agda-spa/Language/Properties.agda

297 lines
17 KiB
Agda
Raw Normal View History

module Language.Properties where
open import Language.Base
open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import Data.Fin as Fin using (suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; _∷_; [])
open import Data.List.Properties using (filter-none)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.Nat as Nat using ()
open import Data.Product using (Σ; _,_; _×_; proj₂)
open import Data.Product.Properties as ProdProp using ()
open import Data.Sum using (inj₁; inj₂)
open import Data.Vec as Vec using (_∷_)
open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
open import Relation.Nullary using (¬_)
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈)
-- All of the below helpers are to reason about what edges aren't included
-- when combinings graphs. The currenty most important use for this is proving
-- that the entry node has no incoming edges.
--
-- -------------- Begin ugly code to make this work ----------------
↑-≢ : {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) ¬ (f₁ Fin.↑ˡ m) (n Fin.↑ʳ f₂)
↑-≢ zero f₂ ()
↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂)
idx→f∉↑ʳᵉ : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂)
idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂)
idx→f∉↑ʳᵉ idx f (_ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂'
idx→f∉pair : {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂))
idx→f∉pair idx idx' f [] ()
idx→f∉pair idx idx' f (input inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input)
idx→f∉pair idx idx' f (_ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂'
idx→f∉cart : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂))
idx→f∉cart idx f [] inputs₂ ()
idx→f∉cart {n} {m} idx f (output outputs₁') inputs₂ idx,f∈pair++cart
with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart
... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair
... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart
help : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ g₂))
¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))
help g₂ idx₁ idx idx,idx₁∈g
with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g
... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂
... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart
helpAll : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁)
All (λ idx ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ g₂))
helpAll g₂ idx₁ = tabulate (λ {idx} _ help g₂ idx₁ idx)
module _ (g : Graph) where
wrap-preds-∅ : (idx : Graph.Index (wrap g))
idx ListMem.∈ Graph.inputs (wrap g) predecessors (wrap g) idx []
wrap-preds-∅ zero (here refl) =
filter-none (λ idx' (idx' , zero) ∈?
(Graph.edges (wrap g)))
(helpAll (g singleton []) zero)
where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_)
-- -------------- End ugly code to make this work ----------------
module _ (g : Graph) where
wrap-input : Σ (Graph.Index (wrap g)) (λ idx Graph.inputs (wrap g) idx [])
wrap-input = (_ , refl)
wrap-output : Σ (Graph.Index (wrap g)) (λ idx Graph.outputs (wrap g) idx [])
wrap-output = (_ , refl)
Trace-∙ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env}
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
Trace-∙ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-∙ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
(Trace-∙ˡ tr')
Trace-∙ʳ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env}
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-∙ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-∙ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ _ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx))
(Trace-∙ʳ tr')
2024-04-28 12:00:06 -07:00
EndToEndTrace-∙ˡ : {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g₁} ρ₁ ρ₂
EndToEndTrace {g₁ g₂} ρ₁ ρ₂
EndToEndTrace-∙ˡ {g₁} {g₂} etr = record
{ idx₁ = EndToEndTrace.idx₁ etr Fin.↑ˡ Graph.size g₂
; idx₁∈inputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
(EndToEndTrace.idx₁∈inputs etr))
; idx₂ = EndToEndTrace.idx₂ etr Fin.↑ˡ Graph.size g₂
; idx₂∈outputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
(EndToEndTrace.idx₂∈outputs etr))
; trace = Trace-∙ˡ (EndToEndTrace.trace etr)
}
EndToEndTrace-∙ʳ : {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g₂} ρ₁ ρ₂
EndToEndTrace {g₁ g₂} ρ₁ ρ₂
EndToEndTrace-∙ʳ {g₁} {g₂} etr = record
{ idx₁ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₁ etr
; idx₁∈inputs = ListMemProp.∈-++⁺ʳ (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂)
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
(EndToEndTrace.idx₁∈inputs etr)))
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr
; idx₂∈outputs = ListMemProp.∈-++⁺ʳ (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
(EndToEndTrace.idx₂∈outputs etr)))
; trace = Trace-∙ʳ (EndToEndTrace.trace etr)
}
Trace-↦ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env}
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
Trace-↦ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-↦ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
(Trace-↦ˡ tr')
Trace-↦ʳ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env}
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-↦ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-↦ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
(ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx)))
(Trace-↦ʳ {g₁} {g₂} tr')
loop-edge-groups : (g : Graph) List (List (Graph.Edge (loop g)))
loop-edge-groups g =
(2 ↑ʳᵉ Graph.edges g)
(List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g))
(List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g))
((suc zero , zero) (zero , suc zero) [])
[]
loop-edge-help : (g : Graph) {l : List (Graph.Edge (loop g))} {e : Graph.Edge (loop g)}
e ListMem.∈ l l ListMem.∈ loop-edge-groups g
e ListMem.∈ Graph.edges (loop g)
loop-edge-help g e∈l l∈ess = concat-∈ e∈l l∈ess
Trace-loop : {g : Graph} {idx₁ idx₂ : Graph.Index g} {ρ₁ ρ₂ : Env}
Trace {g} idx₁ idx₂ ρ₁ ρ₂ Trace {loop g} (2 Fin.↑ʳ idx₁) (2 Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-loop {g} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (List.[] List.[] Vec.[]) (Graph.nodes g) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-loop {g} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (List.[] List.[] Vec.[]) (Graph.nodes g) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (2 ↑ʳ_) idx₁→idx))
(Trace-loop {g} tr')
EndToEndTrace-loop : {g : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g} ρ₁ ρ₂ EndToEndTrace {loop g} ρ₁ ρ₂
EndToEndTrace-loop {g} etr =
let
zero→idx₁' = x∈xs⇒fx∈fxs (zero ,_)
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
(EndToEndTrace.idx₁∈inputs etr))
zero→idx₁ = loop-edge-help g zero→idx₁' (there (here refl))
idx₂→suc' = x∈xs⇒fx∈fxs (_, suc zero)
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
(EndToEndTrace.idx₂∈outputs etr))
idx₂→suc = loop-edge-help g idx₂→suc' (there (there (here refl)))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace =
Trace-single [] ++⟨ zero→idx₁
Trace-loop {g} (EndToEndTrace.trace etr) ++⟨ idx₂→suc
Trace-single []
}
EndToEndTrace-loop² : {g : Graph} {ρ₁ ρ₂ ρ₃ : Env}
EndToEndTrace {loop g} ρ₁ ρ₂
EndToEndTrace {loop g} ρ₂ ρ₃
EndToEndTrace {loop g} ρ₁ ρ₃
EndToEndTrace-loop² {g} (MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₁)
(MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₂) =
let
suc→zero = loop-edge-help g (here refl)
(there (there (there (here refl))))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace = tr₁ ++⟨ suc→zero tr₂
}
EndToEndTrace-loop⁰ : {g : Graph} {ρ : Env}
EndToEndTrace {loop g} ρ ρ
EndToEndTrace-loop⁰ {g} {ρ} =
let
zero→suc = loop-edge-help g (there (here refl))
(there (there (there (here refl))))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace = Trace-single [] ++⟨ zero→suc Trace-single []
}
infixr 5 _++_
_++_ : {g₁ g₂ : Graph} {ρ₁ ρ₂ ρ₃ : Env}
EndToEndTrace {g₁} ρ₁ ρ₂ EndToEndTrace {g₂} ρ₂ ρ₃
EndToEndTrace {g₁ g₂} ρ₁ ρ₃
_++_ {g₁} {g₂} etr₁ etr₂
= record
{ idx₁ = EndToEndTrace.idx₁ etr₁ Fin.↑ˡ Graph.size g₂
; idx₁∈inputs = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₁∈inputs etr₁)
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr₂
; idx₂∈outputs = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr₂)
; trace =
let
o∈tr₁ = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₂∈outputs etr₁)
i∈tr₂ = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr₂)
oi∈es = ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
(ListMemProp.∈-++⁺ʳ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
(∈-cartesianProduct o∈tr₁ i∈tr₂))
in
(Trace-↦ˡ {g₁} {g₂} (EndToEndTrace.trace etr₁)) ++⟨ oi∈es
(Trace-↦ʳ {g₁} {g₂} (EndToEndTrace.trace etr₂))
}
EndToEndTrace-singleton : {bss : List BasicStmt} {ρ₁ ρ₂ : Env}
ρ₁ , bss ⇒ᵇˢ ρ₂ EndToEndTrace {singleton bss} ρ₁ ρ₂
EndToEndTrace-singleton ρ₁⇒ρ₂ = record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = zero
; idx₂∈outputs = here refl
; trace = Trace-single ρ₁⇒ρ₂
}
EndToEndTrace-singleton[] : (ρ : Env) EndToEndTrace {singleton []} ρ ρ
EndToEndTrace-singleton[] env = EndToEndTrace-singleton []
EndToEndTrace-wrap : {g : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g} ρ₁ ρ₂ EndToEndTrace {wrap g} ρ₁ ρ₂
EndToEndTrace-wrap {g} {ρ₁} {ρ₂} etr = EndToEndTrace-singleton[] ρ₁ ++ etr ++ EndToEndTrace-singleton[] ρ₂
buildCfg-sufficient : {s : Stmt} {ρ₁ ρ₂ : Env} ρ₁ , s ⇒ˢ ρ₂
EndToEndTrace {buildCfg s} ρ₁ ρ₂
buildCfg-sufficient (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
EndToEndTrace-singleton (ρ₁,bs⇒ρ [])
buildCfg-sufficient (⇒ˢ-then ρ₁ ρ₂ ρ₃ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
buildCfg-sufficient ρ₁,s₁⇒ρ ++ buildCfg-sufficient ρ₂,s₂⇒ρ
buildCfg-sufficient (⇒ˢ-if-true ρ₁ ρ₂ _ _ s₁ s₂ _ _ ρ₁,s₁⇒ρ) =
EndToEndTrace-∙ˡ (buildCfg-sufficient ρ₁,s₁⇒ρ)
buildCfg-sufficient (⇒ˢ-if-false ρ₁ ρ₂ _ s₁ s₂ _ ρ₁,s₂⇒ρ) =
EndToEndTrace-∙ʳ {buildCfg s₁} (buildCfg-sufficient ρ₁,s₂⇒ρ)
buildCfg-sufficient (⇒ˢ-while-true ρ₁ ρ₂ ρ₃ _ _ s _ _ ρ₁,s⇒ρ ρ₂,ws⇒ρ) =
EndToEndTrace-loop² {buildCfg s}
(EndToEndTrace-loop {buildCfg s} (buildCfg-sufficient ρ₁,s⇒ρ))
(buildCfg-sufficient ρ₂,ws⇒ρ)
buildCfg-sufficient (⇒ˢ-while-false ρ _ s _) =
EndToEndTrace-loop⁰ {buildCfg s} {ρ}