agda-spa/Utils.agda

97 lines
4.9 KiB
Plaintext
Raw Normal View History

module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Nat using (; suc)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
open import Relation.Nullary using (¬_)
data Unique {c} {C : Set c} : List C → Set c where
empty : Unique []
push : ∀ {x : C} {xs : List C}
→ All (λ x' → ¬ x ≡ x') xs
→ Unique xs
→ Unique (x ∷ xs)
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
¬ x ∈ xs → Unique xs → Unique (xs ++ (x ∷ []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' ≡ x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
help {[]} _ = x'≢x ∷ []
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
All-≢-map : ∀ {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C → D) →
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f →
All (λ x' → ¬ x ≡ x') xs → All (λ y' → ¬ (f x) ≡ y') (mapˡ f xs)
All-≢-map x f f-Injecitve [] = []
All-≢-map x {x' ∷ xs'} f f-Injecitve (x≢x' ∷ x≢xs') = (λ fx≡fx' → x≢x' (f-Injecitve fx≡fx')) ∷ All-≢-map x f f-Injecitve x≢xs'
Unique-map : ∀ {c d} {C : Set c} {D : Set d} {l : List C} (f : C → D) →
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f →
Unique l → Unique (mapˡ f l)
Unique-map {l = []} _ _ _ = empty
Unique-map {l = x ∷ xs} f f-Injecitve (push x≢xs uxs) = push (All-≢-map x f f-Injecitve x≢xs) (Unique-map f f-Injecitve uxs)
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
All-single : ∀ {p c} {C : Set c} {P : C → Set p} {c : C} {l : List C} → All P l → c ∈ l → P c
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (here refl) = p
All-single {c = c} {l = x ∷ xs} (p ∷ ps) (there c∈xs) = All-single ps c∈xs
All-x∈xs : ∀ {a} {A : Set a} (xs : List A) → All (λ x → x ∈ xs) xs
All-x∈xs [] = []
All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
x∈xs⇒fx∈fxs : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x : A} {xs : List A} →
x ∈ xs → (f x) ∈ mapˡ f xs
x∈xs⇒fx∈fxs f (here refl) = here refl
x∈xs⇒fx∈fxs f (there x∈xs') = there (x∈xs⇒fx∈fxs f x∈xs')
iterate : ∀ {a} {A : Set a} (n : ) → (f : A → A) → A → A
iterate 0 _ a = a
iterate (suc n) f a = f (iterate n f a)
data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List A → List B → Set (a ⊔ℓ b ⊔ℓ c) where
[] : Pairwise P [] []
_∷_ : ∀ {x : A} {y : B} {xs : List A} {ys : List B} →
P x y → Pairwise P xs ys →
Pairwise P (x ∷ xs) (y ∷ ys)
∈-cartesianProduct : ∀ {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B} →
x ∈ xs → y ∈ ys → (x Prod., y) ∈ cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' ∷ _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)
concat-∈ : ∀ {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)} →
x ∈ l → l ∈ ls → x ∈ foldr _++_ [] ls
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
concat-∈ {ls = l' ∷ ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
_⇒_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
_⇒_ P Q = ∀ a → P a → Q a
__ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
A → Set (p₁ ⊔ℓ p₂)
__ P Q a = P a ⊎ Q a
_∧_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
A → Set (p₁ ⊔ℓ p₂)
_∧_ P Q a = P a × Q a