Switch product to using instances
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
70847d51db
commit
cf824dc744
@ -40,11 +40,11 @@ build a b (suc s) = (a , build a b s)
|
|||||||
private
|
private
|
||||||
record RequiredForFixedHeight : Set (lsuc a) where
|
record RequiredForFixedHeight : Set (lsuc a) where
|
||||||
field
|
field
|
||||||
≈₁-Decidable : IsDecidable _≈₁_
|
{{≈₁-Decidable}} : IsDecidable _≈₁_
|
||||||
≈₂-Decidable : IsDecidable _≈₂_
|
{{≈₂-Decidable}} : IsDecidable _≈₂_
|
||||||
h₁ h₂ : ℕ
|
h₁ h₂ : ℕ
|
||||||
fhA : FixedHeight₁ h₁
|
{{fhA}} : FixedHeight₁ h₁
|
||||||
fhB : FixedHeight₂ h₂
|
{{fhB}} : FixedHeight₂ h₂
|
||||||
|
|
||||||
⊥₁ : A
|
⊥₁ : A
|
||||||
⊥₁ = Height.⊥ fhA
|
⊥₁ = Height.⊥ fhA
|
||||||
@ -102,10 +102,9 @@ private
|
|||||||
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
|
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
|
||||||
; fixedHeight =
|
; fixedHeight =
|
||||||
P.fixedHeight
|
P.fixedHeight
|
||||||
(RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
|
{{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||||||
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
|
{{fhB = IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest}}
|
||||||
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
|
; ≈-Decidable = P.≈-Decidable {{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||||||
; ≈-Decidable = P.≈-Decidable (RequiredForFixedHeight.≈₁-Decidable req) (IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest)
|
|
||||||
; ⊥-correct =
|
; ⊥-correct =
|
||||||
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
|
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
|
||||||
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
|
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
|
||||||
@ -113,12 +112,7 @@ private
|
|||||||
}
|
}
|
||||||
where
|
where
|
||||||
everythingRest = everything k'
|
everythingRest = everything k'
|
||||||
|
import Lattice.Prod A (IterProd k') {{lB = Everything.isLattice everythingRest}} as P
|
||||||
import Lattice.Prod
|
|
||||||
_≈₁_ (Everything._≈_ everythingRest)
|
|
||||||
_⊔₁_ (Everything._⊔_ everythingRest)
|
|
||||||
_⊓₁_ (Everything._⊓_ everythingRest)
|
|
||||||
lA (Everything.isLattice everythingRest) as P
|
|
||||||
|
|
||||||
module _ {k : ℕ} where
|
module _ {k : ℕ} where
|
||||||
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public
|
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
open import Lattice
|
open import Lattice
|
||||||
|
|
||||||
module Lattice.Prod {a b} {A : Set a} {B : Set b}
|
module Lattice.Prod {a b} (A : Set a) (B : Set b)
|
||||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set b)
|
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||||||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} where
|
||||||
|
|
||||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||||
open import Data.Nat using (ℕ; _≤_; _+_; suc)
|
open import Data.Nat using (ℕ; _≤_; _+_; suc)
|
||||||
@ -40,6 +40,7 @@ open IsLattice lB using () renaming
|
|||||||
_≈_ : A × B → A × B → Set (a ⊔ℓ b)
|
_≈_ : A × B → A × B → Set (a ⊔ℓ b)
|
||||||
(a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
|
(a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
|
||||||
|
|
||||||
|
instance
|
||||||
≈-equiv : IsEquivalence (A × B) _≈_
|
≈-equiv : IsEquivalence (A × B) _≈_
|
||||||
≈-equiv = record
|
≈-equiv = record
|
||||||
{ ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl)
|
{ ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl)
|
||||||
@ -76,6 +77,7 @@ private module ProdIsSemilattice (f₁ : A → A → A) (f₂ : B → B → B) (
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
instance
|
||||||
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
||||||
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
|
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
|
||||||
|
|
||||||
@ -104,7 +106,7 @@ lattice = record
|
|||||||
; isLattice = isLattice
|
; isLattice = isLattice
|
||||||
}
|
}
|
||||||
|
|
||||||
module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidable _≈₂_) where
|
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}} where
|
||||||
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
|
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
|
||||||
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
||||||
|
|
||||||
@ -115,11 +117,12 @@ module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidab
|
|||||||
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂)
|
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂)
|
||||||
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂)
|
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂)
|
||||||
|
|
||||||
|
instance
|
||||||
≈-Decidable : IsDecidable _≈_
|
≈-Decidable : IsDecidable _≈_
|
||||||
≈-Decidable = record { R-dec = ≈-dec }
|
≈-Decidable = record { R-dec = ≈-dec }
|
||||||
|
|
||||||
module _ (h₁ h₂ : ℕ)
|
module _ {h₁ h₂ : ℕ}
|
||||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
|
||||||
|
|
||||||
open import Data.Nat.Properties
|
open import Data.Nat.Properties
|
||||||
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
|
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
|
||||||
@ -167,6 +170,7 @@ module _ (≈₁-Decidable : IsDecidable _≈₁_) (≈₂-Decidable : IsDecidab
|
|||||||
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||||||
))
|
))
|
||||||
|
|
||||||
|
instance
|
||||||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||||
fixedHeight = record
|
fixedHeight = record
|
||||||
{ ⊥ = (⊥₁ , ⊥₂)
|
{ ⊥ = (⊥₁ , ⊥₂)
|
||||||
|
Loading…
Reference in New Issue
Block a user