agda-spa/Analysis/Sign.agda

296 lines
13 KiB
Agda
Raw Normal View History

module Analysis.Sign where
open import Data.Integer as Int using (; +_; -[1+_])
open import Data.Nat as Nat using (; suc; zero)
open import Data.Product using (Σ; proj₁; proj₂; _,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (; tt)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
open import Relation.Nullary using (¬_; yes; no)
open import Language
open import Lattice
open import Showable using (Showable; show)
open import Utils using (_⇒_; _∧_; __)
import Analysis.Forward
data Sign : Set where
+ : Sign
- : Sign
: Sign
instance
showable : Showable Sign
showable = record
{ show = (λ
{ + "+"
; - "-"
; 0ˢ "0"
})
}
-- g for siGn; s is used for strings and i is not very descriptive.
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
_≟ᵍ_ + + = yes refl
_≟ᵍ_ + - = no (λ ())
_≟ᵍ_ + 0ˢ = no (λ ())
_≟ᵍ_ - + = no (λ ())
_≟ᵍ_ - - = yes refl
_≟ᵍ_ - 0ˢ = no (λ ())
_≟ᵍ_ 0ˢ + = no (λ ())
_≟ᵍ_ 0ˢ - = no (λ ())
_≟ᵍ_ 0ˢ 0ˢ = yes refl
-- embelish 'sign' with a top and bottom element.
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
using ()
renaming
( AboveBelow to SignLattice
; ≈-dec to ≈ᵍ-dec
; to ⊥ᵍ
; to ⊤ᵍ
; [_] to [_]ᵍ
; _≈_ to _≈ᵍ_
; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ
; ≈-- to ≈ᵍ-⊤ᵍ-⊤ᵍ
; ≈-lift to ≈ᵍ-lift
; ≈-refl to ≈ᵍ-refl
)
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
open AB.Plain 0ˢ using ()
renaming
( isLattice to isLatticeᵍ
; fixedHeight to fixedHeightᵍ
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
; _⊓_ to _⊓ᵍ_
)
open IsLattice isLatticeᵍ using ()
renaming
( ≼-trans to ≼ᵍ-trans
)
plus : SignLattice SignLattice SignLattice
plus ⊥ᵍ _ = ⊥ᵍ
plus _ ⊥ᵍ = ⊥ᵍ
plus ⊤ᵍ _ = ⊤ᵍ
plus _ ⊤ᵍ = ⊤ᵍ
plus [ + ]ᵍ [ + ]ᵍ = [ + ]ᵍ
plus [ + ]ᵍ [ - ]ᵍ = ⊤ᵍ
plus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ
plus [ - ]ᵍ [ + ]ᵍ = ⊤ᵍ
plus [ - ]ᵍ [ - ]ᵍ = [ - ]ᵍ
plus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ
plus [ 0ˢ ]ᵍ [ + ]ᵍ = [ + ]ᵍ
plus [ 0ˢ ]ᵍ [ - ]ᵍ = [ - ]ᵍ
plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
-- this is incredibly tedious: 125 cases per monotonicity proof, and tactics
-- are hard. postulate for now.
postulate plus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ plus s₁ s₂)
postulate plus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁)
minus : SignLattice SignLattice SignLattice
minus ⊥ᵍ _ = ⊥ᵍ
minus _ ⊥ᵍ = ⊥ᵍ
minus ⊤ᵍ _ = ⊤ᵍ
minus _ ⊤ᵍ = ⊤ᵍ
minus [ + ]ᵍ [ + ]ᵍ = ⊤ᵍ
minus [ + ]ᵍ [ - ]ᵍ = [ + ]ᵍ
minus [ + ]ᵍ [ 0ˢ ]ᵍ = [ + ]ᵍ
minus [ - ]ᵍ [ + ]ᵍ = [ - ]ᵍ
minus [ - ]ᵍ [ - ]ᵍ = ⊤ᵍ
minus [ - ]ᵍ [ 0ˢ ]ᵍ = [ - ]ᵍ
minus [ 0ˢ ]ᵍ [ + ]ᵍ = [ - ]ᵍ
minus [ 0ˢ ]ᵍ [ - ]ᵍ = [ + ]ᵍ
minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
postulate minus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ minus s₁ s₂)
postulate minus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
⟦_⟧ᵍ : SignLattice Value Set
⟦_⟧ᵍ ⊥ᵍ _ =
⟦_⟧ᵍ ⊤ᵍ _ =
⟦_⟧ᵍ [ + ]ᵍ v = Σ (λ n v ↑ᶻ (+_ (suc n)))
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = v ↑ᶻ (+_ zero)
⟦_⟧ᵍ [ - ]ᵍ v = Σ (λ n v ↑ᶻ -[1+ n ])
⟦⟧ᵍ-respects-≈ᵍ : {s₁ s₂ : SignLattice} s₁ ≈ᵍ s₂ s₁ ⟧ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof
⟦⟧ᵍ-⊔ᵍ- : {s₁ s₂ : SignLattice} ( s₁ ⟧ᵍ s₂ ⟧ᵍ) s₁ ⊔ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-⊔ᵍ- {⊥ᵍ} x (inj₂ px₂) = px₂
⟦⟧ᵍ-⊔ᵍ- {⊤ᵍ} x _ = tt
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px
with s₁ ≟ᵍ s₂
... | no _ = tt
... | yes refl
with px
... | inj₁ px₁ = px₁
... | inj₂ px₂ = px₂
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt
s₁≢s₂⇒¬s₁∧s₂ : {s₁ s₂ : Sign} ¬ s₁ s₂ {v} ¬ (( [ s₁ ]ᵍ ⟧ᵍ [ s₂ ]ᵍ ⟧ᵍ) v)
s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl)
s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , ())
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ (refl , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl)
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ (refl , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , ())
s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
⟦⟧ᵍ-⊓ᵍ-∧ : {s₁ s₂ : SignLattice} ( s₁ ⟧ᵍ s₂ ⟧ᵍ) s₁ ⊓ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot
⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂
⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂)
with s₁ ≟ᵍ s₂
... | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂)
... | yes refl = px₁
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁
instance
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
latticeInterpretationᵍ = record
{ ⟦_⟧ = ⟦_⟧ᵍ
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ
; ⟦⟧-⊔- = ⟦⟧ᵍ-⊔ᵍ-
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧
}
module WithProg (prog : Program) where
open Program prog
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg hiding (analyze-correct)
eval : (e : Expr) VariableValues SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs)
eval (` k) vs
with ∈k-decᵛ k (proj₁ (proj₁ vs))
... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs)
... | no _ = ⊤ᵍ
eval (# 0) _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ = [ + ]ᵍ
eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ =
let
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} k∈kvs₁
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂
in
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
instance
SignEval : Evaluator
SignEval = record { eval = eval; eval-Mono = eval-Mono }
-- For debugging purposes, print out the result.
output = show result
-- This should have fewer cases -- the same number as the actual 'plus' above.
-- But agda only simplifies on first argument, apparently, so we are stuck
-- listing them all.
plus-valid : {g₁ g₂} {z₁ z₂} g₁ ⟧ᵍ (↑ᶻ z₁) g₂ ⟧ᵍ (↑ᶻ z₂) plus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.+ z₂))
plus-valid {⊥ᵍ} {_} _ =
plus-valid {[ + ]ᵍ} {⊥ᵍ} _ =
plus-valid {[ - ]ᵍ} {⊥ᵍ} _ =
plus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ =
plus-valid {⊤ᵍ} {⊥ᵍ} _ =
plus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ + ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
plus-valid {[ + ]ᵍ} {[ - ]ᵍ} _ _ = tt
plus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
plus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ - ]ᵍ} {[ + ]ᵍ} _ _ = tt
plus-valid {[ - ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
plus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
plus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
plus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
plus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
plus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
-- Same for this one. It should be easier, but Agda won't simplify.
minus-valid : {g₁ g₂} {z₁ z₂} g₁ ⟧ᵍ (↑ᶻ z₁) g₂ ⟧ᵍ (↑ᶻ z₂) minus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.- z₂))
minus-valid {⊥ᵍ} {_} _ =
minus-valid {[ + ]ᵍ} {⊥ᵍ} _ =
minus-valid {[ - ]ᵍ} {⊥ᵍ} _ =
minus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ =
minus-valid {⊤ᵍ} {⊥ᵍ} _ =
minus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ + ]ᵍ} {[ + ]ᵍ} _ _ = tt
minus-valid {[ + ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
minus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
minus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ - ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
minus-valid {[ - ]ᵍ} {[ - ]ᵍ} _ _ = tt
minus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
minus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
minus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
eval-valid : IsValid
eval-valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
minus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
with ∈k-decᵛ x (proj₁ (proj₁ vs))
... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ
... | no x∉kvs = tt
eval-valid (⇒ᵉ- ρ 0) _ = refl
eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
analyze-correct = ForwardWithProg.analyze-correct