl
)
insert : A B Map Map
insert k v (kvs , uks) = (insert-impl k v kvs , insert-preserves-Unique k v kvs uks)
merge : Map Map Map
merge (kvs₁ , _) (kvs₂ , uks₂) = (merge-impl kvs₁ kvs₂ , merge-preserves-Unique kvs₁ kvs₂ uks₂)
MergeResult : {k : A} {m₁ m₂ : Map} Provenance k m₁ m₂ Set (a b)
MergeResult {k} {m₁} {m₂} (both v₁ v₂ _ _) = (k , f v₁ v₂) merge m₁ m₂
MergeResult {k} {m₁} {m₂} (in v₁ _ _) = (k , v₁) merge m₁ m₂
MergeResult {k} {m₁} {m₂} (in v₂ _ _) = (k , v₂) merge m₁ m₂
merge-provenance : (m₁ m₂ : Map) (k : A) k ∈k merge m₁ m₂ Σ (Provenance k m₁ m₂) MergeResult
merge-provenance = {!!}
-- ------------------------------------------------------------------------
--
-- The following can be proven using plain properties of insert:
--
-- prove that ¬ k ∈k m₁ → (k , v) ∈ m₂ → (k , v) ∈ merge m₁ m₂ (done)
-- prove that k ≢ k' → (k , v) ∈ m → (k , v) ∈ insert k' v' m (done)
-- prove that (k , v) ∈ m₁ → ¬ k ∈k m₂ → (k , v) ∈ merge m₁ m₂ (stuck)
-- prove that ¬ k ∈k m → (k , v) ∈ insert k v m
--
-- ------------------------------------------------------------------------
--
-- The following relies on uniqueness, since inserts stops after the first encounter.
--
-- prove that (k , v) ∈ m₁ → (k , v') ∈ m₂ → (k, f v v') ∈ merge m₁ m₂
--
-- ------------------------------------------------------------------------
--
-- The following can probably be proven via keys.
--
-- prove that k ∉k m₁ → k ∉k m₂ → k ∉k merge m₁ m₂
module _ (_≈_ : B B Set b) where
open ImplRelation _≈_ renaming (subset to subset-impl)
subset : Map Map Set (a b)
subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
lift : Map Map Set (a b)
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁