Compare commits

...

6 Commits

Author SHA1 Message Date
Danila Fedorin b134c143ca Start working on proving 'sufficiency'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:37:28 -07:00
Danila Fedorin e218d1b7a3 Add formalization of 'traces through graph'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:36:58 -07:00
Danila Fedorin 6e3f06ca5d Add a new 'properties' module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 20:25:40 -07:00
Danila Fedorin 54b11d21b0 Start working on proving facts about graph construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:47 -07:00
Danila Fedorin f3e0d5f2e3 Use 'data' instead of aliases to prove reasoning properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:13 -07:00
Danila Fedorin 855bf3f56c Add functions to reason about the 'monotonic state' operations
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 18:09:01 -07:00
6 changed files with 200 additions and 56 deletions

View File

@ -3,6 +3,7 @@ module Language where
open import Language.Base public
open import Language.Semantics public
open import Language.Graphs public
open import Language.Properties public
open import Data.Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)

View File

@ -1,7 +1,6 @@
module Language.Graphs where
open import Language.Base
open import Language.Semantics
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Properties as FinProp using (suc-injective)
@ -12,8 +11,8 @@ open import Data.Nat as Nat using (; suc)
open import Data.Nat.Properties using (+-assoc; +-comm)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_)
@ -57,38 +56,39 @@ record _⊆_ (g₁ g₂ : Graph) : Set where
e ListMem.∈ (Graph.edges g₁) →
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
private
castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
f ≡ Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
f ≡ Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
e ≡ castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
e ≡ castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
castᵉ p e ListMem.∈ es →
e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es
cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
castᵉ p e ListMem.∈ es →
e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
@ -128,12 +128,6 @@ instance
open Relaxable {{...}}
relax-preserves-[]≡ : ∀ (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ ⊆ g₂) (idx : Graph.Index g₁) →
g₁ [ idx ] ≡ g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
@ -152,6 +146,9 @@ pushBasicBlock bss g =
)
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
addEdges (MkGraph s ns es) es' =
( record
@ -172,9 +169,6 @@ addEdges (MkGraph s ns es) es' =
}
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
buildCfg (s₁ then s₂) =

52
Language/Properties.agda Normal file
View File

@ -0,0 +1,52 @@
module Language.Properties where
open import Language.Base
open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
open import Utils using (_⊗_; _,_)
open Relaxable {{...}}
open import Data.Fin using (zero)
open import Data.List using (List; _∷_; [])
open import Data.Vec using (_∷_; [])
open import Data.Vec.Properties using (cast-is-id; lookup-++ˡ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; subst)
relax-preserves-[]≡ : ∀ (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ ⊆ g₂) (idx : Graph.Index g₁) →
g₁ [ idx ] ≡ g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl ← nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
instance
NodeEqualsMonotonic : ∀ {bss : List BasicStmt} →
MonotonicPredicate (λ g n → g [ n ] ≡ bss)
NodeEqualsMonotonic = record
{ relaxPredicate = λ g₁ g₂ idx g₁⊆g₂ g₁[idx]≡bss →
trans (sym (relax-preserves-[]≡ g₁ g₂ g₁⊆g₂ idx)) g₁[idx]≡bss
}
pushBasicBlock-works : ∀ (bss : List BasicStmt) → Always (λ g idx → g [ idx ] ≡ bss) (pushBasicBlock bss)
pushBasicBlock-works bss = MkAlways (λ g → lookup-++ʳ (Graph.nodes g) (bss ∷ []) zero)
TransformsEnv : ∀ (ρ₁ ρ₂ : Env) → DependentPredicate (Graph.Index ⊗ Graph.Index)
TransformsEnv ρ₁ ρ₂ g (idx₁ , idx₂) = Trace {g} idx₁ idx₂ ρ₁ ρ₂
instance
TransformsEnvMonotonic : ∀ {ρ₁ ρ₂ : Env} → MonotonicPredicate (TransformsEnv ρ₁ ρ₂)
TransformsEnvMonotonic = {!!}
buildCfg-sufficient : ∀ {ρ₁ ρ₂ : Env} {s : Stmt} → ρ₁ , s ⇒ˢ ρ₂ → Always (TransformsEnv ρ₁ ρ₂) (buildCfg s)
buildCfg-sufficient {ρ₁} {ρ₂} {⟨ bs ⟩} (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ₂) =
pushBasicBlock-works (bs ∷ [])
map-reason
(λ g idx g[idx]≡[bs] → Trace-single (subst (ρ₁ ,_⇒ᵇˢ ρ₂)
(sym g[idx]≡[bs])
(ρ₁,bs⇒ρ₂ ∷ [])))
buildCfg-sufficient {ρ₁} {ρ₂} {s₁ then s₂} (⇒ˢ-then ρ₁ ρ ρ₂ s₁ s₂ ρ₁,s₁⇒ρ₂ ρ₂,s₂⇒ρ₃) =
(buildCfg-sufficient ρ₁,s₁⇒ρ₂ ⟨⊗⟩-reason buildCfg-sufficient ρ₂,s₂⇒ρ₃)
update-reason {!!}
map-reason {!!}

View File

@ -5,7 +5,7 @@ open import Language.Base
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.Product using (_×_; _,_)
open import Data.String using (String)
open import Data.List using (List; _∷_)
open import Data.List as List using (List)
open import Data.Nat using ()
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_)
@ -17,8 +17,8 @@ Env : Set
Env = List (String × Value)
data _∈_ : (String × Value) → Env → Set where
here : ∀ (s : String) (v : Value) (ρ : Env) → (s , v) ∈ ((s , v) ∷ ρ)
there : ∀ (s s' : String) (v v' : Value) (ρ : Env) → ¬ (s ≡ s') → (s , v) ∈ ρ → (s , v) ∈ ((s' , v') ∷ ρ)
here : ∀ (s : String) (v : Value) (ρ : Env) → (s , v) ∈ ((s , v) List.ρ)
there : ∀ (s s' : String) (v v' : Value) (ρ : Env) → ¬ (s ≡ s') → (s , v) ∈ ρ → (s , v) ∈ ((s' , v') List.ρ)
data _,_⇒ᵉ_ : Env → Expr → Value → Set where
⇒ᵉ- : ∀ (ρ : Env) (n : ) → ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
@ -33,7 +33,12 @@ data _,_⇒ᵉ_ : Env → Expr → Value → Set where
data _,_⇒ᵇ_ : Env → BasicStmt → Env → Set where
⇒ᵇ-noop : ∀ (ρ : Env) → ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : ∀ (ρ : Env) (x : String) (e : Expr) (v : Value) →
ρ , e ⇒ᵉ v → ρ , (x ← e) ⇒ᵇ ((x , v) ∷ ρ)
ρ , e ⇒ᵉ v → ρ , (x ← e) ⇒ᵇ ((x , v) List.∷ ρ)
data _,_⇒ᵇˢ_ : Env → List BasicStmt → Env → Set where
[] : ∀ {ρ : Env} → ρ , List.[] ⇒ᵇˢ ρ
_∷_ : ∀ {ρ₁ ρ₂ ρ₃ : Env} {bs : BasicStmt} {bss : List BasicStmt} →
ρ₁ , bs ⇒ᵇ ρ₂ → ρ₂ , bss ⇒ᵇˢ ρ₃ → ρ₁ , (bs List.∷ bss) ⇒ᵇˢ ρ₃
data _,_⇒ˢ_ : Env → Stmt → Env → Set where
⇒ˢ-⟨⟩ : ∀ (ρ₁ ρ₂ : Env) (bs : BasicStmt) →

24
Language/Traces.agda Normal file
View File

@ -0,0 +1,24 @@
module Language.Traces where
open import Language.Base public
open import Language.Semantics public
open import Language.Graphs public
open import Data.Product using (_,_)
open import Data.List.Membership.Propositional as MemProp using ()
module _ {g : Graph} where
open Graph g using (Index; edges)
data Trace : Index → Index → Env → Env → Set where
Trace-single : ∀ {ρ₁ ρ₂ : Env} {idx : Index} →
ρ₁ , (g [ idx ]) ⇒ᵇˢ ρ₂ → Trace idx idx ρ₁ ρ₂
Trace-edge : ∀ {ρ₁ ρ₂ ρ₃ : Env} {idx₁ idx₂ idx₃ : Index} →
ρ₁ , (g [ idx₁ ]) ⇒ᵇˢ ρ₂ → (idx₁ , idx₂) MemProp.∈ edges →
Trace idx₂ idx₃ ρ₂ ρ₃ → Trace idx₁ idx₃ ρ₁ ρ₃
_++⟨_⟩_ : ∀ {idx₁ idx₂ idx₃ idx₄ : Index} {ρ₁ ρ₂ ρ₃ : Env} →
Trace idx₁ idx₂ ρ₁ ρ₂ → (idx₂ , idx₃) MemProp.∈ edges →
Trace idx₃ idx₄ ρ₂ ρ₃ → Trace idx₁ idx₄ ρ₁ ρ₃
_++⟨_⟩_ (Trace-single ρ₁⇒ρ₂) idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₂→idx₃ tr
_++⟨_⟩_ (Trace-edge ρ₁⇒ρ₂ idx₁→idx' tr') idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₁→idx' (tr' ++⟨ idx₂→idx₃ ⟩ tr)

View File

@ -83,9 +83,15 @@ _map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
DependentPredicate : (S → Set s) → Set (lsuc s)
DependentPredicate T = ∀ (s₁ : S) → T s₁ → Set s
Both : {T₁ T₂ : S → Set s} → DependentPredicate T₁ → DependentPredicate T₂ →
DependentPredicate (T₁ ⊗ T₂)
Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
data Both {T₁ T₂ : S → Set s}
(P : DependentPredicate T₁)
(Q : DependentPredicate T₂) : DependentPredicate (T₁ ⊗ T₂) where
MkBoth : ∀ {s : S} {t₁ : T₁ s} {t₂ : T₂ s} → P s t₁ → Q s t₂ → Both P Q s (t₁ , t₂)
data And {T : S → Set s}
(P : DependentPredicate T)
(Q : DependentPredicate T) : DependentPredicate T where
MkAnd : ∀ {s : S} {t : T s} → P s t → Q s t → And P Q s t
-- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of
@ -97,20 +103,82 @@ record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : Dependent
field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
instance
BothMonotonic : ∀ {T₁ : S → Set s} {T₂ : S → Set s}
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
MonotonicPredicate (Both P Q)
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q) →
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
}
AndMonotonic : ∀ {T : S → Set s} {{ _ : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}} →
MonotonicPredicate (And P Q)
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q) →
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
}
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs.
always : ∀ {T : S → Set s} → DependentPredicate T → MonotonicState T → Set s
always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
data Always {T : S → Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
MkAlways : (∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t) → Always P m
⟨⊗⟩-reason : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
infixr 4 _⟨⊗⟩-reason_
_⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m₁ s
with q ← aQ s'
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
Always P m₁ → Always Q m₂ → Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
impl s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m₁ s
with q ← aQ s'
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _update-reason_
_update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} →
{P : DependentPredicate T} {Q : DependentPredicate T}
{{P-Mono : MonotonicPredicate P}}
{m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} →
Always P m → (∀ (s : S) (t : T s) →
let (s' , s≼s') = mod s t
in P s t → Q s' (Relaxable.relax r s≼s' t)) →
Always (And P Q) (m update mod)
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
impl s
with p ← aP s
with (s' , (t , s≼s')) ← m s
with q ← modQ s' t p
with (s'' , s'≼s'') ← mod s' t =
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _map-reason_
_map-reason_ : ∀ {T₁ T₂ : S → Set s}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{m : MonotonicState T₁}
{f : ∀ (s : S) → T₁ s → T₂ s} →
Always P m → (∀ (s : S) (t₁ : T₁ s) → P s t₁ → Q s (f s t₁)) →
Always Q (m map f)
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
MkAlways impl
where
impl : ∀ s₁ → let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
impl s
with p ← aP s
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ p