agda-spa/Lattice.agda

381 lines
15 KiB
Agda
Raw Normal View History

module Lattice where
import Data.Nat.Properties as NatProps
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
open import Relation.Binary.Definitions
open import Relation.Nullary using (Dec; ¬_)
open import Data.Nat as Nat using (; _≤_)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_)
open import Chain using (Chain; Height; done; step)
open import Function.Definitions using (Injective)
record IsEquivalence {a} (A : Set a) (_≈_ : A A Set a) : Set a where
field
≈-refl : {a : A} a a
≈-sym : {a b : A} a b b a
≈-trans : {a b c : A} a b b c a c
record IsDecidable {a} (A : Set a) (R : A A Set a) : Set a where
field
R-dec : (a₁ a₂ : A) Dec (R a₁ a₂)
record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where
_≼_ : A A Set a
a b = Σ A (λ c (a c) b)
_≺_ : A A Set a
a b = (a b) × (¬ a b)
field
≈-equiv : IsEquivalence A _≈_
⊔-assoc : (x y z : A) ((x y) z) (x (y z))
⊔-comm : (x y : A) (x y) (y x)
⊔-idemp : (x : A) (x x) x
open IsEquivalence ≈-equiv public
record IsLattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A)
(_⊓_ : A A A) : Set a where
field
joinSemilattice : IsSemilattice A _≈_ _⊔_
meetSemilattice : IsSemilattice A _≈_ _⊓_
absorb-⊔-⊓ : (x y : A) (x (x y)) x
absorb-⊓-⊔ : (x y : A) (x (x y)) x
open IsSemilattice joinSemilattice public
open IsSemilattice meetSemilattice public using () renaming
( ⊔-assoc to ⊓-assoc
; ⊔-comm to ⊓-comm
; ⊔-idemp to ⊓-idemp
)
record IsFiniteHeightLattice {a} (A : Set a)
(h : )
(_≈_ : A A Set a)
(_⊔_ : A A A)
(_⊓_ : A A A) : Set (lsuc a) where
field
isLattice : IsLattice A _≈_ _⊔_ _⊓_
fixedHeight : Height (IsLattice._≺_ isLattice) h
open IsLattice isLattice public
module _ {a b} {A : Set a} {B : Set b}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set b)
(_⊔₁_ : A A A) (_⊔₂_ : B B B)
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_)
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_)
Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
Chain-map : (f : A B) Monotonic f Injective _≈₁_ _≈₂_ f
{a₁ a₂ : A} {n : } Chain _≺₁_ a₁ a₂ n Chain _≺₂_ (f a₁) (f a₂) n
Chain-map f Monotonicᶠ Injectiveᶠ done = done
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) =
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
in step fa₁≺₂fa (Chain-map f Monotonicᶠ Injectiveᶠ aa₂)
record Semilattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a
_⊔_ : A A A
isSemilattice : IsSemilattice A _≈_ _⊔_
open IsSemilattice isSemilattice public
record Lattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a
_⊔_ : A A A
_⊓_ : A A A
isLattice : IsLattice A _≈_ _⊔_ _⊓_
open IsLattice isLattice public
module IsEquivalenceInstances where
module ForProd {a} {A B : Set a}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set a)
(eA : IsEquivalence A _≈₁_) (eB : IsEquivalence B _≈₂_) where
infix 4 _≈_
_≈_ : A × B A × B Set a
(a₁ , b₁) (a₂ , b₂) = (a₁ ≈₁ a₂) × (b₁ ≈₂ b₂)
ProdEquivalence : IsEquivalence (A × B) _≈_
ProdEquivalence = record
{ ≈-refl = λ {p}
( IsEquivalence.≈-refl eA
, IsEquivalence.≈-refl eB
)
; ≈-sym = λ {p₁} {p₂} (a₁≈a₂ , b₁≈b₂)
( IsEquivalence.≈-sym eA a₁≈a₂
, IsEquivalence.≈-sym eB b₁≈b₂
)
; ≈-trans = λ {p₁} {p₂} {p₃} (a₁≈a₂ , b₁≈b₂) (a₂≈a₃ , b₂≈b₃)
( IsEquivalence.≈-trans eA a₁≈a₂ a₂≈a₃
, IsEquivalence.≈-trans eB b₁≈b₂ b₂≈b₃
)
}
module ForMap {a b} (A : Set a) (B : Set b)
(≡-dec-A : Decidable (_≡_ {a} {A}))
(_≈₂_ : B B Set b)
(eB : IsEquivalence B _≈₂_) where
open import Map A B ≡-dec-A using (Map; lift; subset)
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
open IsEquivalence eB renaming
( ≈-refl to ≈₂-refl
; ≈-sym to ≈₂-sym
; ≈-trans to ≈₂-trans
)
_≈_ : Map Map Set (Agda.Primitive._⊔_ a b)
_≈_ = lift _≈₂_
_⊆_ : Map Map Set (Agda.Primitive._⊔_ a b)
_⊆_ = subset _≈₂_
private
⊆-refl : (m : Map) m m
⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
⊆-trans : (m₁ m₂ m₃ : Map) m₁ m₂ m₂ m₃ m₁ m₃
⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
let
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃))
LiftEquivalence : IsEquivalence Map _≈_
LiftEquivalence = record
{ ≈-refl = λ {m} (⊆-refl m , ⊆-refl m)
; ≈-sym = λ {m₁} {m₂} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₁ , m₁⊆m₂)
; ≈-trans = λ {m₁} {m₂} {m₃} (m₁⊆m₂ , m₂⊆m₁) (m₂⊆m₃ , m₃⊆m₂)
( ⊆-trans m₁ m₂ m₃ m₁⊆m₂ m₂⊆m₃
, ⊆-trans m₃ m₂ m₁ m₃⊆m₂ m₂⊆m₁
)
}
module IsSemilatticeInstances where
module ForNat where
open Nat
open NatProps
open Eq
NatIsMaxSemilattice : IsSemilattice _≡_ _⊔_
NatIsMaxSemilattice = record
{ ≈-equiv = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}
; ⊔-assoc = ⊔-assoc
; ⊔-comm = ⊔-comm
; ⊔-idemp = ⊔-idem
}
NatIsMinSemilattice : IsSemilattice _≡_ _⊓_
NatIsMinSemilattice = record
{ ≈-equiv = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}
; ⊔-assoc = ⊓-assoc
; ⊔-comm = ⊓-comm
; ⊔-idemp = ⊓-idem
}
module ForProd {a} {A B : Set a}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set a)
(_⊔₁_ : A A A) (_⊔₂_ : B B B)
(sA : IsSemilattice A _≈₁_ _⊔₁_) (sB : IsSemilattice B _≈₂_ _⊔₂_) where
open Eq
open Data.Product
module ProdEquiv = IsEquivalenceInstances.ForProd _≈₁_ _≈₂_ (IsSemilattice.≈-equiv sA) (IsSemilattice.≈-equiv sB)
open ProdEquiv using (_≈_) public
infixl 20 _⊔_
_⊔_ : A × B A × B A × B
(a₁ , b₁) (a₂ , b₂) = (a₁ ⊔₁ a₂ , b₁ ⊔₂ b₂)
ProdIsSemilattice : IsSemilattice (A × B) _≈_ _⊔_
ProdIsSemilattice = record
{ ≈-equiv = ProdEquiv.ProdEquivalence
; ⊔-assoc = λ (a₁ , b₁) (a₂ , b₂) (a₃ , b₃)
( IsSemilattice.⊔-assoc sA a₁ a₂ a₃
, IsSemilattice.⊔-assoc sB b₁ b₂ b₃
)
; ⊔-comm = λ (a₁ , b₁) (a₂ , b₂)
( IsSemilattice.⊔-comm sA a₁ a₂
, IsSemilattice.⊔-comm sB b₁ b₂
)
; ⊔-idemp = λ (a , b)
( IsSemilattice.⊔-idemp sA a
, IsSemilattice.⊔-idemp sB b
)
}
module ForMap {a} {A B : Set a}
(≡-dec-A : Decidable (_≡_ {a} {A}))
(_≈₂_ : B B Set a)
(_⊔₂_ : B B B)
(sB : IsSemilattice B _≈₂_ _⊔₂_) where
open import Map A B ≡-dec-A
open IsSemilattice sB renaming
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym
; ⊔-assoc to ⊔₂-assoc; ⊔-comm to ⊔₂-comm; ⊔-idemp to ⊔₂-idemp
)
module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB)
open MapEquiv using (_≈_) public
infixl 20 _⊔_
infixl 20 _⊓_
_⊔_ : Map Map Map
m₁ m₂ = union _⊔₂_ m₁ m₂
_⊓_ : Map Map Map
m₁ m₂ = intersect _⊔₂_ m₁ m₂
MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_
MapIsUnionSemilattice = record
{ ≈-equiv = MapEquiv.LiftEquivalence
; ⊔-assoc = union-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc
; ⊔-comm = union-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm
; ⊔-idemp = union-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp
}
MapIsIntersectSemilattice : IsSemilattice Map _≈_ _⊓_
MapIsIntersectSemilattice = record
{ ≈-equiv = MapEquiv.LiftEquivalence
; ⊔-assoc = intersect-assoc _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-assoc
; ⊔-comm = intersect-comm _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-comm
; ⊔-idemp = intersect-idemp _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ ⊔₂-idemp
}
module IsLatticeInstances where
module ForNat where
open Nat
open NatProps
open Eq
open IsSemilatticeInstances.ForNat
open Data.Product
private
max-bound₁ : {x y z : } x y z x z
max-bound₁ {x} {y} {z} x⊔y≡z
rewrite sym x⊔y≡z
rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl)
min-bound₁ : {x y z : } x y z z x
min-bound₁ {x} {y} {z} x⊓y≡z
rewrite sym x⊓y≡z = m≤n⇒m⊓o≤n y (≤-refl)
minmax-absorb : {x y : } x (x y) x
minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
where
x⊓x⊔y≤x = min-bound₁ {x} {x y} {x (x y)} refl
x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x y} refl)
-- >:(
helper : x x x (x y) x x x x x (x y)
helper x⊓x≤x⊓x⊔y x⊓x≡x rewrite x⊓x≡x = x⊓x≤x⊓x⊔y
maxmin-absorb : {x y : } x (x y) x
maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
where
x≤x⊔x⊓y = max-bound₁ {x} {x y} {x (x y)} refl
x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x y} refl)
-- >:(
helper : x (x y) x x x x x x (x y) x
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
NatIsLattice : IsLattice _≡_ _⊔_ _⊓_
NatIsLattice = record
{ joinSemilattice = NatIsMaxSemilattice
; meetSemilattice = NatIsMinSemilattice
; absorb-⊔-⊓ = λ x y maxmin-absorb {x} {y}
; absorb-⊓-⊔ = λ x y minmax-absorb {x} {y}
}
module ForProd {a} {A B : Set a}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set a)
(_⊔₁_ : A A A) (_⊓₁_ : A A A)
(_⊔₂_ : B B B) (_⊓₂_ : B B B)
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
module ProdJoin = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊔₂_ (IsLattice.joinSemilattice lA) (IsLattice.joinSemilattice lB)
open ProdJoin using (_⊔_; _≈_) public
module ProdMeet = IsSemilatticeInstances.ForProd _≈₁_ _≈₂_ _⊓₁_ _⊓₂_ (IsLattice.meetSemilattice lA) (IsLattice.meetSemilattice lB)
open ProdMeet using () renaming (_⊔_ to _⊓_) public
ProdIsLattice : IsLattice (A × B) _≈_ _⊔_ _⊓_
ProdIsLattice = record
{ joinSemilattice = ProdJoin.ProdIsSemilattice
; meetSemilattice = ProdMeet.ProdIsSemilattice
; absorb-⊔-⊓ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊔-⊓ lA a₁ a₂
, IsLattice.absorb-⊔-⊓ lB b₁ b₂
)
; absorb-⊓-⊔ = λ (a₁ , b₁) (a₂ , b₂)
( IsLattice.absorb-⊓-⊔ lA a₁ a₂
, IsLattice.absorb-⊓-⊔ lB b₁ b₂
)
}
module ForMap {a} {A B : Set a}
(≡-dec-A : Decidable (_≡_ {a} {A}))
(_≈₂_ : B B Set a)
(_⊔₂_ : B B B)
(_⊓₂_ : B B B)
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Map A B ≡-dec-A
open IsLattice lB renaming
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym
; ⊔-idemp to ⊔₂-idemp; ⊓-idemp to ⊓₂-idemp
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
)
module MapJoin = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊔₂_ (IsLattice.joinSemilattice lB)
open MapJoin using (_⊔_; _≈_) public
module MapMeet = IsSemilatticeInstances.ForMap ≡-dec-A _≈₂_ _⊓₂_ (IsLattice.meetSemilattice lB)
open MapMeet using (_⊓_) public
MapIsLattice : IsLattice Map _≈_ _⊔_ _⊓_
MapIsLattice = record
{ joinSemilattice = MapJoin.MapIsUnionSemilattice
; meetSemilattice = MapMeet.MapIsIntersectSemilattice
; absorb-⊔-⊓ = union-intersect-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
; absorb-⊓-⊔ = intersect-union-absorb _≈₂_ ≈₂-refl ≈₂-sym _⊔₂_ _⊓₂_ ⊔₂-idemp ⊓₂-idemp absorb-⊔₂-⊓₂ absorb-⊓₂-⊔₂
}