agda-spa/Language.agda

536 lines
26 KiB
Agda
Raw Normal View History

module Language where
open import Data.Nat using (; suc; pred; _≤_) renaming (_+_ to _+ⁿ_)
open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive; +-assoc; +-comm)
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁; cast-sym)
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.List.Relation.Unary.Any.Properties using (++⁺ʳ)
open import Data.Fin using (Fin; suc; zero; from; inject₁; inject≤; _↑ʳ_; _↑ˡ_) renaming (_≟_ to _≟ᶠ_; cast to castᶠ)
open import Data.Fin.Properties using (suc-injective) renaming (cast-is-id to castᶠ-is-id)
open import Relation.Binary.PropositionalEquality as Eq using (subst; cong; _≡_; sym; trans; refl)
open import Relation.Nullary using (¬_)
open import Function using (_∘_)
open Eq.≡-Reasoning
open import Lattice
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
data Expr : Set where
_+_ : Expr Expr Expr
_-_ : Expr Expr Expr
`_ : String Expr
#_ : Expr
data BasicStmt : Set where
_←_ : String Expr BasicStmt
noop : BasicStmt
data Stmt : Set where
⟨_⟩ : BasicStmt Stmt
_then_ : Stmt Stmt Stmt
if_then_else_ : Expr Stmt Stmt Stmt
while_repeat_ : Expr Stmt Stmt
module Semantics where
data Value : Set where
↑ᶻ : Value
Env : Set
Env = List (String × Value)
data _∈_ : (String × Value) Env Set where
here : (s : String) (v : Value) (ρ : Env) (s , v) ((s , v) ρ)
there : (s s' : String) (v v' : Value) (ρ : Env) ¬ (s s') (s , v) ρ (s , v) ((s' , v') ρ)
data _,_⇒ᵉ_ : Env Expr Value Set where
⇒ᵉ- : (ρ : Env) (n : ) ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
⇒ᵉ-Var : (ρ : Env) (x : String) (v : Value) (x , v) ρ ρ , (` x) ⇒ᵉ v
⇒ᵉ-+ : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
⇒ᵉ-- : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
data _,_⇒ᵇ_ : Env BasicStmt Env Set where
⇒ᵇ-noop : (ρ : Env) ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : (ρ : Env) (x : String) (e : Expr) (v : Value)
ρ , e ⇒ᵉ v ρ , (x e) ⇒ᵇ ((x , v) ρ)
data _,_⇒ˢ_ : Env Stmt Env Set where
⇒ˢ-⟨⟩ : (ρ₁ ρ₂ : Env) (bs : BasicStmt)
ρ₁ , bs ⇒ᵇ ρ₂ ρ₁ , bs ⇒ˢ ρ₂
⇒ˢ-then : (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt)
ρ₁ , s₁ ⇒ˢ ρ₂ ρ₂ , s₂ ⇒ˢ ρ₃
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
⇒ˢ-if-true : (ρ₁ ρ₂ : Env) (e : Expr) (z : ) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s₁ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-if-false : (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) ρ₁ , s₂ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-while-true : (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ) (s : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s ⇒ˢ ρ₂ ρ₂ , (while e repeat s) ⇒ˢ ρ₃
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
⇒ˢ-while-false : (ρ : Env) (e : Expr) (s : Stmt)
ρ , e ⇒ᵉ (↑ᶻ (+ 0))
ρ , (while e repeat s) ⇒ˢ ρ
module Graphs where
open Semantics
record Graph : Set where
constructor MkGraph
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n +ⁿ m) × Fin (n +ⁿ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where
constructor Mk-⊆
field
n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ +ⁿ n
newNodes : Vec (List BasicStmt) n
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ∈ˡ (Graph.edges g₁)
(↑ˡ-Edge e n) ∈ˡ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) s +ⁿ n₁ +ⁿ n₂)
f ↑ˡ n₁ ↑ˡ n₂ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) s +ⁿ n₁ +ⁿ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ +ⁿ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s +ⁿ 0 s)
f castᶠ p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s +ⁿ 0 s)
e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ∈ˡ es
e ∈ˡ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite castᶠ-is-id refl idx₁
rewrite castᶠ-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
rewrite cast-is-id refl ns₂
rewrite cast-is-id refl ns₃
with refl nsg₂≡nsg₁++newNodes₁
with refl nsg₃≡nsg₂++newNodes₂ =
record
{ n = n₁ +ⁿ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
; newNodes = newNodes₁ ++ newNodes₂
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
(subst (λ e' e' ∈ˡ es₃)
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
}
record Relaxable (T : Graph Set) : Set where
field relax : {g₁ g₂ : Graph} g₁ g₂ T g₁ T g₂
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ g₁⊆g₂ (idx₁ , idx₂)
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
)
}
ProdRelaxable : {P : Graph Set} {Q : Graph Set}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁⊆g₂ (p , q)
( Relaxable.relax pr g₁⊆g₂ p
, Relaxable.relax qr g₁⊆g₂ q) }
)
}
open Relaxable {{...}} public
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
-- Tools for graph construction. The most important is a 'monotonic function':
-- one that takes a graph, and produces another graph, such that the
-- new graph includes all the information from the old one.
MonotonicGraphFunction : (Graph Set) Set
MonotonicGraphFunction T = (g₁ : Graph) Σ Graph (λ g₂ T g₂ × g₁ g₂)
-- Now, define some operations on monotonic functions; these are useful
-- to save the work of threading intermediate graphs in and out of operations.
infixr 2 _⟨⊗⟩_
_⟨⊗⟩_ : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }}
MonotonicGraphFunction T₁ MonotonicGraphFunction T₂
MonotonicGraphFunction (T₁ T₂)
_⟨⊗⟩_ {{r}} f₁ f₂ g
with (g' , (t₁ , g⊆g')) f₁ g
with (g'' , (t₂ , g'⊆g'')) f₂ g' =
(g'' , ((Relaxable.relax r g'⊆g'' t₁ , t₂) , ⊆-trans g⊆g' g'⊆g''))
infixl 2 _update_
_update_ : {T : Graph Set} {{ TRelaxable : Relaxable T }}
MonotonicGraphFunction T ( (g : Graph) T g Σ Graph (λ g' g g'))
MonotonicGraphFunction T
_update_ {{r}} f mod g
with (g' , (t , g⊆g')) f g
with (g'' , g'⊆g'') mod g' t =
(g'' , ((Relaxable.relax r g'⊆g'' t , ⊆-trans g⊆g' g'⊆g'')))
infixl 2 _map_
_map_ : {T₁ T₂ : Graph Set}
MonotonicGraphFunction T₁ ( (g : Graph) T₁ g T₂ g)
MonotonicGraphFunction T₂
_map_ f fn g = let (g' , (t₁ , g⊆g')) = f g in (g' , (fn g' t₁ , g⊆g'))
-- To reason about monotonic functions and what we do, we need a way
-- to describe values they produce. A 'graph-value predicate' is
-- just a predicate for some (dependent) value.
GraphValuePredicate : (Graph Set) Set
GraphValuePredicate T = (g : Graph) T g Set
Both : {T₁ T₂ : Graph Set} GraphValuePredicate T₁ GraphValuePredicate T₂
GraphValuePredicate (T₁ T₂)
Both P Q = (λ { g (t₁ , t₂) (P g t₁ × Q g t₂) })
-- Since monotnic functions keep adding on to a function, proofs of
-- graph-value predicates go stale fast (they describe old values of
-- the graph). To keep propagating them through, we need them to still
-- on 'bigger graphs'. We call such predicates monotonic as well, since
-- they respect the ordering of graphs.
MonotonicPredicate : {T : Graph Set} {{ TRelaxable : Relaxable T }}
GraphValuePredicate T Set
MonotonicPredicate {T} P = (g₁ g₂ : Graph) (t₁ : T g₁) (g₁⊆g₂ : g₁ g₂)
P g₁ t₁ P g₂ (relax g₁⊆g₂ t₁)
-- A 'map' has a certain property if its ouputs satisfy that property
-- for all inputs.
always : {T : Graph Set} GraphValuePredicate T MonotonicGraphFunction T Set
always P m = g₁ let (g₂ , t , _) = m g₁ in P g₂ t
⟨⊗⟩-reason : {T₁ T₂ : Graph Set} {{ T₁Relaxable : Relaxable T₁ }}
{P : GraphValuePredicate T₁} {Q : GraphValuePredicate T₂}
{P-Mono : MonotonicPredicate P}
{m₁ : MonotonicGraphFunction T₁} {m₂ : MonotonicGraphFunction T₂}
always P m₁ always Q m₂ always (Both P Q) (m₁ ⟨⊗⟩ m₂)
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ g
with p aP g
with (g' , (t₁ , g⊆g')) m₁ g
with q aQ g'
with (g'' , (t₂ , g'⊆g'')) m₂ g' = (P-Mono _ _ _ g'⊆g'' p , q)
module Construction where
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g +ⁿ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = mapˡ (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' ++ˡ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ∈ˡ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(∈ˡ-++⁺ʳ es' e∈es))
}
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx')
addEdges g ((idx , idx') (idx₂ , idx) []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })
open import Lattice.MapSet _≟ˢ_
renaming
( MapSet to StringSet
; insert to insertˢ
; to-List to to-Listˢ
; empty to emptyˢ
; singleton to singletonˢ
; _⊔_ to _⊔ˢ_
; `_ to `ˢ_
; _∈_ to _∈ˢ_
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
)
data _∈ᵉ_ : String Expr Set where
in⁺₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ + e₂)
in⁺₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ + e₂)
in⁻₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ - e₂)
in⁻₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ - e₂)
here : {k : String} k ∈ᵉ (` k)
data _∈ᵇ_ : String BasicStmt Set where
in←₁ : {k : String} {e : Expr} k ∈ᵇ (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k ∈ᵇ (k' e)
private
Expr-vars : Expr StringSet
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars here = RelAny.here refl
BasicStmt-vars : BasicStmt StringSet
BasicStmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
BasicStmt-vars noop = emptyˢ
Stmt-vars : Stmt StringSet
Stmt-vars bs = BasicStmt-vars bs
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) (`ˢ (Expr-vars e))) k∈vs
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
-- {m₂ = Expr-vars e}
-- (RelAny.here refl)
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
-- {m₂ = Expr-vars e}
-- (∈⇒∈-Expr-vars k∈e)
Stmts-vars : {n : } Vec Stmt n StringSet
Stmts-vars = foldr (λ n StringSet)
(λ {k} stmt acc (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
-- ∈-Stmts-vars⇒∈ : ∀ {n : } {k : String} (ss : Vec Stmt n) →
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) (`ˢ (Stmts-vars ss'))) k∈vss
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ... | in₂ _ (single k,tt∈vss') =
-- let
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
-- in
-- (suc f' , k∈s')
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ∈⇒∈-Stmts-vars : ∀ {n : } {k : String} {ss : Vec Stmt n} {f : Fin n} →
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmt-vars k∈s)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
-- Creating a new number from a natural number can never create one
-- equal to one you get from weakening the bounds on another number.
z≢sf : {n : } (f : Fin n) ¬ (zero suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
indices : (n : ) Σ (List (Fin n)) Unique
indices 0 = ([] , empty)
indices (suc n') =
let
(inds' , unids') = indices n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
indices-complete : (n : ) (f : Fin n) f ∈ˡ (proj₁ (indices n))
indices-complete (suc n') zero = RelAny.here refl
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
-- For now, just represent the program and CFG as one type, without branching.
record Program : Set where
field
length :
stmts : Vec Stmt length
private
vars-Set : StringSet
vars-Set = Stmts-vars stmts
vars : List String
vars = to-Listˢ vars-Set
vars-Unique : Unique vars
vars-Unique = proj₂ vars-Set
State : Set
State = Fin length
states : List State
states = proj₁ (indices length)
states-complete : (s : State) s ∈ˡ states
states-complete = indices-complete length
states-Unique : Unique states
states-Unique = proj₂ (indices length)
code : State Stmt
code = lookup stmts
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ∈ˡ vars
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
_≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟ᶠ_
-- Computations for incoming and outgoing edges will have to change too
-- when we support branching etc.
incoming : State List State
incoming
with length
... | 0 = (λ ())
... | suc n' = (λ
{ zero []
; (suc f') (inject₁ f') []
})