agda-spa/Lattice/IterProd.agda

168 lines
6.4 KiB
Agda
Raw Normal View History

open import Lattice
-- Due to universe levels, it becomes relatively annoying to handle the case
-- where the levels of A and B are not the same. For the time being, constrain
-- them to be the same.
module Lattice.IterProd {a} {A B : Set a}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set a)
(_⊔₁_ : A A A) (_⊔₂_ : B B B)
(_⊓₁_ : A A A) (_⊓₂_ : B B B)
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Agda.Primitive using (lsuc)
open import Data.Nat using (; zero; suc; _+_)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong)
open import Utils using (iterate)
open import Chain using (Height)
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
IterProd : Set a
IterProd k = iterate k (λ t A × t) B
-- To make iteration more convenient, package the definitions in Lattice
-- records, perform the recursion, and unpackage.
--
-- If we prove isLattice and isFiniteHeightLattice by induction separately,
-- we lose the connection between the operations (which should be the same)
-- that are built up by the two iterations. So, do everything in one iteration.
-- This requires some odd code.
build : A B (k : ) IterProd k
build _ b zero = b
build a b (suc s) = (a , build a b s)
private
record RequiredForFixedHeight : Set (lsuc a) where
field
≈₁-Decidable : IsDecidable _≈₁_
≈₂-Decidable : IsDecidable _≈₂_
h₁ h₂ :
fhA : FixedHeight₁ h₁
fhB : FixedHeight₂ h₂
⊥₁ : A
⊥₁ = Height.⊥ fhA
⊥₂ : B
⊥₂ = Height.⊥ fhB
⊥k : (k : ) IterProd k
⊥k = build ⊥₁ ⊥₂
record IsFiniteHeightWithBotAndDecEq {A : Set a} {_≈_ : A A Set a} {_⊔_ : A A A} {_⊓_ : A A A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) ( : A) : Set (lsuc a) where
field
height :
fixedHeight : IsLattice.FixedHeight isLattice height
≈-Decidable : IsDecidable _≈_
⊥-correct : Height.⊥ fixedHeight
record Everything (k : ) : Set (lsuc a) where
T = IterProd k
field
_≈_ : T T Set a
_⊔_ : T T T
_⊓_ : T T T
isLattice : IsLattice T _≈_ _⊔_ _⊓_
isFiniteHeightIfSupported :
(req : RequiredForFixedHeight)
IsFiniteHeightWithBotAndDecEq isLattice (RequiredForFixedHeight.⊥k req k)
everything : (k : ) Everything k
everything 0 = record
{ _≈_ = _≈₂_
; _⊔_ = _⊔₂_
; _⊓_ = _⊓₂_
; isLattice = lB
; isFiniteHeightIfSupported = λ req record
{ height = RequiredForFixedHeight.h₂ req
; fixedHeight = RequiredForFixedHeight.fhB req
; ≈-Decidable = RequiredForFixedHeight.≈₂-Decidable req
; ⊥-correct = refl
}
}
everything (suc k') = record
{ _≈_ = P._≈_
; _⊔_ = P._⊔_
; _⊓_ = P._⊓_
; isLattice = P.isLattice
; isFiniteHeightIfSupported = λ req
let
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
in
record
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
; fixedHeight =
P.fixedHeight
(RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
; ≈-Decidable = P.≈-Decidable (RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
; ⊥-correct =
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
}
}
where
everythingRest = everything k'
import Lattice.Prod
_≈₁_ (Everything._≈_ everythingRest)
_⊔₁_ (Everything._⊔_ everythingRest)
_⊓₁_ (Everything._⊓_ everythingRest)
lA (Everything.isLattice everythingRest) as P
module _ (k : ) where
open Everything (everything k) using (_≈_; _⊔_; _⊓_; isLattice) public
open Lattice.IsLattice isLattice public
lattice : Lattice (IterProd k)
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidable _≈₂_)
(h₁ h₂ : )
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
private
required : RequiredForFixedHeight
required = record
{ ≈₁-Decidable = ≈₁-Decidable
; ≈₂-Decidable = ≈₂-Decidable
; h₁ = h₁
; h₂ = h₂
; fhA = fhA
; fhB = fhB
}
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice (IterProd k)
finiteHeightLattice = record
{ height = IsFiniteHeightWithBotAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}
⊥-built : Height.⊥ fixedHeight (build (Height.⊥ fhA) (Height.⊥ fhB) k)
⊥-built = IsFiniteHeightWithBotAndDecEq.⊥-correct (Everything.isFiniteHeightIfSupported (everything k) required)