agda-spa/Lattice/AboveBelow.agda

391 lines
17 KiB
Agda
Raw Normal View History

open import Lattice
open import Equivalence
open import Relation.Nullary using (Dec; ¬_; yes; no)
open import Data.Unit using () renaming ( to ⊤ᵘ)
module Lattice.AboveBelow {a} (A : Set a)
{_≈₁_ : A A Set a}
{{≈₁-equiv : IsEquivalence A _≈₁_}}
{{≈₁-Decidable : IsDecidable _≈₁_}} (dummy : ⊤ᵘ) where
open import Data.Empty using (⊥-elim)
open import Data.Product using (_,_)
open import Data.Nat using (_≤_; ; z≤n; s≤s; suc)
open import Function using (_∘_)
open import Showable using (Showable; show)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Binary.PropositionalEquality as Eq
using (_≡_; sym; subst; refl)
import Chain
open IsEquivalence ≈₁-equiv using ()
renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
open IsDecidable ≈₁-Decidable using () renaming (R-dec to ≈₁-dec)
data AboveBelow : Set a where
: AboveBelow
: AboveBelow
[_] : A AboveBelow
instance
showable : {{ showableA : Showable A }} Showable AboveBelow
showable = record
{ show = (λ
{ ""
; ""
; [ a ] show a
})
}
data _≈_ : AboveBelow AboveBelow Set a where
≈-⊥-⊥ :
≈-- :
≈-lift : {x y : A} x ≈₁ y [ x ] [ y ]
≈-refl : {ab : AboveBelow} ab ab
≈-refl {} = ≈-⊥-⊥
≈-refl {} = ≈--
≈-refl {[ x ]} = ≈-lift ≈₁-refl
≈-sym : {ab₁ ab₂ : AboveBelow} ab₁ ab₂ ab₂ ab₁
≈-sym ≈-⊥-⊥ = ≈-⊥-⊥
≈-sym ≈-- = ≈--
≈-sym (≈-lift x≈₁y) = ≈-lift (≈₁-sym x≈₁y)
≈-trans : {ab₁ ab₂ ab₃ : AboveBelow} ab₁ ab₂ ab₂ ab₃ ab₁ ab₃
≈-trans ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥
≈-trans ≈-- ≈-- = ≈--
≈-trans (≈-lift a₁≈a₂) (≈-lift a₂≈a₃) = ≈-lift (≈₁-trans a₁≈a₂ a₂≈a₃)
≈-equiv : IsEquivalence AboveBelow _≈_
≈-equiv = record
{ ≈-refl = ≈-refl
; ≈-sym = ≈-sym
; ≈-trans = ≈-trans
}
≈-dec : Decidable _≈_
≈-dec = yes ≈-⊥-⊥
≈-dec = yes ≈--
≈-dec [ x ] [ y ]
with ≈₁-dec x y
... | yes x≈y = yes (≈-lift x≈y)
... | no x̷≈y = no (λ { (≈-lift x≈y) x̷≈y x≈y })
≈-dec = no λ ()
≈-dec [ x ] = no λ ()
≈-dec = no λ ()
≈-dec [ x ] = no λ ()
≈-dec [ x ] = no λ ()
≈-dec [ x ] = no λ ()
instance
≈-Decidable : IsDecidable _≈_
≈-Decidable = record { R-dec = ≈-dec }
-- Any object can be wrapped in an 'above below' to make it a lattice,
-- since and ⊥ are the largest and least elements, and the rest are left
-- unordered. That's what this module does.
--
-- For convenience, ask for the underlying type to always be inhabited, to
-- avoid requiring additional constraints in some of the proofs below.
module Plain (x : A) where
_⊔_ : AboveBelow AboveBelow AboveBelow
x = x
x =
[ x ] [ y ] with ≈₁-dec x y
... | yes _ = [ x ]
... | no _ =
x = x
x =
⊔x≡ : (x : AboveBelow) x
⊔x≡ _ = refl
x⊔ : (x : AboveBelow) x
x⊔ = refl
x⊔ = refl
x⊔ [ x ] = refl
⊥⊔x≡x : (x : AboveBelow) x x
⊥⊔x≡x _ = refl
x⊔⊥≡x : (x : AboveBelow) x x
x⊔⊥≡x = refl
x⊔⊥≡x = refl
x⊔⊥≡x [ x ] = refl
x≈y⇒[x]⊔[y]≡[x] : {x y : A} x ≈₁ y [ x ] [ y ] [ x ]
x≈y⇒[x]⊔[y]≡[x] {x} {y} x≈₁y
with ≈₁-dec x y
... | yes _ = refl
... | no x̷≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
x̷≈y⇒[x]⊔[y]≡⊤ : {x y : A} ¬ x ≈₁ y [ x ] [ y ]
x̷≈y⇒[x]⊔[y]≡⊤ {x} {y} x̷≈₁y
with ≈₁-dec x y
... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
... | no x̷≈₁y = refl
≈-⊔-cong : {ab₁ ab₂ ab₃ ab₄} ab₁ ab₂ ab₃ ab₄
(ab₁ ab₃) (ab₂ ab₄)
≈-⊔-cong ≈-- ≈-- = ≈--
≈-⊔-cong ≈-- ≈-⊥-⊥ = ≈--
≈-⊔-cong ≈-⊥-⊥ ≈-- = ≈--
≈-⊔-cong ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥
≈-⊔-cong ≈-⊥-⊥ (≈-lift x≈y) = ≈-lift x≈y
≈-⊔-cong (≈-lift x≈y) ≈-⊥-⊥ = ≈-lift x≈y
≈-⊔-cong ≈-- (≈-lift x≈y) = ≈--
≈-⊔-cong (≈-lift x≈y) ≈-- = ≈--
≈-⊔-cong (≈-lift {a₁} {a₂} a₁≈a₂) (≈-lift {a₃} {a₄} a₃≈a₄)
with ≈₁-dec a₁ a₃ | ≈₁-dec a₂ a₄
... | yes a₁≈a₃ | yes a₂≈a₄ = ≈-lift a₁≈a₂
... | yes a₁≈a₃ | no a₂̷≈a₄ = ⊥-elim (a₂̷≈a₄ (≈₁-trans (≈₁-sym a₁≈a₂) (≈₁-trans (a₁≈a₃) a₃≈a₄)))
... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄))))
... | no _ | no _ = ≈--
⊔-assoc : (ab₁ ab₂ ab₃ : AboveBelow)
((ab₁ ab₂) ab₃) (ab₁ (ab₂ ab₃))
⊔-assoc ab₂ ab₃ = ≈--
⊔-assoc ab₂ ab₃ = ≈-refl
⊔-assoc [ x₁ ] ab₃ = ≈--
⊔-assoc [ x₁ ] ab₃ = ≈-refl
⊔-assoc [ x₁ ] [ x₂ ] rewrite x⊔ ([ x₁ ] [ x₂ ]) = ≈--
⊔-assoc [ x₁ ] [ x₂ ] rewrite x⊔⊥≡x ([ x₁ ] [ x₂ ]) = ≈-refl
⊔-assoc [ x₁ ] [ x₂ ] [ x₃ ]
with ≈₁-dec x₂ x₃ | ≈₁-dec x₁ x₂
... | no x₂̷≈x₃ | no _ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃ = ≈--
... | no x₂̷≈x₃ | yes x₁≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃
rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₂̷≈x₃ (≈₁-trans (≈₁-sym x₁≈x₂))) = ≈--
... | yes x₂≈x₃ | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] x₂≈x₃
rewrite x≈y⇒[x]⊔[y]≡[x] x₁≈x₂
rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-trans x₁≈x₂ x₂≈x₃) = ≈-refl
... | yes x₂≈x₃ | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₁̷≈x₂ = ≈--
⊔-comm : (ab₁ ab₂ : AboveBelow) (ab₁ ab₂) (ab₂ ab₁)
⊔-comm x rewrite x⊔ x = ≈-refl
⊔-comm x rewrite x⊔⊥≡x x = ≈-refl
⊔-comm x rewrite x⊔ x = ≈-refl
⊔-comm x rewrite x⊔⊥≡x x = ≈-refl
⊔-comm [ x₁ ] [ x₂ ] with ≈₁-dec x₁ x₂
... | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-sym x₁≈x₂) = ≈-lift x₁≈x₂
... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₁̷≈x₂ ≈₁-sym) = ≈--
⊔-idemp : ab (ab ab) ab
⊔-idemp = ≈--
⊔-idemp = ≈-⊥-⊥
⊔-idemp [ x ] rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-refl {x}) = ≈-refl
instance
isJoinSemilattice : IsSemilattice AboveBelow _≈_ _⊔_
isJoinSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong = ≈-⊔-cong
; ⊔-assoc = ⊔-assoc
; ⊔-comm = ⊔-comm
; ⊔-idemp = ⊔-idemp
}
_⊓_ : AboveBelow AboveBelow AboveBelow
x =
x = x
[ x ] [ y ] with ≈₁-dec x y
... | yes _ = [ x ]
... | no _ =
x =
x = x
⊥⊓x≡⊥ : (x : AboveBelow) x
⊥⊓x≡⊥ _ = refl
x⊓⊥≡⊥ : (x : AboveBelow) x
x⊓⊥≡⊥ = refl
x⊓⊥≡⊥ = refl
x⊓⊥≡⊥ [ x ] = refl
⊓x≡x : (x : AboveBelow) x x
⊓x≡x _ = refl
x⊓≡x : (x : AboveBelow) x x
x⊓≡x = refl
x⊓≡x = refl
x⊓≡x [ x ] = refl
x≈y⇒[x]⊓[y]≡[x] : {x y : A} x ≈₁ y [ x ] [ y ] [ x ]
x≈y⇒[x]⊓[y]≡[x] {x} {y} x≈₁y
with ≈₁-dec x y
... | yes _ = refl
... | no x̷≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
x̷≈y⇒[x]⊓[y]≡⊥ : {x y : A} ¬ x ≈₁ y [ x ] [ y ]
x̷≈y⇒[x]⊓[y]≡⊥ {x} {y} x̷≈₁y
with ≈₁-dec x y
... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
... | no x̷≈₁y = refl
≈-⊓-cong : {ab₁ ab₂ ab₃ ab₄} ab₁ ab₂ ab₃ ab₄ (ab₁ ab₃) (ab₂ ab₄)
≈-⊓-cong ≈-- ≈-- = ≈--
≈-⊓-cong ≈-- ≈-⊥-⊥ = ≈-⊥-⊥
≈-⊓-cong ≈-⊥-⊥ ≈-- = ≈-⊥-⊥
≈-⊓-cong ≈-⊥-⊥ ≈-⊥-⊥ = ≈-⊥-⊥
≈-⊓-cong ≈-- (≈-lift x≈y) = ≈-lift x≈y
≈-⊓-cong (≈-lift x≈y) ≈-- = ≈-lift x≈y
≈-⊓-cong ≈-⊥-⊥ (≈-lift x≈y) = ≈-⊥-⊥
≈-⊓-cong (≈-lift x≈y) ≈-⊥-⊥ = ≈-⊥-⊥
≈-⊓-cong (≈-lift {a₁} {a₂} a₁≈a₂) (≈-lift {a₃} {a₄} a₃≈a₄)
with ≈₁-dec a₁ a₃ | ≈₁-dec a₂ a₄
... | yes a₁≈a₃ | yes a₂≈a₄ = ≈-lift a₁≈a₂
... | yes a₁≈a₃ | no a₂̷≈a₄ = ⊥-elim (a₂̷≈a₄ (≈₁-trans (≈₁-sym a₁≈a₂) (≈₁-trans (a₁≈a₃) a₃≈a₄)))
... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄))))
... | no _ | no _ = ≈-⊥-⊥
⊓-assoc : (ab₁ ab₂ ab₃ : AboveBelow) ((ab₁ ab₂) ab₃) (ab₁ (ab₂ ab₃))
⊓-assoc ab₂ ab₃ = ≈-⊥-⊥
⊓-assoc ab₂ ab₃ = ≈-refl
⊓-assoc [ x₁ ] ab₃ = ≈-⊥-⊥
⊓-assoc [ x₁ ] ab₃ = ≈-refl
⊓-assoc [ x₁ ] [ x₂ ] rewrite x⊓⊥≡⊥ ([ x₁ ] [ x₂ ]) = ≈-⊥-⊥
⊓-assoc [ x₁ ] [ x₂ ] rewrite x⊓≡x ([ x₁ ] [ x₂ ]) = ≈-refl
⊓-assoc [ x₁ ] [ x₂ ] [ x₃ ]
with ≈₁-dec x₂ x₃ | ≈₁-dec x₁ x₂
... | no x₂̷≈x₃ | no _ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₂̷≈x₃ = ≈-⊥-⊥
... | no x₂̷≈x₃ | yes x₁≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₂̷≈x₃
rewrite x̷≈y⇒[x]⊓[y]≡⊥ λ x₁≈x₃ x₂̷≈x₃ (≈₁-trans (≈₁-sym x₁≈x₂) x₁≈x₃) = ≈-⊥-⊥
... | yes x₂≈x₃ | yes x₁≈x₂ rewrite x≈y⇒[x]⊓[y]≡[x] x₂≈x₃
rewrite x≈y⇒[x]⊓[y]≡[x] x₁≈x₂
rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-trans x₁≈x₂ x₂≈x₃) = ≈-refl
... | yes x₂≈x₃ | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ x₁̷≈x₂ = ≈-⊥-⊥
⊓-comm : (ab₁ ab₂ : AboveBelow) (ab₁ ab₂) (ab₂ ab₁)
⊓-comm x rewrite x⊓⊥≡⊥ x = ≈-refl
⊓-comm x rewrite x⊓≡x x = ≈-refl
⊓-comm x rewrite x⊓⊥≡⊥ x = ≈-refl
⊓-comm x rewrite x⊓≡x x = ≈-refl
⊓-comm [ x₁ ] [ x₂ ] with ≈₁-dec x₁ x₂
... | yes x₁≈x₂ rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-sym x₁≈x₂) = ≈-lift x₁≈x₂
... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊓[y]≡⊥ λ x₂≈x₁ (x₁̷≈x₂ (≈₁-sym x₂≈x₁)) = ≈-⊥-⊥
⊓-idemp : ab (ab ab) ab
⊓-idemp = ≈-⊥-⊥
⊓-idemp = ≈--
⊓-idemp [ x ] rewrite x≈y⇒[x]⊓[y]≡[x] (≈₁-refl {x}) = ≈-refl
instance
isMeetSemilattice : IsSemilattice AboveBelow _≈_ _⊓_
isMeetSemilattice = record
{ ≈-equiv = ≈-equiv
; ≈-⊔-cong = ≈-⊓-cong
; ⊔-assoc = ⊓-assoc
; ⊔-comm = ⊓-comm
; ⊔-idemp = ⊓-idemp
}
absorb-⊔-⊓ : (ab₁ ab₂ : AboveBelow) (ab₁ (ab₁ ab₂)) ab₁
absorb-⊔-⊓ ab₂ rewrite ⊥⊓x≡⊥ ab₂ = ≈-⊥-⊥
absorb-⊔-⊓ _ = ≈--
absorb-⊔-⊓ [ x ] rewrite x⊓⊥≡⊥ [ x ]
rewrite x⊔⊥≡x [ x ] = ≈-refl
absorb-⊔-⊓ [ x ] rewrite x⊓≡x [ x ] = ⊔-idemp _
absorb-⊔-⊓ [ x ] [ y ]
with ≈₁-dec x y
... | yes x≈y rewrite x≈y⇒[x]⊓[y]≡[x] x≈y = ⊔-idemp _
... | no x̷≈y rewrite x̷≈y⇒[x]⊓[y]≡⊥ x̷≈y rewrite x⊔⊥≡x [ x ] = ≈-refl
absorb-⊓-⊔ : (ab₁ ab₂ : AboveBelow) (ab₁ (ab₁ ab₂)) ab₁
absorb-⊓-⊔ ab₂ rewrite ⊔x≡ ab₂ = ≈--
absorb-⊓-⊔ _ = ≈-⊥-⊥
absorb-⊓-⊔ [ x ] rewrite x⊔ [ x ]
rewrite x⊓≡x [ x ] = ≈-refl
absorb-⊓-⊔ [ x ] rewrite x⊔⊥≡x [ x ] = ⊓-idemp _
absorb-⊓-⊔ [ x ] [ y ]
with ≈₁-dec x y
... | yes x≈y rewrite x≈y⇒[x]⊔[y]≡[x] x≈y = ⊓-idemp _
... | no x̷≈y rewrite x̷≈y⇒[x]⊔[y]≡⊤ x̷≈y rewrite x⊓≡x [ x ] = ≈-refl
instance
isLattice : IsLattice AboveBelow _≈_ _⊔_ _⊓_
isLattice = record
{ joinSemilattice = isJoinSemilattice
; meetSemilattice = isMeetSemilattice
; absorb-⊔-⊓ = absorb-⊔-⊓
; absorb-⊓-⊔ = absorb-⊓-⊔
}
lattice : Lattice AboveBelow
lattice = record
{ _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isLattice = isLattice
}
open IsLattice isLattice using (_≼_; _≺_; ≼-trans; ⊔-Monotonicˡ; ⊔-Monotonicʳ) public
⊥≺[x] : (x : A) [ x ]
⊥≺[x] x = (≈-refl , λ ())
x≺[y]⇒x≡⊥ : (x : AboveBelow) (y : A) x [ y ] x
x≺[y]⇒x≡⊥ x y ((x⊔[y]≈[y]) , x̷≈[y]) with x
... | = refl
... | with () x⊔[y]≈[y]
... | [ b ] with ≈₁-dec b y
... | yes b≈y = ⊥-elim (x̷≈[y] (≈-lift b≈y))
... | no _ with () x⊔[y]≈[y]
[x]≺⊤ : (x : A) [ x ]
[x]≺⊤ x rewrite x⊔ [ x ] = (≈-- , λ ())
[x]≺y⇒y≡ : (x : A) (y : AboveBelow) [ x ] y y
[x]≺y⇒y≡ x y ([x]⊔y≈y , [x]̷≈y) with y
... | with () [x]⊔y≈y
... | = refl
... | [ a ] with ≈₁-dec x a
... | yes x≈a = ⊥-elim ([x]̷≈y (≈-lift x≈a))
... | no _ with () [x]⊔y≈y
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
longestChain : Chain 2
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-- (done ≈--))
¬-Chain- : {ab : AboveBelow} {n : } ¬ Chain ab (suc n)
¬-Chain- {x} (step (⊔x≈x , ̷≈x) _ _) rewrite ⊔x≡ x = ⊥-elim (̷≈x ⊔x≈x)
isLongest : {ab₁ ab₂ : AboveBelow} {n : } Chain ab₁ ab₂ n n 2
isLongest (done _) = z≤n
isLongest (step _ _ (done _)) = s≤s z≤n
isLongest (step _ _ (step _ _ (done _))) = s≤s (s≤s z≤n)
isLongest {} c@(step _ _ _) = ⊥-elim (¬-Chain- c)
isLongest {[ x ]} (step {_} {y} [x]≺y y≈y' c@(step _ _ _))
rewrite [x]≺y⇒y≡ x y [x]≺y with ≈-- y≈y' = ⊥-elim (¬-Chain- c)
isLongest {} (step {_} {} (_ , ⊥̷≈⊥) _ _) = ⊥-elim (⊥̷≈⊥ ≈-⊥-⊥)
isLongest {} (step {_} {} _ ≈-- c@(step _ _ _)) = ⊥-elim (¬-Chain- c)
isLongest {} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _)))
rewrite [x]≺y⇒y≡ _ _ [x]≺y with ≈-- y≈z = ⊥-elim (¬-Chain- c)
instance
fixedHeight : IsLattice.FixedHeight isLattice 2
fixedHeight = record
{ =
; =
; longestChain = longestChain
; bounded = isLongest
}
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice AboveBelow
finiteHeightLattice = record
{ height = 2
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}