Compare commits

..

6 Commits

Author SHA1 Message Date
b134c143ca Start working on proving 'sufficiency'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:37:28 -07:00
e218d1b7a3 Add formalization of 'traces through graph'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:36:58 -07:00
6e3f06ca5d Add a new 'properties' module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 20:25:40 -07:00
54b11d21b0 Start working on proving facts about graph construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:47 -07:00
f3e0d5f2e3 Use 'data' instead of aliases to prove reasoning properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:13 -07:00
855bf3f56c Add functions to reason about the 'monotonic state' operations
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 18:09:01 -07:00
6 changed files with 200 additions and 56 deletions

View File

@ -3,6 +3,7 @@ module Language where
open import Language.Base public open import Language.Base public
open import Language.Semantics public open import Language.Semantics public
open import Language.Graphs public open import Language.Graphs public
open import Language.Properties public
open import Data.Fin using (Fin; suc; zero) open import Data.Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.Fin.Properties as FinProp using (suc-injective)

View File

@ -1,7 +1,6 @@
module Language.Graphs where module Language.Graphs where
open import Language.Base open import Language.Base
open import Language.Semantics
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_) open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.Fin.Properties as FinProp using (suc-injective)
@ -12,8 +11,8 @@ open import Data.Nat as Nat using (; suc)
open import Data.Nat.Properties using (+-assoc; +-comm) open import Data.Nat.Properties using (+-assoc; +-comm)
open import Data.Product using (_×_; Σ; _,_) open import Data.Product using (_×_; Σ; _,_)
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_) open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ) open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_) open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_)
@ -57,38 +56,39 @@ record _⊆_ (g₁ g₂ : Graph) : Set where
e ListMem.∈ (Graph.edges g₁) e ListMem.∈ (Graph.edges g₁)
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂)) (↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m) private
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂) castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂) ↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂)) f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl ↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂) ↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂)) ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p ↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s) ↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s)
f Fin.cast p (f ↑ˡ 0) f Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl ↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s) ↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s)
e castᵉ p (↑ˡ-Edge e 0) e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p) rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n) cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m)) (e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ListMem.∈ es castᵉ p e ListMem.∈ es
e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁ rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es rewrite FinProp.cast-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃ ⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃} ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
@ -128,12 +128,6 @@ instance
open Relaxable {{...}} open Relaxable {{...}}
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g = pushBasicBlock bss g =
( record ( record
@ -152,6 +146,9 @@ pushBasicBlock bss g =
) )
) )
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g') addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' = addEdges (MkGraph s ns es) es' =
( record ( record
@ -172,9 +169,6 @@ addEdges (MkGraph s ns es) es' =
} }
) )
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index) buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx)) buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) = buildCfg (s₁ then s₂) =

52
Language/Properties.agda Normal file
View File

@ -0,0 +1,52 @@
module Language.Properties where
open import Language.Base
open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
open import Utils using (_⊗_; _,_)
open Relaxable {{...}}
open import Data.Fin using (zero)
open import Data.List using (List; _∷_; [])
open import Data.Vec using (_∷_; [])
open import Data.Vec.Properties using (cast-is-id; lookup-++ˡ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; subst)
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
instance
NodeEqualsMonotonic : {bss : List BasicStmt}
MonotonicPredicate (λ g n g [ n ] bss)
NodeEqualsMonotonic = record
{ relaxPredicate = λ g₁ g₂ idx g₁⊆g₂ g₁[idx]≡bss
trans (sym (relax-preserves-[]≡ g₁ g₂ g₁⊆g₂ idx)) g₁[idx]≡bss
}
pushBasicBlock-works : (bss : List BasicStmt) Always (λ g idx g [ idx ] bss) (pushBasicBlock bss)
pushBasicBlock-works bss = MkAlways (λ g lookup-++ʳ (Graph.nodes g) (bss []) zero)
TransformsEnv : (ρ₁ ρ₂ : Env) DependentPredicate (Graph.Index Graph.Index)
TransformsEnv ρ₁ ρ₂ g (idx₁ , idx₂) = Trace {g} idx₁ idx₂ ρ₁ ρ₂
instance
TransformsEnvMonotonic : {ρ₁ ρ₂ : Env} MonotonicPredicate (TransformsEnv ρ₁ ρ₂)
TransformsEnvMonotonic = {!!}
buildCfg-sufficient : {ρ₁ ρ₂ : Env} {s : Stmt} ρ₁ , s ⇒ˢ ρ₂ Always (TransformsEnv ρ₁ ρ₂) (buildCfg s)
buildCfg-sufficient {ρ₁} {ρ₂} { bs } (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
pushBasicBlock-works (bs [])
map-reason
(λ g idx g[idx]≡[bs] Trace-single (subst (ρ₁ ,_⇒ᵇˢ ρ₂)
(sym g[idx]≡[bs])
(ρ₁,bs⇒ρ [])))
buildCfg-sufficient {ρ₁} {ρ₂} {s₁ then s₂} (⇒ˢ-then ρ₁ ρ ρ₂ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
(buildCfg-sufficient ρ₁,s₁⇒ρ ⟨⊗⟩-reason buildCfg-sufficient ρ₂,s₂⇒ρ)
update-reason {!!}
map-reason {!!}

View File

@ -5,7 +5,7 @@ open import Language.Base
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_) open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.Product using (_×_; _,_) open import Data.Product using (_×_; _,_)
open import Data.String using (String) open import Data.String using (String)
open import Data.List using (List; _∷_) open import Data.List as List using (List)
open import Data.Nat using () open import Data.Nat using ()
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Binary.PropositionalEquality using (_≡_)
@ -17,8 +17,8 @@ Env : Set
Env = List (String × Value) Env = List (String × Value)
data _∈_ : (String × Value) Env Set where data _∈_ : (String × Value) Env Set where
here : (s : String) (v : Value) (ρ : Env) (s , v) ((s , v) ρ) here : (s : String) (v : Value) (ρ : Env) (s , v) ((s , v) List. ρ)
there : (s s' : String) (v v' : Value) (ρ : Env) ¬ (s s') (s , v) ρ (s , v) ((s' , v') ρ) there : (s s' : String) (v v' : Value) (ρ : Env) ¬ (s s') (s , v) ρ (s , v) ((s' , v') List. ρ)
data _,_⇒ᵉ_ : Env Expr Value Set where data _,_⇒ᵉ_ : Env Expr Value Set where
⇒ᵉ- : (ρ : Env) (n : ) ρ , (# n) ⇒ᵉ (↑ᶻ (+ n)) ⇒ᵉ- : (ρ : Env) (n : ) ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
@ -33,7 +33,12 @@ data _,_⇒ᵉ_ : Env → Expr → Value → Set where
data _,_⇒ᵇ_ : Env BasicStmt Env Set where data _,_⇒ᵇ_ : Env BasicStmt Env Set where
⇒ᵇ-noop : (ρ : Env) ρ , noop ⇒ᵇ ρ ⇒ᵇ-noop : (ρ : Env) ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : (ρ : Env) (x : String) (e : Expr) (v : Value) ⇒ᵇ-← : (ρ : Env) (x : String) (e : Expr) (v : Value)
ρ , e ⇒ᵉ v ρ , (x e) ⇒ᵇ ((x , v) ρ) ρ , e ⇒ᵉ v ρ , (x e) ⇒ᵇ ((x , v) List.∷ ρ)
data _,_⇒ᵇˢ_ : Env List BasicStmt Env Set where
[] : {ρ : Env} ρ , List.[] ⇒ᵇˢ ρ
_∷_ : {ρ₁ ρ₂ ρ₃ : Env} {bs : BasicStmt} {bss : List BasicStmt}
ρ₁ , bs ⇒ᵇ ρ₂ ρ₂ , bss ⇒ᵇˢ ρ₃ ρ₁ , (bs List.∷ bss) ⇒ᵇˢ ρ₃
data _,_⇒ˢ_ : Env Stmt Env Set where data _,_⇒ˢ_ : Env Stmt Env Set where
⇒ˢ-⟨⟩ : (ρ₁ ρ₂ : Env) (bs : BasicStmt) ⇒ˢ-⟨⟩ : (ρ₁ ρ₂ : Env) (bs : BasicStmt)

24
Language/Traces.agda Normal file
View File

@ -0,0 +1,24 @@
module Language.Traces where
open import Language.Base public
open import Language.Semantics public
open import Language.Graphs public
open import Data.Product using (_,_)
open import Data.List.Membership.Propositional as MemProp using ()
module _ {g : Graph} where
open Graph g using (Index; edges)
data Trace : Index Index Env Env Set where
Trace-single : {ρ₁ ρ₂ : Env} {idx : Index}
ρ₁ , (g [ idx ]) ⇒ᵇˢ ρ₂ Trace idx idx ρ₁ ρ₂
Trace-edge : {ρ₁ ρ₂ ρ₃ : Env} {idx₁ idx₂ idx₃ : Index}
ρ₁ , (g [ idx₁ ]) ⇒ᵇˢ ρ₂ (idx₁ , idx₂) MemProp.∈ edges
Trace idx₂ idx₃ ρ₂ ρ₃ Trace idx₁ idx₃ ρ₁ ρ₃
_++⟨_⟩_ : {idx₁ idx₂ idx₃ idx₄ : Index} {ρ₁ ρ₂ ρ₃ : Env}
Trace idx₁ idx₂ ρ₁ ρ₂ (idx₂ , idx₃) MemProp.∈ edges
Trace idx₃ idx₄ ρ₂ ρ₃ Trace idx₁ idx₄ ρ₁ ρ₃
_++⟨_⟩_ (Trace-single ρ₁⇒ρ₂) idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₂→idx₃ tr
_++⟨_⟩_ (Trace-edge ρ₁⇒ρ₂ idx₁→idx' tr') idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₁→idx' (tr' ++⟨ idx₂→idx₃ tr)

View File

@ -83,9 +83,15 @@ _map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
DependentPredicate : (S Set s) Set (lsuc s) DependentPredicate : (S Set s) Set (lsuc s)
DependentPredicate T = (s₁ : S) T s₁ Set s DependentPredicate T = (s₁ : S) T s₁ Set s
Both : {T₁ T₂ : S Set s} DependentPredicate T₁ DependentPredicate T₂ data Both {T₁ T₂ : S Set s}
DependentPredicate (T₁ T₂) (P : DependentPredicate T₁)
Both P Q = (λ { s (t₁ , t₂) (P s t₁ × Q s t₂) }) (Q : DependentPredicate T₂) : DependentPredicate (T₁ T₂) where
MkBoth : {s : S} {t₁ : T₁ s} {t₂ : T₂ s} P s t₁ Q s t₂ Both P Q s (t₁ , t₂)
data And {T : S Set s}
(P : DependentPredicate T)
(Q : DependentPredicate T) : DependentPredicate T where
MkAnd : {s : S} {t : T s} P s t Q s t And P Q s t
-- Since monotnic functions keep adding on to the state, proofs of -- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of -- predicates over their outputs go stale fast (they describe old values of
@ -97,20 +103,82 @@ record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : Dependent
field relaxPredicate : (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ s₂) field relaxPredicate : (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ s₂)
P s₁ t₁ P s₂ (Relaxable.relax r s₁≼s₂ t₁) P s₁ t₁ P s₂ (Relaxable.relax r s₁≼s₂ t₁)
instance
BothMonotonic : {T₁ : S Set s} {T₂ : S Set s}
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (Both P Q)
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q)
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
}
AndMonotonic : {T : S Set s} {{ _ : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (And P Q)
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q)
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
}
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that -- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs. -- property for all inputs.
always : {T : S Set s} DependentPredicate T MonotonicState T Set s data Always {T : S Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
always P m = s₁ let (s₂ , t , _) = m s₁ in P s₂ t MkAlways : ( s₁ let (s₂ , t , _) = m s₁ in P s₂ t) Always P m
⟨⊗⟩-reason : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }} infixr 4 _⟨⊗⟩-reason_
_⟨⊗⟩-reason_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂} {P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}} {{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} {m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂}
always P m₁ always Q m₂ always (Both P Q) (m₁ ⟨⊗⟩ m₂) Always P m₁ Always Q m₂ Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s _⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
with p aP s MkAlways impl
with (s' , (t₁ , s≼s')) m₁ s where
with q aQ s' impl : s₁ let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
with (s'' , (t₂ , s'≼s'')) m₂ s' = impl s
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q) with p aP s
with (s' , (t₁ , s≼s')) m₁ s
with q aQ s'
with (s'' , (t₂ , s'≼s'')) m₂ s' =
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _update-reason_
_update-reason_ : {T : S Set s} {{ r : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{P-Mono : MonotonicPredicate P}}
{m : MonotonicState T} {mod : (s : S) T s Σ S (λ s' s s')}
Always P m ( (s : S) (t : T s)
let (s' , s≼s') = mod s t
in P s t Q s' (Relaxable.relax r s≼s' t))
Always (And P Q) (m update mod)
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
impl s
with p aP s
with (s' , (t , s≼s')) m s
with q modQ s' t p
with (s'' , s'≼s'') mod s' t =
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _map-reason_
_map-reason_ : {T₁ T₂ : S Set s}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{m : MonotonicState T₁}
{f : (s : S) T₁ s T₂ s}
Always P m ( (s : S) (t₁ : T₁ s) P s t₁ Q s (f s t₁))
Always Q (m map f)
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
impl s
with p aP s
with (s' , (t₁ , s≼s')) m s = P⇒Q s' t₁ p