Compare commits
6 Commits
4da9b6d3cd
...
cf824dc744
Author | SHA1 | Date | |
---|---|---|---|
cf824dc744 | |||
70847d51db | |||
d96eb97b69 | |||
d90b544436 | |||
b0488c9cc6 | |||
8abf6f8670 |
@ -2,10 +2,10 @@ open import Language hiding (_[_])
|
||||
open import Lattice
|
||||
|
||||
module Analysis.Forward
|
||||
{L : Set} {h}
|
||||
(L : Set) {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||||
{{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
|
||||
{{≈ˡ-dec : IsDecidable _≈ˡ_}} where
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.String using (String)
|
||||
@ -20,8 +20,8 @@ open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||||
using () renaming (isLattice to isLatticeˡ)
|
||||
|
||||
module WithProg (prog : Program) where
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||||
open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable) -- to disambiguate instance resolution
|
||||
open import Analysis.Forward.Evaluation L prog
|
||||
open Program prog
|
||||
|
||||
private module WithStmtEvaluator {{evaluator : StmtEvaluator}} where
|
||||
@ -43,7 +43,7 @@ module WithProg (prog : Program) where
|
||||
(flip (eval s)) (eval-Monoʳ s)
|
||||
vs₁≼vs₂
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate {{isLatticeᵐ}} (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
using ()
|
||||
renaming
|
||||
( f' to updateAll
|
||||
@ -65,7 +65,7 @@ module WithProg (prog : Program) where
|
||||
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||||
|
||||
-- The fixed point of the 'analyze' function is our final goal.
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
open import Fixedpoint ≈ᵐ-Decidable isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||||
public
|
||||
|
@ -2,14 +2,14 @@ open import Language hiding (_[_])
|
||||
open import Lattice
|
||||
|
||||
module Analysis.Forward.Adapters
|
||||
{L : Set} {h}
|
||||
(L : Set) {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||||
{{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
|
||||
{{≈ˡ-dec : IsDecidable _≈ˡ_}}
|
||||
(prog : Program) where
|
||||
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||||
open import Analysis.Forward.Lattices L prog
|
||||
open import Analysis.Forward.Evaluation L prog
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
@ -41,7 +41,7 @@ module ExprToStmtAdapter {{ exprEvaluator : ExprEvaluator }} where
|
||||
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
|
||||
-- generalized update to set the single key's value.
|
||||
private module _ (k : String) (e : Expr) where
|
||||
open VariableValuesFiniteMap.GeneralizedUpdate isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → evalᵉ e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → evalᵉ-Monoʳ e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
|
||||
open VariableValuesFiniteMap.GeneralizedUpdate {{isLatticeᵛ}} (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → evalᵉ e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → evalᵉ-Monoʳ e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
|
||||
using ()
|
||||
renaming
|
||||
( f' to updateVariablesFromExpression
|
||||
|
@ -2,13 +2,13 @@ open import Language hiding (_[_])
|
||||
open import Lattice
|
||||
|
||||
module Analysis.Forward.Evaluation
|
||||
{L : Set} {h}
|
||||
(L : Set) {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||||
{{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
|
||||
{{≈ˡ-dec : IsDecidable _≈ˡ_}}
|
||||
(prog : Program) where
|
||||
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeˡ ≈ˡ-dec prog
|
||||
open import Analysis.Forward.Lattices L prog
|
||||
open import Data.Product using (_,_)
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||||
|
@ -2,20 +2,21 @@ open import Language hiding (_[_])
|
||||
open import Lattice
|
||||
|
||||
module Analysis.Forward.Lattices
|
||||
{L : Set} {h}
|
||||
(L : Set) {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||||
{{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
|
||||
{{≈ˡ-Decidable : IsDecidable _≈ˡ_}}
|
||||
(prog : Program) where
|
||||
|
||||
open import Data.String using () renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (proj₁; proj₂; _,_)
|
||||
open import Data.Unit using (tt)
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.List using (List; _∷_; []; foldr)
|
||||
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.Any as Any using ()
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Utils using (Pairwise; _⇒_; _∨_)
|
||||
open import Utils using (Pairwise; _⇒_; _∨_; it)
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||||
using ()
|
||||
@ -29,11 +30,15 @@ open Program prog
|
||||
import Lattice.FiniteMap
|
||||
import Chain
|
||||
|
||||
instance
|
||||
≡-Decidable-String = record { R-dec = _≟ˢ_ }
|
||||
≡-Decidable-State = record { R-dec = _≟_ }
|
||||
|
||||
-- The variable -> abstract value (e.g. sign) map is a finite value-map
|
||||
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
-- It's helpful to export these via 'public' since consumers tend to
|
||||
-- use various variable lattice operations.
|
||||
module VariableValuesFiniteMap = Lattice.FiniteMap.WithKeys _≟ˢ_ isLatticeˡ vars
|
||||
module VariableValuesFiniteMap = Lattice.FiniteMap.WithKeys String L tt vars
|
||||
open VariableValuesFiniteMap
|
||||
using ()
|
||||
renaming
|
||||
@ -42,7 +47,7 @@ open VariableValuesFiniteMap
|
||||
; _≈_ to _≈ᵛ_
|
||||
; _⊔_ to _⊔ᵛ_
|
||||
; _≼_ to _≼ᵛ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
|
||||
; ≈-Decidable to ≈ᵛ-Decidable
|
||||
; _∈_ to _∈ᵛ_
|
||||
; _∈k_ to _∈kᵛ_
|
||||
; _updating_via_ to _updatingᵛ_via_
|
||||
@ -60,27 +65,25 @@ open IsLattice isLatticeᵛ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism String L _
|
||||
using ()
|
||||
renaming
|
||||
( Provenance-union to Provenance-unionᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L _ vars-Unique
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||
; fixedHeight to fixedHeightᵛ
|
||||
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
|
||||
)
|
||||
public
|
||||
|
||||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||||
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||||
module StateVariablesFiniteMap = Lattice.FiniteMap.WithKeys _≟_ isLatticeᵛ states
|
||||
module StateVariablesFiniteMap = Lattice.FiniteMap.WithKeys State VariableValues tt states
|
||||
open StateVariablesFiniteMap
|
||||
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
|
||||
renaming
|
||||
@ -91,11 +94,11 @@ open StateVariablesFiniteMap
|
||||
; _∈k_ to _∈kᵐ_
|
||||
; locate to locateᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||||
; ≈-Decidable to ≈ᵐ-Decidable
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues _ states-Unique
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
@ -108,9 +111,6 @@ open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||||
)
|
||||
public
|
||||
|
||||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||||
|
||||
-- We now have our (state -> (variables -> value)) map.
|
||||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||||
-- since the State type is as specific as possible, it's always possible to
|
||||
@ -144,12 +144,12 @@ joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||||
|
||||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||||
foldr-Mono it it (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||||
|
||||
-- The name f' comes from the formulation of Exercise 4.26.
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate {{isLatticeᵐ}} (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||||
using ()
|
||||
renaming
|
||||
( f' to joinAll
|
||||
|
@ -7,11 +7,13 @@ open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
|
||||
open import Language
|
||||
open import Lattice
|
||||
open import Equivalence
|
||||
open import Showable using (Showable; show)
|
||||
open import Utils using (_⇒_; _∧_; _∨_)
|
||||
import Analysis.Forward
|
||||
@ -32,7 +34,7 @@ instance
|
||||
}
|
||||
|
||||
-- g for siGn; s is used for strings and i is not very descriptive.
|
||||
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
||||
_≟ᵍ_ : Decidable (_≡_ {_} {Sign})
|
||||
_≟ᵍ_ + + = yes refl
|
||||
_≟ᵍ_ + - = no (λ ())
|
||||
_≟ᵍ_ + 0ˢ = no (λ ())
|
||||
@ -43,12 +45,22 @@ _≟ᵍ_ 0ˢ + = no (λ ())
|
||||
_≟ᵍ_ 0ˢ - = no (λ ())
|
||||
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
||||
|
||||
instance
|
||||
≡-equiv : IsEquivalence Sign _≡_
|
||||
≡-equiv = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
}
|
||||
|
||||
≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
|
||||
≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
|
||||
|
||||
-- embelish 'sign' with a top and bottom element.
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
||||
open import Lattice.AboveBelow Sign _ as AB
|
||||
using ()
|
||||
renaming
|
||||
( AboveBelow to SignLattice
|
||||
; ≈-dec to ≈ᵍ-dec
|
||||
; ⊥ to ⊥ᵍ
|
||||
; ⊤ to ⊤ᵍ
|
||||
; [_] to [_]ᵍ
|
||||
@ -68,10 +80,7 @@ open AB.Plain 0ˢ using ()
|
||||
; _⊓_ to _⊓ᵍ_
|
||||
)
|
||||
|
||||
open IsLattice isLatticeᵍ using ()
|
||||
renaming
|
||||
( ≼-trans to ≼ᵍ-trans
|
||||
)
|
||||
open IsLattice isLatticeᵍ using () renaming (≼-trans to ≼ᵍ-trans)
|
||||
|
||||
plus : SignLattice → SignLattice → SignLattice
|
||||
plus ⊥ᵍ _ = ⊥ᵍ
|
||||
@ -171,9 +180,9 @@ instance
|
||||
module WithProg (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Adapters isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Lattices SignLattice prog
|
||||
open import Analysis.Forward.Evaluation SignLattice prog
|
||||
open import Analysis.Forward.Adapters SignLattice prog
|
||||
|
||||
eval : ∀ (e : Expr) → VariableValues → SignLattice
|
||||
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
|
||||
@ -229,7 +238,7 @@ module WithProg (prog : Program) where
|
||||
SignEval = record { eval = eval; eval-Monoʳ = eval-Monoʳ }
|
||||
|
||||
-- For debugging purposes, print out the result.
|
||||
output = show (Analysis.Forward.WithProg.result isFiniteHeightLatticeᵍ ≈ᵍ-dec prog)
|
||||
output = show (Analysis.Forward.WithProg.result SignLattice prog)
|
||||
|
||||
-- This should have fewer cases -- the same number as the actual 'plus' above.
|
||||
-- But agda only simplifies on first argument, apparently, so we are stuck
|
||||
|
@ -5,7 +5,7 @@ module Fixedpoint {a} {A : Set a}
|
||||
{h : ℕ}
|
||||
{_≈_ : A → A → Set a}
|
||||
{_⊔_ : A → A → A} {_⊓_ : A → A → A}
|
||||
(≈-dec : IsDecidable _≈_)
|
||||
(≈-Decidable : IsDecidable _≈_)
|
||||
(flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
|
||||
(f : A → A)
|
||||
(Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
|
||||
@ -17,6 +17,7 @@ open import Data.Empty using (⊥-elim)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
|
||||
open IsDecidable ≈-Decidable using () renaming (R-dec to ≈-dec)
|
||||
open IsFiniteHeightLattice flA
|
||||
|
||||
import Chain
|
||||
|
@ -63,27 +63,29 @@ module TransportFiniteHeight
|
||||
portChain₂ (done₂ a₂≈a₁) = done₁ (g-preserves-≈₂ a₂≈a₁)
|
||||
portChain₂ (step₂ {b₁} {b₂} (b₁≼b₂ , b₁̷≈b₂) b₂≈b₂' c) = step₁ (≈₁-trans (≈₁-sym (g-⊔-distr b₁ b₂)) (g-preserves-≈₂ b₁≼b₂) , g-preserves-̷≈ b₁̷≈b₂) (g-preserves-≈₂ b₂≈b₂') (portChain₂ c)
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||
isFiniteHeightLattice =
|
||||
let
|
||||
open Chain.Height (IsFiniteHeightLattice.fixedHeight fhlA)
|
||||
using ()
|
||||
renaming (⊥ to ⊥₁; ⊤ to ⊤₁; bounded to bounded₁; longestChain to c)
|
||||
in record
|
||||
{ isLattice = lB
|
||||
; fixedHeight = record
|
||||
{ ⊥ = f ⊥₁
|
||||
; ⊤ = f ⊤₁
|
||||
; longestChain = portChain₁ c
|
||||
; bounded = λ c' → bounded₁ (portChain₂ c')
|
||||
}
|
||||
open Chain.Height (IsFiniteHeightLattice.fixedHeight fhlA)
|
||||
using ()
|
||||
renaming (⊥ to ⊥₁; ⊤ to ⊤₁; bounded to bounded₁; longestChain to c)
|
||||
|
||||
instance
|
||||
fixedHeight = record
|
||||
{ ⊥ = f ⊥₁
|
||||
; ⊤ = f ⊤₁
|
||||
; longestChain = portChain₁ c
|
||||
; bounded = λ c' → bounded₁ (portChain₂ c')
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice B
|
||||
finiteHeightLattice = record
|
||||
{ height = height
|
||||
; _≈_ = _≈₂_
|
||||
; _⊔_ = _⊔₂_
|
||||
; _⊓_ = _⊓₂_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = lB
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice B
|
||||
finiteHeightLattice = record
|
||||
{ height = height
|
||||
; _≈_ = _≈₂_
|
||||
; _⊔_ = _⊔₂_
|
||||
; _⊓_ = _⊓₂_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
@ -16,12 +16,13 @@ open import Data.Nat using (ℕ; suc)
|
||||
open import Data.Product using (_,_; Σ; proj₁; proj₂)
|
||||
open import Data.Product.Properties as ProdProp using ()
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs)
|
||||
open import Lattice.MapSet _≟ˢ_ using ()
|
||||
open import Lattice.MapSet String {{record { R-dec = _≟ˢ_ }}} _ using ()
|
||||
renaming
|
||||
( MapSet to StringSet
|
||||
; to-List to to-Listˢ
|
||||
@ -73,10 +74,10 @@ record Program : Set where
|
||||
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ListMem.∈ vars
|
||||
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
|
||||
|
||||
_≟_ : IsDecidable (_≡_ {_} {State})
|
||||
_≟_ : Decidable (_≡_ {_} {State})
|
||||
_≟_ = FinProp._≟_
|
||||
|
||||
_≟ᵉ_ : IsDecidable (_≡_ {_} {Graph.Edge graph})
|
||||
_≟ᵉ_ : Decidable (_≡_ {_} {Graph.Edge graph})
|
||||
_≟ᵉ_ = ProdProp.≡-dec _≟_ _≟_
|
||||
|
||||
open import Data.List.Membership.DecPropositional _≟ᵉ_ using (_∈?_)
|
||||
|
@ -39,7 +39,7 @@ data _∈ᵇ_ : String → BasicStmt → Set where
|
||||
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵇ (k ← e)
|
||||
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵇ (k' ← e)
|
||||
|
||||
open import Lattice.MapSet (String._≟_)
|
||||
open import Lattice.MapSet String {{record { R-dec = String._≟_ }}} _
|
||||
renaming
|
||||
( MapSet to StringSet
|
||||
; insert to insertˢ
|
||||
|
19
Lattice.agda
19
Lattice.agda
@ -11,8 +11,9 @@ open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Function.Definitions using (Injective)
|
||||
|
||||
IsDecidable : ∀ {a} {A : Set a} (R : A → A → Set a) → Set a
|
||||
IsDecidable {a} {A} R = ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||
record IsDecidable {a} {A : Set a} (R : A → A → Set a) : Set a where
|
||||
field
|
||||
R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||
|
||||
module _ {a b} {A : Set a} {B : Set b}
|
||||
(_≼₁_ : A → A → Set a) (_≼₂_ : B → B → Set b) where
|
||||
@ -186,8 +187,8 @@ record IsLattice {a} (A : Set a)
|
||||
(_⊓_ : A → A → A) : Set a where
|
||||
|
||||
field
|
||||
joinSemilattice : IsSemilattice A _≈_ _⊔_
|
||||
meetSemilattice : IsSemilattice A _≈_ _⊓_
|
||||
{{joinSemilattice}} : IsSemilattice A _≈_ _⊔_
|
||||
{{meetSemilattice}} : IsSemilattice A _≈_ _⊓_
|
||||
|
||||
absorb-⊔-⊓ : (x y : A) → (x ⊔ (x ⊓ y)) ≈ x
|
||||
absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x
|
||||
@ -216,12 +217,12 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||
(_⊓_ : A → A → A) : Set (lsuc a) where
|
||||
|
||||
field
|
||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||
{{isLattice}} : IsLattice A _≈_ _⊔_ _⊓_
|
||||
|
||||
open IsLattice isLattice public
|
||||
|
||||
field
|
||||
fixedHeight : FixedHeight h
|
||||
{{fixedHeight}} : FixedHeight h
|
||||
|
||||
module ChainMapping {a b} {A : Set a} {B : Set b}
|
||||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||||
@ -251,7 +252,7 @@ record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||||
_≈_ : A → A → Set a
|
||||
_⊔_ : A → A → A
|
||||
|
||||
isSemilattice : IsSemilattice A _≈_ _⊔_
|
||||
{{isSemilattice}} : IsSemilattice A _≈_ _⊔_
|
||||
|
||||
open IsSemilattice isSemilattice public
|
||||
|
||||
@ -262,7 +263,7 @@ record Lattice {a} (A : Set a) : Set (lsuc a) where
|
||||
_⊔_ : A → A → A
|
||||
_⊓_ : A → A → A
|
||||
|
||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||
{{isLattice}} : IsLattice A _≈_ _⊔_ _⊓_
|
||||
|
||||
open IsLattice isLattice public
|
||||
|
||||
@ -273,6 +274,6 @@ record FiniteHeightLattice {a} (A : Set a) : Set (lsuc a) where
|
||||
_⊔_ : A → A → A
|
||||
_⊓_ : A → A → A
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
||||
{{isFiniteHeightLattice}} : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLattice public
|
||||
|
@ -1,17 +1,19 @@
|
||||
open import Lattice
|
||||
open import Equivalence
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
open import Data.Unit using () renaming (⊤ to ⊤ᵘ)
|
||||
|
||||
module Lattice.AboveBelow {a} (A : Set a)
|
||||
(_≈₁_ : A → A → Set a)
|
||||
(≈₁-equiv : IsEquivalence A _≈₁_)
|
||||
(≈₁-dec : IsDecidable _≈₁_) where
|
||||
{_≈₁_ : A → A → Set a}
|
||||
{{≈₁-equiv : IsEquivalence A _≈₁_}}
|
||||
{{≈₁-Decidable : IsDecidable _≈₁_}} (dummy : ⊤ᵘ) where
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.Product using (_,_)
|
||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||
open import Function using (_∘_)
|
||||
open import Showable using (Showable; show)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Binary.PropositionalEquality as Eq
|
||||
using (_≡_; sym; subst; refl)
|
||||
|
||||
@ -20,6 +22,8 @@ import Chain
|
||||
open IsEquivalence ≈₁-equiv using ()
|
||||
renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||
|
||||
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
|
||||
|
||||
data AboveBelow : Set a where
|
||||
⊥ : AboveBelow
|
||||
⊤ : AboveBelow
|
||||
@ -62,7 +66,7 @@ data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||
; ≈-trans = ≈-trans
|
||||
}
|
||||
|
||||
≈-dec : IsDecidable _≈_
|
||||
≈-dec : Decidable _≈_
|
||||
≈-dec ⊥ ⊥ = yes ≈-⊥-⊥
|
||||
≈-dec ⊤ ⊤ = yes ≈-⊤-⊤
|
||||
≈-dec [ x ] [ y ]
|
||||
@ -76,6 +80,10 @@ data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||
≈-dec [ x ] ⊥ = no λ ()
|
||||
≈-dec [ x ] ⊤ = no λ ()
|
||||
|
||||
instance
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
≈-Decidable = record { R-dec = ≈-dec }
|
||||
|
||||
-- Any object can be wrapped in an 'above below' to make it a lattice,
|
||||
-- since ⊤ and ⊥ are the largest and least elements, and the rest are left
|
||||
-- unordered. That's what this module does.
|
||||
@ -169,14 +177,15 @@ module Plain (x : A) where
|
||||
⊔-idemp ⊥ = ≈-⊥-⊥
|
||||
⊔-idemp [ x ] rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-refl {x}) = ≈-refl
|
||||
|
||||
isJoinSemilattice : IsSemilattice AboveBelow _≈_ _⊔_
|
||||
isJoinSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idemp
|
||||
}
|
||||
instance
|
||||
isJoinSemilattice : IsSemilattice AboveBelow _≈_ _⊔_
|
||||
isJoinSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idemp
|
||||
}
|
||||
|
||||
_⊓_ : AboveBelow → AboveBelow → AboveBelow
|
||||
⊥ ⊓ x = ⊥
|
||||
@ -262,14 +271,15 @@ module Plain (x : A) where
|
||||
⊓-idemp ⊤ = ≈-⊤-⊤
|
||||
⊓-idemp [ x ] rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-refl {x}) = ≈-refl
|
||||
|
||||
isMeetSemilattice : IsSemilattice AboveBelow _≈_ _⊓_
|
||||
isMeetSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idemp
|
||||
}
|
||||
instance
|
||||
isMeetSemilattice : IsSemilattice AboveBelow _≈_ _⊓_
|
||||
isMeetSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idemp
|
||||
}
|
||||
|
||||
absorb-⊔-⊓ : ∀ (ab₁ ab₂ : AboveBelow) → (ab₁ ⊔ (ab₁ ⊓ ab₂)) ≈ ab₁
|
||||
absorb-⊔-⊓ ⊥ ab₂ rewrite ⊥⊓x≡⊥ ab₂ = ≈-⊥-⊥
|
||||
@ -294,21 +304,22 @@ module Plain (x : A) where
|
||||
... | no x̷≈y rewrite x̷≈y⇒[x]⊔[y]≡⊤ x̷≈y rewrite x⊓⊤≡x [ x ] = ≈-refl
|
||||
|
||||
|
||||
isLattice : IsLattice AboveBelow _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
instance
|
||||
isLattice : IsLattice AboveBelow _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
|
||||
lattice : Lattice AboveBelow
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
lattice : Lattice AboveBelow
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_; _≺_; ⊔-Monotonicˡ; ⊔-Monotonicʳ) public
|
||||
|
||||
@ -354,25 +365,26 @@ module Plain (x : A) where
|
||||
isLongest {⊥} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _)))
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 2
|
||||
fixedHeight = record
|
||||
{ ⊥ = ⊥
|
||||
; ⊤ = ⊤
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
instance
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 2
|
||||
fixedHeight = record
|
||||
{ ⊥ = ⊥
|
||||
; ⊤ = ⊤
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice AboveBelow
|
||||
finiteHeightLattice = record
|
||||
{ height = 2
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
finiteHeightLattice : FiniteHeightLattice AboveBelow
|
||||
finiteHeightLattice = record
|
||||
{ height = 2
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
@ -3,15 +3,16 @@ open import Relation.Binary.PropositionalEquality as Eq
|
||||
using (_≡_;refl; sym; trans; cong; subst)
|
||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.List using (List; _∷_; [])
|
||||
open import Data.Unit using (⊤)
|
||||
|
||||
module Lattice.FiniteMap {A : Set} {B : Set}
|
||||
module Lattice.FiniteMap (A : Set) (B : Set)
|
||||
{_≈₂_ : B → B → Set}
|
||||
{_⊔₂_ : B → B → B} {_⊓₂_ : B → B → B}
|
||||
(≡-dec-A : IsDecidable (_≡_ {_} {A}))
|
||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
{{≡-Decidable-A : IsDecidable {_} {A} _≡_}}
|
||||
{{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} (dummy : ⊤) where
|
||||
|
||||
open IsLattice lB using () renaming (_≼_ to _≼₂_)
|
||||
open import Lattice.Map ≡-dec-A lB as Map
|
||||
open import Lattice.Map A B dummy as Map
|
||||
using
|
||||
( Map
|
||||
; ⊔-equal-keys
|
||||
@ -39,7 +40,7 @@ open import Lattice.Map ≡-dec-A lB as Map
|
||||
; ⊓-idemp to ⊓ᵐ-idemp
|
||||
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
||||
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
||||
; ≈-dec to ≈ᵐ-dec
|
||||
; ≈-Decidable to ≈ᵐ-Decidable
|
||||
; _[_] to _[_]ᵐ
|
||||
; []-∈ to []ᵐ-∈
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
@ -67,7 +68,6 @@ open import Data.Nat using (ℕ)
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁; proj₂)
|
||||
open import Equivalence
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Utils using (Pairwise; _∷_; []; Unique; push; empty; All¬-¬Any)
|
||||
open import Showable using (Showable; show)
|
||||
@ -86,8 +86,12 @@ module WithKeys (ks : List A) where
|
||||
_≈_ : FiniteMap → FiniteMap → Set
|
||||
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
||||
|
||||
≈₂-dec⇒≈-dec : IsDecidable _≈₂_ → IsDecidable _≈_
|
||||
≈₂-dec⇒≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂)
|
||||
instance
|
||||
≈-Decidable : {{ IsDecidable _≈₂_ }} → IsDecidable _≈_
|
||||
≈-Decidable {{≈₂-Decidable}} = record
|
||||
{ R-dec = λ fm₁ fm₂ → IsDecidable.R-dec (≈ᵐ-Decidable {{≈₂-Decidable}})
|
||||
(proj₁ fm₁) (proj₁ fm₂)
|
||||
}
|
||||
|
||||
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
||||
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
|
||||
@ -140,46 +144,47 @@ module WithKeys (ks : List A) where
|
||||
IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
|
||||
}
|
||||
|
||||
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
||||
isUnionSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong =
|
||||
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
||||
≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊔ᵐ-assoc m₁ m₂ m₃
|
||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊔ᵐ-comm m₁ m₂
|
||||
; ⊔-idemp = λ (m , _) → ⊔ᵐ-idemp m
|
||||
}
|
||||
instance
|
||||
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
||||
isUnionSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong =
|
||||
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
||||
≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊔ᵐ-assoc m₁ m₂ m₃
|
||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊔ᵐ-comm m₁ m₂
|
||||
; ⊔-idemp = λ (m , _) → ⊔ᵐ-idemp m
|
||||
}
|
||||
|
||||
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
|
||||
isIntersectSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong =
|
||||
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
||||
≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊓ᵐ-assoc m₁ m₂ m₃
|
||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊓ᵐ-comm m₁ m₂
|
||||
; ⊔-idemp = λ (m , _) → ⊓ᵐ-idemp m
|
||||
}
|
||||
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
|
||||
isIntersectSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong =
|
||||
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
||||
≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊓ᵐ-assoc m₁ m₂ m₃
|
||||
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊓ᵐ-comm m₁ m₂
|
||||
; ⊔-idemp = λ (m , _) → ⊓ᵐ-idemp m
|
||||
}
|
||||
|
||||
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isUnionSemilattice
|
||||
; meetSemilattice = isIntersectSemilattice
|
||||
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) → absorb-⊔ᵐ-⊓ᵐ m₁ m₂
|
||||
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) → absorb-⊓ᵐ-⊔ᵐ m₁ m₂
|
||||
}
|
||||
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isUnionSemilattice
|
||||
; meetSemilattice = isIntersectSemilattice
|
||||
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) → absorb-⊔ᵐ-⊓ᵐ m₁ m₂
|
||||
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) → absorb-⊓ᵐ-⊔ᵐ m₁ m₂
|
||||
}
|
||||
|
||||
lattice : Lattice FiniteMap
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_; ⊔-Monotonicˡ; ⊔-Monotonicʳ) public
|
||||
|
||||
lattice : Lattice FiniteMap
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] : ∀ (fm₁ fm₂ : FiniteMap) {k : A} {v₁ v₂ : B} →
|
||||
fm₁ ≼ fm₂ → (k , v₁) ∈ fm₁ → (k , v₂) ∈ fm₂ → v₁ ≼₂ v₂
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] (m₁ , _) (m₂ , _) m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
|
||||
@ -192,7 +197,7 @@ module WithKeys (ks : List A) where
|
||||
module GeneralizedUpdate
|
||||
{l} {L : Set l}
|
||||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
{{lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
|
||||
(f : L → FiniteMap) (f-Monotonic : Monotonic (IsLattice._≼_ lL) _≼_ f)
|
||||
(g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic (IsLattice._≼_ lL) _≼₂_ (g k))
|
||||
(ks : List A) where
|
||||
@ -206,7 +211,7 @@ module WithKeys (ks : List A) where
|
||||
f' l = (f l) updating ks via (updater l)
|
||||
|
||||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
|
||||
f'-∈k-forward : ∀ {k l} → k ∈k (f l) → k ∈k (f' l)
|
||||
f'-∈k-forward {k} {l} = updatingᵐ-via-∈k-forward (proj₁ (f l)) ks (updater l)
|
||||
@ -251,18 +256,18 @@ module WithKeys (ks : List A) where
|
||||
open WithKeys public
|
||||
|
||||
module IterProdIsomorphism where
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.Unit using (tt)
|
||||
open import Lattice.Unit using ()
|
||||
renaming
|
||||
( _≈_ to _≈ᵘ_
|
||||
; _⊔_ to _⊔ᵘ_
|
||||
; _⊓_ to _⊓ᵘ_
|
||||
; ≈-dec to ≈ᵘ-dec
|
||||
; ≈-Decidable to ≈ᵘ-Decidable
|
||||
; isLattice to isLatticeᵘ
|
||||
; ≈-equiv to ≈ᵘ-equiv
|
||||
; fixedHeight to fixedHeightᵘ
|
||||
)
|
||||
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ
|
||||
open import Lattice.IterProd B ⊤ dummy
|
||||
as IP
|
||||
using (IterProd)
|
||||
open IsLattice lB using ()
|
||||
@ -297,11 +302,11 @@ module IterProdIsomorphism where
|
||||
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
|
||||
|
||||
_≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set
|
||||
_≈ⁱᵖ_ {n} = IP._≈_ n
|
||||
_≈ⁱᵖ_ {n} = IP._≈_ {n}
|
||||
|
||||
_⊔ⁱᵖ_ : ∀ {ks : List A} →
|
||||
IterProd (length ks) → IterProd (length ks) → IterProd (length ks)
|
||||
_⊔ⁱᵖ_ {ks} = IP._⊔_ (length ks)
|
||||
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
|
||||
|
||||
_∈ᵐ_ : ∀ {ks : List A} → A × B → FiniteMap ks → Set
|
||||
_∈ᵐ_ {ks} = _∈_ ks
|
||||
@ -318,7 +323,7 @@ module IterProdIsomorphism where
|
||||
from-to-inverseˡ : ∀ {ks : List A} (uks : Unique ks) →
|
||||
IsInverseˡ (_≈_ ks) (_≈ⁱᵖ_ {length ks})
|
||||
(from {ks}) (to {ks} uks)
|
||||
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0)
|
||||
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv {0})
|
||||
from-to-inverseˡ {k ∷ ks'} (push k≢ks' uks') (v , rest)
|
||||
with ((fm' , ufm') , refl) ← to uks' rest in p rewrite sym p =
|
||||
(IsLattice.≈-refl lB , from-to-inverseˡ {ks'} uks' rest)
|
||||
@ -520,7 +525,7 @@ module IterProdIsomorphism where
|
||||
|
||||
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
|
||||
fm₂⊆fm₁ = inductive-step (≈₂-sym v₁≈v₂)
|
||||
(IP.≈-sym (length ks') rest₁≈rest₂)
|
||||
(IP.≈-sym {length ks'} rest₁≈rest₂)
|
||||
|
||||
from-⊔-distr : ∀ {ks : List A} → (fm₁ fm₂ : FiniteMap ks) →
|
||||
_≈ⁱᵖ_ {length ks} (from (_⊔_ _ fm₁ fm₂))
|
||||
@ -543,7 +548,7 @@ module IterProdIsomorphism where
|
||||
rewrite from-rest (_⊔_ _ fm₁ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
|
||||
= ( IsLattice.≈-refl lB
|
||||
, IsEquivalence.≈-trans
|
||||
(IP.≈-equiv (length ks))
|
||||
(IP.≈-equiv {length ks})
|
||||
(from-preserves-≈ {_} {pop (_⊔_ _ fm₁ fm₂)}
|
||||
{_⊔_ _ (pop fm₁) (pop fm₂)}
|
||||
(pop-⊔-distr fm₁ fm₂))
|
||||
@ -608,15 +613,15 @@ module IterProdIsomorphism where
|
||||
in
|
||||
(v' , (v₁⊔v₂≈v' , there v'∈fm'))
|
||||
|
||||
module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) (h₂ : ℕ) (fhB : FixedHeight₂ h₂) where
|
||||
module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) {{≈₂-Decidable : IsDecidable _≈₂_}} {h₂ : ℕ} {{fhB : FixedHeight₂ h₂}} where
|
||||
import Isomorphism
|
||||
open Isomorphism.TransportFiniteHeight
|
||||
(IP.isFiniteHeightLattice (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) (isLattice ks)
|
||||
(IP.isFiniteHeightLattice {k = length ks} {{fhB = fixedHeightᵘ}}) (isLattice ks)
|
||||
{f = to uks} {g = from {ks}}
|
||||
(to-preserves-≈ uks) (from-preserves-≈ {ks})
|
||||
(to-⊔-distr uks) (from-⊔-distr {ks})
|
||||
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
|
||||
using (isFiniteHeightLattice; finiteHeightLattice) public
|
||||
using (isFiniteHeightLattice; finiteHeightLattice; fixedHeight) public
|
||||
|
||||
-- Helpful lemma: all entries of the 'bottom' map are assigned to bottom.
|
||||
|
||||
@ -624,5 +629,5 @@ module IterProdIsomorphism where
|
||||
|
||||
⊥-contains-bottoms : ∀ {k : A} {v : B} → (k , v) ∈ᵐ ⊥ → v ≡ (Height.⊥ fhB)
|
||||
⊥-contains-bottoms {k} {v} k,v∈⊥
|
||||
rewrite IP.⊥-built (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ =
|
||||
rewrite IP.⊥-built {length ks} {{fhB = fixedHeightᵘ}} =
|
||||
to-build uks k v k,v∈⊥
|
||||
|
@ -1,14 +1,15 @@
|
||||
open import Lattice
|
||||
open import Data.Unit using (⊤)
|
||||
|
||||
-- Due to universe levels, it becomes relatively annoying to handle the case
|
||||
-- where the levels of A and B are not the same. For the time being, constrain
|
||||
-- them to be the same.
|
||||
|
||||
module Lattice.IterProd {a} {A B : Set a}
|
||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
module Lattice.IterProd {a} (A B : Set a)
|
||||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set a}
|
||||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||||
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} (dummy : ⊤) where
|
||||
|
||||
open import Agda.Primitive using (lsuc)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||||
@ -39,11 +40,11 @@ build a b (suc s) = (a , build a b s)
|
||||
private
|
||||
record RequiredForFixedHeight : Set (lsuc a) where
|
||||
field
|
||||
≈₁-dec : IsDecidable _≈₁_
|
||||
≈₂-dec : IsDecidable _≈₂_
|
||||
{{≈₁-Decidable}} : IsDecidable _≈₁_
|
||||
{{≈₂-Decidable}} : IsDecidable _≈₂_
|
||||
h₁ h₂ : ℕ
|
||||
fhA : FixedHeight₁ h₁
|
||||
fhB : FixedHeight₂ h₂
|
||||
{{fhA}} : FixedHeight₁ h₁
|
||||
{{fhB}} : FixedHeight₂ h₂
|
||||
|
||||
⊥₁ : A
|
||||
⊥₁ = Height.⊥ fhA
|
||||
@ -58,7 +59,7 @@ private
|
||||
field
|
||||
height : ℕ
|
||||
fixedHeight : IsLattice.FixedHeight isLattice height
|
||||
≈-dec : IsDecidable _≈_
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
|
||||
⊥-correct : Height.⊥ fixedHeight ≡ ⊥
|
||||
|
||||
@ -84,7 +85,7 @@ private
|
||||
; isFiniteHeightIfSupported = λ req → record
|
||||
{ height = RequiredForFixedHeight.h₂ req
|
||||
; fixedHeight = RequiredForFixedHeight.fhB req
|
||||
; ≈-dec = RequiredForFixedHeight.≈₂-dec req
|
||||
; ≈-Decidable = RequiredForFixedHeight.≈₂-Decidable req
|
||||
; ⊥-correct = refl
|
||||
}
|
||||
}
|
||||
@ -101,10 +102,9 @@ private
|
||||
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
|
||||
; fixedHeight =
|
||||
P.fixedHeight
|
||||
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
|
||||
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
|
||||
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
|
||||
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
|
||||
{{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||||
{{fhB = IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest}}
|
||||
; ≈-Decidable = P.≈-Decidable {{≈₂-Decidable = IsFiniteHeightWithBotAndDecEq.≈-Decidable fhlRest}}
|
||||
; ⊥-correct =
|
||||
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
|
||||
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
|
||||
@ -112,56 +112,57 @@ private
|
||||
}
|
||||
where
|
||||
everythingRest = everything k'
|
||||
import Lattice.Prod A (IterProd k') {{lB = Everything.isLattice everythingRest}} as P
|
||||
|
||||
import Lattice.Prod
|
||||
_≈₁_ (Everything._≈_ everythingRest)
|
||||
_⊔₁_ (Everything._⊔_ everythingRest)
|
||||
_⊓₁_ (Everything._⊓_ everythingRest)
|
||||
lA (Everything.isLattice everythingRest) as P
|
||||
module _ {k : ℕ} where
|
||||
open Everything (everything k) using (_≈_; _⊔_; _⊓_) public
|
||||
open Lattice.IsLattice (Everything.isLattice (everything k)) public
|
||||
|
||||
module _ (k : ℕ) where
|
||||
open Everything (everything k) using (_≈_; _⊔_; _⊓_; isLattice) public
|
||||
open Lattice.IsLattice isLattice public
|
||||
instance
|
||||
isLattice = Everything.isLattice (everything k)
|
||||
|
||||
lattice : Lattice (IterProd k)
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
(h₁ h₂ : ℕ)
|
||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
||||
|
||||
private
|
||||
required : RequiredForFixedHeight
|
||||
required = record
|
||||
{ ≈₁-dec = ≈₁-dec
|
||||
; ≈₂-dec = ≈₂-dec
|
||||
; h₁ = h₁
|
||||
; h₂ = h₂
|
||||
; fhA = fhA
|
||||
; fhB = fhB
|
||||
}
|
||||
|
||||
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice (IterProd k)
|
||||
finiteHeightLattice = record
|
||||
{ height = IsFiniteHeightWithBotAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
; _≈_ = _≈_
|
||||
lattice : Lattice (IterProd k)
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
⊥-built : Height.⊥ fixedHeight ≡ (build (Height.⊥ fhA) (Height.⊥ fhB) k)
|
||||
⊥-built = IsFiniteHeightWithBotAndDecEq.⊥-correct (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}}
|
||||
{h₁ h₂ : ℕ}
|
||||
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
|
||||
|
||||
private
|
||||
isFiniteHeightWithBotAndDecEq =
|
||||
Everything.isFiniteHeightIfSupported (everything k)
|
||||
record
|
||||
{ ≈₁-Decidable = ≈₁-Decidable
|
||||
; ≈₂-Decidable = ≈₂-Decidable
|
||||
; h₁ = h₁
|
||||
; h₂ = h₂
|
||||
; fhA = fhA
|
||||
; fhB = fhB
|
||||
}
|
||||
open IsFiniteHeightWithBotAndDecEq isFiniteHeightWithBotAndDecEq using (height; ⊥-correct)
|
||||
|
||||
instance
|
||||
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight isFiniteHeightWithBotAndDecEq
|
||||
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice (IterProd k)
|
||||
finiteHeightLattice = record
|
||||
{ height = height
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
||||
⊥-built : Height.⊥ fixedHeight ≡ (build (Height.⊥ fhA) (Height.⊥ fhB) k)
|
||||
⊥-built = ⊥-correct
|
||||
|
||||
|
@ -1,13 +1,14 @@
|
||||
open import Lattice
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Unit using (⊤)
|
||||
|
||||
module Lattice.Map {a b : Level} {A : Set a} {B : Set b}
|
||||
module Lattice.Map {a b : Level} (A : Set a) (B : Set b)
|
||||
{_≈₂_ : B → B → Set b}
|
||||
{_⊔₂_ : B → B → B} {_⊓₂_ : B → B → B}
|
||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
{{≡-Decidable-A : IsDecidable {a} {A} _≡_}}
|
||||
{{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}}
|
||||
(dummy : ⊤) where
|
||||
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
|
||||
@ -23,6 +24,8 @@ open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||||
open import Data.String using () renaming (_++_ to _++ˢ_)
|
||||
open import Showable using (Showable; show)
|
||||
|
||||
open IsDecidable ≡-Decidable-A using () renaming (R-dec to _≟ᴬ_)
|
||||
|
||||
open IsLattice lB using () renaming
|
||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||
; ≈-⊔-cong to ≈₂-⊔₂-cong; ≈-⊓-cong to ≈₂-⊓₂-cong
|
||||
@ -41,7 +44,7 @@ private module ImplKeys where
|
||||
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ˡ (ImplKeys.keys l))
|
||||
∈k-dec k [] = no (λ ())
|
||||
∈k-dec k ((k' , v) ∷ xs)
|
||||
with (≡-dec-A k k')
|
||||
with (k ≟ᴬ k')
|
||||
... | yes k≡k' = yes (here k≡k')
|
||||
... | no k≢k' with (∈k-dec k xs)
|
||||
... | yes k∈kxs = yes (there k∈kxs)
|
||||
@ -76,7 +79,7 @@ private module _ where
|
||||
k∈-dec : ∀ (k : A) (l : List A) → Dec (k ∈ l)
|
||||
k∈-dec k [] = no (λ ())
|
||||
k∈-dec k (x ∷ xs)
|
||||
with (≡-dec-A k x)
|
||||
with (k ≟ᴬ x)
|
||||
... | yes refl = yes (here refl)
|
||||
... | no k≢x with (k∈-dec k xs)
|
||||
... | yes k∈xs = yes (there k∈xs)
|
||||
@ -113,7 +116,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
|
||||
insert : A → B → List (A × B) → List (A × B)
|
||||
insert k v [] = (k , v) ∷ []
|
||||
insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
insert k v (x@(k' , v') ∷ xs) with k ≟ᴬ k'
|
||||
... | yes _ = (k' , f v v') ∷ xs
|
||||
... | no _ = x ∷ insert k v xs
|
||||
|
||||
@ -123,11 +126,11 @@ private module ImplInsert (f : B → B → B) where
|
||||
insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||
k ∈k l → keys l ≡ keys (insert k v l)
|
||||
insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k')
|
||||
with (≡-dec-A k k')
|
||||
with (k ≟ᴬ k')
|
||||
... | yes _ = refl
|
||||
... | no k≢k' = ⊥-elim (k≢k' k≡k')
|
||||
insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs)
|
||||
with (≡-dec-A k k')
|
||||
with (k ≟ᴬ k')
|
||||
... | yes _ = refl
|
||||
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs)
|
||||
|
||||
@ -135,7 +138,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l)
|
||||
insert-keys-∉ {k} {v} {[]} _ = refl
|
||||
insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl
|
||||
with (≡-dec-A k k')
|
||||
with (k ≟ᴬ k')
|
||||
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
||||
... | no _ = cong (λ xs' → k' ∷ xs')
|
||||
(insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs)))
|
||||
@ -171,7 +174,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
¬ k ∈k l → (k , v) ∈ insert k v l
|
||||
insert-fresh {l = []} k∉kl = here refl
|
||||
insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl
|
||||
with ≡-dec-A k k'
|
||||
with k ≟ᴬ k'
|
||||
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
||||
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
||||
|
||||
@ -180,9 +183,9 @@ private module ImplInsert (f : B → B → B) where
|
||||
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
||||
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
|
||||
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
||||
with ≡-dec-A k k''
|
||||
with k ≟ᴬ k''
|
||||
... | yes k≡k'' = k∉kl (here k≡k'')
|
||||
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
||||
... | no k≢k'' with k' ≟ᴬ k'' | k∈kil
|
||||
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
||||
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
||||
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
||||
@ -193,18 +196,18 @@ private module ImplInsert (f : B → B → B) where
|
||||
¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂
|
||||
union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂
|
||||
union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
||||
with ≡-dec-A k k'
|
||||
with k ≟ᴬ k'
|
||||
... | yes k≡k' = ⊥-elim (k∉kl₁ (here k≡k'))
|
||||
... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
||||
|
||||
insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
||||
k ∈k l → k ∈k insert k' v' l
|
||||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'')
|
||||
with (≡-dec-A k' k'')
|
||||
with k' ≟ᴬ k''
|
||||
... | yes _ = here k≡k''
|
||||
... | no _ = here k≡k''
|
||||
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs)
|
||||
with (≡-dec-A k' k'')
|
||||
with k' ≟ᴬ k''
|
||||
... | yes _ = there k∈kxs
|
||||
... | no _ = there (insert-preserves-∈k k∈kxs)
|
||||
|
||||
@ -236,11 +239,11 @@ private module ImplInsert (f : B → B → B) where
|
||||
insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
||||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l
|
||||
insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x)
|
||||
rewrite sym k,v=x with ≡-dec-A k' k
|
||||
rewrite sym k,v=x with k' ≟ᴬ k
|
||||
... | yes k'≡k = ⊥-elim (k≢k' (sym k'≡k))
|
||||
... | no _ = here refl
|
||||
insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs)
|
||||
with ≡-dec-A k' k''
|
||||
with k' ≟ᴬ k''
|
||||
... | yes _ = there k,v∈xs
|
||||
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
|
||||
|
||||
@ -259,7 +262,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂
|
||||
|
||||
k≢k' : ¬ k ≡ k'
|
||||
k≢k' with ≡-dec-A k k'
|
||||
k≢k' with k ≟ᴬ k'
|
||||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
||||
... | no k≢k' = k≢k'
|
||||
union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
||||
@ -270,11 +273,11 @@ private module ImplInsert (f : B → B → B) where
|
||||
Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l)
|
||||
insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'')
|
||||
rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v''
|
||||
with ≡-dec-A k' k'
|
||||
with k' ≟ᴬ k'
|
||||
... | yes _ = here refl
|
||||
... | no k≢k' = ⊥-elim (k≢k' refl)
|
||||
insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs)
|
||||
with ≡-dec-A k k'
|
||||
with k ≟ᴬ k'
|
||||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
||||
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
||||
|
||||
@ -288,13 +291,13 @@ private module ImplInsert (f : B → B → B) where
|
||||
insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
||||
where
|
||||
k≢k' : ¬ k ≡ k'
|
||||
k≢k' with ≡-dec-A k k'
|
||||
k≢k' with k ≟ᴬ k'
|
||||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
||||
... | no k≢k' = k≢k'
|
||||
|
||||
update : A → B → List (A × B) → List (A × B)
|
||||
update k v [] = []
|
||||
update k v ((k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
update k v ((k' , v') ∷ xs) with k ≟ᴬ k'
|
||||
... | yes _ = (k' , f v v') ∷ xs
|
||||
... | no _ = (k' , v') ∷ update k v xs
|
||||
|
||||
@ -314,7 +317,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
keys l ≡ keys (update k v l)
|
||||
update-keys {l = []} = refl
|
||||
update-keys {k} {v} {l = (k' , v') ∷ xs}
|
||||
with ≡-dec-A k k'
|
||||
with k ≟ᴬ k'
|
||||
... | yes _ = refl
|
||||
... | no _ rewrite update-keys {k} {v} {xs} = refl
|
||||
|
||||
@ -431,11 +434,11 @@ private module ImplInsert (f : B → B → B) where
|
||||
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l
|
||||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'')
|
||||
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
|
||||
with ≡-dec-A k' k''
|
||||
with k' ≟ᴬ k''
|
||||
... | yes k'≡k'' = ⊥-elim (k≢k' (sym k'≡k''))
|
||||
... | no _ = here refl
|
||||
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs)
|
||||
with ≡-dec-A k' k''
|
||||
with k' ≟ᴬ k''
|
||||
... | yes _ = there k,v∈xs
|
||||
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
|
||||
|
||||
@ -449,11 +452,11 @@ private module ImplInsert (f : B → B → B) where
|
||||
Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l
|
||||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'')
|
||||
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
|
||||
with ≡-dec-A k' k'
|
||||
with k' ≟ᴬ k'
|
||||
... | yes _ = here refl
|
||||
... | no k'≢k' = ⊥-elim (k'≢k' refl)
|
||||
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs)
|
||||
with ≡-dec-A k k'
|
||||
with k ≟ᴬ k'
|
||||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
|
||||
... | no _ = there (update-combines uxs k,v∈xs)
|
||||
|
||||
@ -467,7 +470,7 @@ private module ImplInsert (f : B → B → B) where
|
||||
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
|
||||
where
|
||||
k≢k' : ¬ k ≡ k'
|
||||
k≢k' with ≡-dec-A k k'
|
||||
k≢k' with k ≟ᴬ k'
|
||||
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
|
||||
... | no k≢k' = k≢k'
|
||||
|
||||
@ -625,7 +628,8 @@ Expr-Provenance-≡ {k} {v} e k,v∈e
|
||||
with (v' , (p , k,v'∈e)) ← Expr-Provenance k e (forget k,v∈e)
|
||||
rewrite Map-functional {m = ⟦ e ⟧} k,v∈e k,v'∈e = p
|
||||
|
||||
module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||||
module _ {{≈₂-Decidable : IsDecidable _≈₂_}} where
|
||||
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
||||
private module _ where
|
||||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||||
@ -676,6 +680,9 @@ module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||||
... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) → m₂̷⊆m₁ m₂⊆m₁)
|
||||
... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) → m₁̷⊆m₂ m₁⊆m₂)
|
||||
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
≈-Decidable = record { R-dec = ≈-dec }
|
||||
|
||||
private module I⊔ = ImplInsert _⊔₂_
|
||||
private module I⊓ = ImplInsert _⊓₂_
|
||||
|
||||
@ -1026,7 +1033,7 @@ updating-via-k∉ks-backward m = transform-k∉ks-backward
|
||||
|
||||
module _ {l} {L : Set l}
|
||||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where
|
||||
{{lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_}} where
|
||||
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
|
||||
|
||||
module _ (f : L → Map) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f)
|
||||
|
@ -1,9 +1,9 @@
|
||||
open import Lattice
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Unit using (⊤)
|
||||
|
||||
module Lattice.MapSet {a : Level} {A : Set a} (≡-dec-A : Decidable (_≡_ {a} {A})) where
|
||||
module Lattice.MapSet {a : Level} (A : Set a) {{≡-Decidable-A : IsDecidable (_≡_ {a} {A})}} (dummy : ⊤) where
|
||||
|
||||
open import Data.List using (List; map)
|
||||
open import Data.Product using (_,_; proj₁)
|
||||
@ -12,7 +12,7 @@ open import Function using (_∘_)
|
||||
open import Lattice.Unit using (⊤; tt) renaming (_≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_; isLattice to ⊤-isLattice)
|
||||
import Lattice.Map
|
||||
|
||||
private module UnitMap = Lattice.Map ≡-dec-A ⊤-isLattice
|
||||
private module UnitMap = Lattice.Map A ⊤ dummy
|
||||
open UnitMap
|
||||
using (Map; Expr; ⟦_⟧)
|
||||
renaming
|
||||
|
@ -18,31 +18,32 @@ private
|
||||
≡-⊓-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≡ a₂ → a₃ ≡ a₄ → (a₁ ⊓ a₃) ≡ (a₂ ⊓ a₄)
|
||||
≡-⊓-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl
|
||||
|
||||
isMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_
|
||||
isMaxSemilattice = record
|
||||
{ ≈-equiv = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
instance
|
||||
isMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_
|
||||
isMaxSemilattice = record
|
||||
{ ≈-equiv = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
}
|
||||
; ≈-⊔-cong = ≡-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idem
|
||||
}
|
||||
; ≈-⊔-cong = ≡-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idem
|
||||
}
|
||||
|
||||
isMinSemilattice : IsSemilattice ℕ _≡_ _⊓_
|
||||
isMinSemilattice = record
|
||||
{ ≈-equiv = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
isMinSemilattice : IsSemilattice ℕ _≡_ _⊓_
|
||||
isMinSemilattice = record
|
||||
{ ≈-equiv = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
}
|
||||
; ≈-⊔-cong = ≡-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idem
|
||||
}
|
||||
; ≈-⊔-cong = ≡-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idem
|
||||
}
|
||||
|
||||
private
|
||||
max-bound₁ : {x y z : ℕ} → x ⊔ y ≡ z → x ≤ z
|
||||
@ -74,18 +75,19 @@ private
|
||||
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
||||
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
|
||||
|
||||
isLattice : IsLattice ℕ _≡_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isMaxSemilattice
|
||||
; meetSemilattice = isMinSemilattice
|
||||
; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
|
||||
; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
|
||||
}
|
||||
instance
|
||||
isLattice : IsLattice ℕ _≡_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isMaxSemilattice
|
||||
; meetSemilattice = isMinSemilattice
|
||||
; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
|
||||
; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
|
||||
}
|
||||
|
||||
lattice : Lattice ℕ
|
||||
lattice = record
|
||||
{ _≈_ = _≡_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
lattice : Lattice ℕ
|
||||
lattice = record
|
||||
{ _≈_ = _≡_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
@ -1,10 +1,10 @@
|
||||
open import Lattice
|
||||
|
||||
module Lattice.Prod {a b} {A : Set a} {B : Set b}
|
||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set b)
|
||||
(_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
module Lattice.Prod {a b} (A : Set a) (B : Set b)
|
||||
{_≈₁_ : A → A → Set a} {_≈₂_ : B → B → Set b}
|
||||
{_⊔₁_ : A → A → A} {_⊔₂_ : B → B → B}
|
||||
{_⊓₁_ : A → A → A} {_⊓₂_ : B → B → B}
|
||||
{{lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_}} {{lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_}} where
|
||||
|
||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Nat using (ℕ; _≤_; _+_; suc)
|
||||
@ -12,6 +12,7 @@ open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||
open import Relation.Binary.PropositionalEquality using (sym; subst)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
open import Equivalence
|
||||
import Chain
|
||||
@ -39,13 +40,14 @@ open IsLattice lB using () renaming
|
||||
_≈_ : A × B → A × B → Set (a ⊔ℓ b)
|
||||
(a₁ , b₁) ≈ (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
|
||||
|
||||
≈-equiv : IsEquivalence (A × B) _≈_
|
||||
≈-equiv = record
|
||||
{ ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl)
|
||||
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) → (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂)
|
||||
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) →
|
||||
( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ )
|
||||
}
|
||||
instance
|
||||
≈-equiv : IsEquivalence (A × B) _≈_
|
||||
≈-equiv = record
|
||||
{ ≈-refl = λ {p} → (≈₁-refl , ≈₂-refl)
|
||||
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂) → (≈₁-sym a₁≈a₂ , ≈₂-sym b₁≈b₂)
|
||||
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃) →
|
||||
( ≈₁-trans a₁≈a₂ a₂≈a₃ , ≈₂-trans b₁≈b₂ b₂≈b₃ )
|
||||
}
|
||||
|
||||
_⊔_ : A × B → A × B → A × B
|
||||
(a₁ , b₁) ⊔ (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂)
|
||||
@ -75,116 +77,123 @@ private module ProdIsSemilattice (f₁ : A → A → A) (f₂ : B → B → B) (
|
||||
)
|
||||
}
|
||||
|
||||
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
||||
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
|
||||
instance
|
||||
isJoinSemilattice : IsSemilattice (A × B) _≈_ _⊔_
|
||||
isJoinSemilattice = ProdIsSemilattice.isSemilattice _⊔₁_ _⊔₂_ joinSemilattice₁ joinSemilattice₂
|
||||
|
||||
isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_
|
||||
isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂
|
||||
isMeetSemilattice : IsSemilattice (A × B) _≈_ _⊓_
|
||||
isMeetSemilattice = ProdIsSemilattice.isSemilattice _⊓₁_ _⊓₂_ meetSemilattice₁ meetSemilattice₂
|
||||
|
||||
isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) →
|
||||
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
|
||||
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
|
||||
)
|
||||
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) →
|
||||
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
|
||||
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
|
||||
)
|
||||
}
|
||||
isLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂) →
|
||||
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
|
||||
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
|
||||
)
|
||||
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂) →
|
||||
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
|
||||
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
|
||||
)
|
||||
}
|
||||
|
||||
lattice : Lattice (A × B)
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
lattice : Lattice (A × B)
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_) where
|
||||
≈-dec : IsDecidable _≈_
|
||||
module _ {{≈₁-Decidable : IsDecidable _≈₁_}} {{≈₂-Decidable : IsDecidable _≈₂_}} where
|
||||
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
|
||||
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
||||
|
||||
≈-dec : Decidable _≈_
|
||||
≈-dec (a₁ , b₁) (a₂ , b₂)
|
||||
with ≈₁-dec a₁ a₂ | ≈₂-dec b₁ b₂
|
||||
... | yes a₁≈a₂ | yes b₁≈b₂ = yes (a₁≈a₂ , b₁≈b₂)
|
||||
... | no a₁̷≈a₂ | _ = no (λ (a₁≈a₂ , _) → a₁̷≈a₂ a₁≈a₂)
|
||||
... | _ | no b₁̷≈b₂ = no (λ (_ , b₁≈b₂) → b₁̷≈b₂ b₁≈b₂)
|
||||
|
||||
instance
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
≈-Decidable = record { R-dec = ≈-dec }
|
||||
|
||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
(h₁ h₂ : ℕ)
|
||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
||||
module _ {h₁ h₂ : ℕ}
|
||||
{{fhA : FixedHeight₁ h₁}} {{fhB : FixedHeight₂ h₂}} where
|
||||
|
||||
open import Data.Nat.Properties
|
||||
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
|
||||
open import Data.Nat.Properties
|
||||
open IsLattice isLattice using (_≼_; _≺_; ≺-cong)
|
||||
|
||||
module ChainMapping₁ = ChainMapping joinSemilattice₁ isJoinSemilattice
|
||||
module ChainMapping₂ = ChainMapping joinSemilattice₂ isJoinSemilattice
|
||||
module ChainMapping₁ = ChainMapping joinSemilattice₁ isJoinSemilattice
|
||||
module ChainMapping₂ = ChainMapping joinSemilattice₂ isJoinSemilattice
|
||||
|
||||
module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong
|
||||
module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong
|
||||
module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||
module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong
|
||||
module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong
|
||||
module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||
|
||||
open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁)
|
||||
open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁)
|
||||
open ProdChain using (Chain; concat; done; step)
|
||||
open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁)
|
||||
open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁)
|
||||
open ProdChain using (Chain; concat; done; step)
|
||||
|
||||
private
|
||||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||||
a,∙-Monotonic a {b₁} {b₂} b₁⊔b₂≈b₂ = (⊔₁-idemp a , b₁⊔b₂≈b₂)
|
||||
private
|
||||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||||
a,∙-Monotonic a {b₁} {b₂} b₁⊔b₂≈b₂ = (⊔₁-idemp a , b₁⊔b₂≈b₂)
|
||||
|
||||
a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_
|
||||
a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂)
|
||||
a,∙-Preserves-≈₂ : ∀ (a : A) → (λ b → (a , b)) Preserves _≈₂_ ⟶ _≈_
|
||||
a,∙-Preserves-≈₂ a {b₁} {b₂} b₁≈b₂ = (≈₁-refl , b₁≈b₂)
|
||||
|
||||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||||
∙,b-Monotonic b {a₁} {a₂} a₁⊔a₂≈a₂ = (a₁⊔a₂≈a₂ , ⊔₂-idemp b)
|
||||
∙,b-Monotonic : ∀ (b : B) → Monotonic _≼₁_ _≼_ (λ a → (a , b))
|
||||
∙,b-Monotonic b {a₁} {a₂} a₁⊔a₂≈a₂ = (a₁⊔a₂≈a₂ , ⊔₂-idemp b)
|
||||
|
||||
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||||
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||||
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||||
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||||
|
||||
open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
|
||||
open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
|
||||
open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
|
||||
open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
|
||||
|
||||
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||
unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} ((a₁≼a , b₁≼b) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂)
|
||||
with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂
|
||||
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||||
... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((suc n₁ , n₂) , ((step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂)))
|
||||
... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||||
, subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)
|
||||
))
|
||||
... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((suc n₁ , suc n₂) , ( (step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||||
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||||
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||
unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} ((a₁≼a , b₁≼b) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂)
|
||||
with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂
|
||||
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||||
... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((suc n₁ , n₂) , ((step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂)))
|
||||
... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||||
, subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)
|
||||
))
|
||||
... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||
((suc n₁ , suc n₂) , ( (step₁ (a₁≼a , a₁̷≈a) a≈a' c₁ , step₂ (b₁≼b , b₁̷≈b) b≈b' c₂)
|
||||
, m≤n⇒m≤o+n 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||||
))
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||
fixedHeight = record
|
||||
{ ⊥ = (⊥₁ , ⊥₂)
|
||||
; ⊤ = (⊤₁ , ⊤₂)
|
||||
; longestChain = concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
|
||||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
|
||||
; bounded = λ a₁b₁a₂b₂ →
|
||||
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
|
||||
}
|
||||
instance
|
||||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||
fixedHeight = record
|
||||
{ ⊥ = (⊥₁ , ⊥₂)
|
||||
; ⊤ = (⊤₁ , ⊤₂)
|
||||
; longestChain = concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
|
||||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
|
||||
; bounded = λ a₁b₁a₂b₂ →
|
||||
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice (A × B)
|
||||
finiteHeightLattice = record
|
||||
{ height = h₁ + h₂
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
finiteHeightLattice : FiniteHeightLattice (A × B)
|
||||
finiteHeightLattice = record
|
||||
{ height = h₁ + h₂
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ open import Data.Unit using (⊤; tt) public
|
||||
open import Data.Unit.Properties using (_≟_; ≡-setoid)
|
||||
open import Relation.Binary using (Setoid)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||
open import Equivalence
|
||||
open import Lattice
|
||||
@ -24,9 +25,13 @@ _≈_ = _≡_
|
||||
; ≈-trans = trans
|
||||
}
|
||||
|
||||
≈-dec : IsDecidable _≈_
|
||||
≈-dec : Decidable _≈_
|
||||
≈-dec = _≟_
|
||||
|
||||
instance
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
≈-Decidable = record { R-dec = ≈-dec }
|
||||
|
||||
_⊔_ : ⊤ → ⊤ → ⊤
|
||||
tt ⊔ tt = tt
|
||||
|
||||
@ -45,14 +50,15 @@ tt ⊓ tt = tt
|
||||
⊔-idemp : (x : ⊤) → (x ⊔ x) ≈ x
|
||||
⊔-idemp tt = Eq.refl
|
||||
|
||||
isJoinSemilattice : IsSemilattice ⊤ _≈_ _⊔_
|
||||
isJoinSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idemp
|
||||
}
|
||||
instance
|
||||
isJoinSemilattice : IsSemilattice ⊤ _≈_ _⊔_
|
||||
isJoinSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊔-cong
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idemp
|
||||
}
|
||||
|
||||
≈-⊓-cong : ∀ {ab₁ ab₂ ab₃ ab₄} → ab₁ ≈ ab₂ → ab₃ ≈ ab₄ → (ab₁ ⊓ ab₃) ≈ (ab₂ ⊓ ab₄)
|
||||
≈-⊓-cong {tt} {tt} {tt} {tt} _ _ = Eq.refl
|
||||
@ -66,36 +72,32 @@ isJoinSemilattice = record
|
||||
⊓-idemp : (x : ⊤) → (x ⊓ x) ≈ x
|
||||
⊓-idemp tt = Eq.refl
|
||||
|
||||
isMeetSemilattice : IsSemilattice ⊤ _≈_ _⊓_
|
||||
isMeetSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idemp
|
||||
}
|
||||
instance
|
||||
isMeetSemilattice : IsSemilattice ⊤ _≈_ _⊓_
|
||||
isMeetSemilattice = record
|
||||
{ ≈-equiv = ≈-equiv
|
||||
; ≈-⊔-cong = ≈-⊓-cong
|
||||
; ⊔-assoc = ⊓-assoc
|
||||
; ⊔-comm = ⊓-comm
|
||||
; ⊔-idemp = ⊓-idemp
|
||||
}
|
||||
|
||||
absorb-⊔-⊓ : (x y : ⊤) → (x ⊔ (x ⊓ y)) ≈ x
|
||||
absorb-⊔-⊓ tt tt = Eq.refl
|
||||
instance
|
||||
isLattice : IsLattice ⊤ _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = λ { tt tt → Eq.refl }
|
||||
; absorb-⊓-⊔ = λ { tt tt → Eq.refl }
|
||||
}
|
||||
|
||||
absorb-⊓-⊔ : (x y : ⊤) → (x ⊓ (x ⊔ y)) ≈ x
|
||||
absorb-⊓-⊔ tt tt = Eq.refl
|
||||
|
||||
isLattice : IsLattice ⊤ _≈_ _⊔_ _⊓_
|
||||
isLattice = record
|
||||
{ joinSemilattice = isJoinSemilattice
|
||||
; meetSemilattice = isMeetSemilattice
|
||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||
}
|
||||
|
||||
lattice : Lattice ⊤
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
lattice : Lattice ⊤
|
||||
lattice = record
|
||||
{ _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
|
||||
|
||||
@ -107,25 +109,26 @@ private
|
||||
isLongest {tt} {tt} (step (tt⊔tt≈tt , tt̷≈tt) _ _) = ⊥-elim (tt̷≈tt refl)
|
||||
isLongest (done _) = z≤n
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 0
|
||||
fixedHeight = record
|
||||
{ ⊥ = tt
|
||||
; ⊤ = tt
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
instance
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 0
|
||||
fixedHeight = record
|
||||
{ ⊥ = tt
|
||||
; ⊤ = tt
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice ⊤
|
||||
finiteHeightLattice = record
|
||||
{ height = 0
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
finiteHeightLattice : FiniteHeightLattice ⊤
|
||||
finiteHeightLattice = record
|
||||
{ height = 0
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
@ -103,3 +103,6 @@ _∨_ P Q a = P a ⊎ Q a
|
||||
_∧_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
||||
A → Set (p₁ ⊔ℓ p₂)
|
||||
_∧_ P Q a = P a × Q a
|
||||
|
||||
it : ∀ {a} {A : Set a} {{_ : A}} → A
|
||||
it {{x}} = x
|
||||
|
Loading…
Reference in New Issue
Block a user