108 Commits

Author SHA1 Message Date
0b5748cc5a Add links in part 0 of compiler series. 2020-09-07 00:21:01 -07:00
cd574b43fd Finalize draft of compilers part 0. 2020-09-02 16:56:37 -07:00
8466a5601e Add a draft of a big portion of the translation of the 0th compilers post. 2020-08-29 17:17:43 -07:00
845d1ae7d8 Add russian index. 2020-08-20 18:35:50 -07:00
988bf72786 Enable localization for Russian. 2020-08-20 18:33:55 -07:00
8557dc4399 Replace more hardcoded strings with their i18nized versions. 2020-08-12 19:15:14 -07:00
7d1fcdb0c5 Add rough russian translation. 2020-08-12 19:07:54 -07:00
bda78fed78 Use localization files in templates. 2020-08-12 17:41:47 -07:00
b0e501f086 Publish the new typesafe interpreter post. 2020-08-12 15:48:53 -07:00
385ae59133 Merge branch 'colors' into master 2020-08-12 15:43:42 -07:00
49469bdf12 Fix issues in typesafe interpreter article. 2020-08-12 15:43:22 -07:00
020417e971 Add draft of new Idris typechecking post.
This one uses line highlights!
2020-08-12 01:38:38 -07:00
eff0de5330 Allow the codelines shortcode to use hl_lines. 2020-08-12 01:37:55 -07:00
b219f6855e Change highlight color for code. 2020-08-12 01:37:39 -07:00
068d0218b0 Fix typesafe interpreter post. 2020-08-11 19:54:45 -07:00
65215ccdd6 Start working on improving color handling in code. 2020-08-11 19:29:55 -07:00
3e9f6a14f2 Fix single-line scroll bug 2020-08-11 17:43:59 -07:00
7623787b1c Mention Kai's help in time traveling article. 2020-07-30 02:05:43 -07:00
e15daa8f6d Make the detailed time traveling example a subsection. 2020-07-30 01:09:30 -07:00
298cf6599c Publish time traveling post. 2020-07-30 00:58:48 -07:00
841930a8ef Add time traveling code. 2020-07-30 00:57:47 -07:00
9b37e496cb Add figure size classes to global CSS. 2020-07-30 00:57:27 -07:00
58e6ad9e79 Update lazy evaluation post with images and more. 2020-07-30 00:49:35 -07:00
3aa2a6783e Add images to time traveling post. 2020-07-29 20:09:32 -07:00
d64a0d1fcd Add version of typesafe interpreter with tuples. 2020-07-23 16:38:54 -07:00
ba141031dd Remove the tweet shortcode. 2020-07-23 13:50:09 -07:00
ebdc63f5a0 Make small edit to DELL post. 2020-07-23 13:45:24 -07:00
5af0a09714 Publish DELL post. 2020-07-23 13:41:33 -07:00
8a2bc2660c Update date on typesafe interpreter. 2020-07-22 14:38:01 -07:00
e59b8cf403 Edit and publish typesafe interpreter. 2020-07-22 14:35:19 -07:00
b078ef9a22 Remove implicit arguments from TypsafeIntrV2. 2020-07-22 14:30:47 -07:00
fdaec6d5a9 Make small adjustments to backend math post. 2020-07-21 15:34:46 -07:00
b631346379 Publish the mathematics post. 2020-07-21 14:55:52 -07:00
e9f2378b47 Resume working on the draft of time traveling. 2020-07-20 22:32:14 -07:00
7d2f78d25c Add links and make small clarifications. 2020-07-20 13:56:07 -07:00
1f734a613c Add the second part of the typechecking post. 2020-07-19 22:56:44 -07:00
a3c299b057 Start working on the improved type-safe interpreter. 2020-07-19 17:16:31 -07:00
12aedfce92 Make small fixes to math rendering code. 2020-07-19 14:09:24 -07:00
65645346a2 Adjust title in DELL post. 2020-07-18 20:47:38 -07:00
cb65e89e53 Add math rendering draft. 2020-07-18 20:47:16 -07:00
6a2fec8ef4 Update the about page. 2020-07-17 19:39:43 -07:00
aa59c90810 Add the draft of the DELL post. 2020-07-17 19:39:35 -07:00
2b317930a0 Add resume link. 2020-07-15 15:09:37 -07:00
e7d56dd4bd Clean up some styles. 2020-07-15 13:56:03 -07:00
a4fedb276d Adjust margin spacing. 2020-07-15 13:18:34 -07:00
277c0a2ce6 Rework sidenote spacing and TOC. 2020-07-15 13:13:47 -07:00
ef3c61e9e6 Make table of contents dark. 2020-06-30 22:15:22 -07:00
1908126607 Add border to code. 2020-06-30 21:31:16 -07:00
2d77f8489f Move hiding code into margin SCSS. 2020-06-30 21:22:19 -07:00
0371651fdd Fix headings on Starbound post. 2020-06-24 23:01:35 -07:00
01734d24f7 Get started on tables of contents. 2020-06-24 22:46:22 -07:00
71fc0546e0 Move move code into common 'margin node' mixin. 2020-06-24 22:06:08 -07:00
871a745702 Extract margin variables and mixins into separate file. 2020-06-24 14:21:56 -07:00
3f0df8ae0d Add links for 12th part of compiler series. 2020-06-21 22:21:43 -07:00
1746011c16 Publish 12th part of compiler series. 2020-06-21 00:51:04 -07:00
7c4cfbf3d4 Fix typechecking of mutually recursive functions. 2020-06-21 00:47:26 -07:00
8524e098a8 Make proofreading-based fixes. 2020-06-20 23:50:26 -07:00
971f58da9b Finish draft of part 12 of compiler series. 2020-06-20 22:03:57 -07:00
c496be1031 Finish implementation description in part 12. 2020-06-20 20:46:54 -07:00
21851e3a9c Add more content to part 12. 2020-06-19 02:22:08 -07:00
600d5b91ea Remove unneeded parent class. 2020-06-18 23:06:13 -07:00
09b90c3bbc Add line numbers to codelines shortode. 2020-06-18 22:30:01 -07:00
f6ca13d6dc Add more implementation content to part 12. 2020-06-18 22:29:38 -07:00
9c4d7c514f Add more content to post 12 draft. 2020-06-16 23:32:09 -07:00
ad1946e9fb Add first draft of lambdas. 2020-06-14 02:00:20 -07:00
68910458e8 Properly handle null types in pattern typechecking. 2020-06-14 00:43:39 -07:00
240e87eca4 Use mangled names in variable environments. 2020-06-13 23:43:52 -07:00
6b5f7e25b7 Maybe finish the let/in code? 2020-06-01 00:23:41 -07:00
e7229e644f Start working on translation. 2020-05-31 18:52:52 -07:00
08c8aca144 Start working on a lifted version of a definition. 2020-05-31 14:37:33 -07:00
7f8dae74ac Adjust type output. 2020-05-31 00:50:58 -07:00
08503116ff Mark some definitions as global, so as not to capture them. 2020-05-31 00:34:12 -07:00
a1d679a59d No longer destroy the list of free variables.
It so happens that this list will tell us which variables
need to be captured.
2020-05-30 23:29:36 -07:00
4586bd0188 Check for free variables in the environment before generalizing. 2020-05-30 16:40:27 -07:00
a97b50f497 Add parsing of let/in. 2020-05-28 14:44:12 -07:00
c84ff11d0d Add typechecking to let/in expressions. 2020-05-26 00:52:54 -07:00
e966e74487 Extract ordering functionality into definition group. 2020-05-25 23:58:56 -07:00
3865abfb4d Add a struct to contain groups of mutually recursive definitions. 2020-05-25 22:11:45 -07:00
1905601aaa Fork off the 12th version of the compiler. 2020-05-25 21:20:41 -07:00
aacb9e2874 Prefer invisible text to unstyled text. 2020-05-25 20:55:20 -07:00
78f3b18969 Increase padding in post lists. 2020-05-17 22:00:10 -07:00
9f73ca2950 Remove bold font weight on post lists.
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-09 17:53:55 -07:00
035b98a602 Start using description meta.
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-09 17:29:57 -07:00
17f4ebc297 Add media screen to all stylesheets. 2020-05-09 17:02:13 -07:00
906e15674e Make minor edits to the content 2020-05-09 16:52:05 -07:00
85bd0b6c9c Switch to left-alignment on small screens to prevent ugly gaps.
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-09 01:48:22 -07:00
b19e8713e0 Center post titles and word counters. 2020-05-09 01:45:53 -07:00
68fb78e765 Only left-justify post titles 2020-05-09 01:41:10 -07:00
be8a0a4a3a Left jusify text in links to prevent random variation
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-04 19:55:48 -07:00
e883e3c60e Update link lists to visually indicate they're links.
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-04 19:25:03 -07:00
4ede62b39a Stop displaying links in bold.
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-04 03:56:21 -07:00
7d9f487a78 Stop using revert due to Chrome issues
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-04 03:47:53 -07:00
9da584ded4 Make page lists bold
Some checks failed
continuous-integration/drone/push Build is failing
2020-05-04 03:36:23 -07:00
9452c90cf3 Switch back to Raleway 2020-05-04 03:35:24 -07:00
a80064f40a Merge branch 'master' of https://dev.danilafe.com/Web-Projects/blog-static 2020-05-04 03:29:48 -07:00
49691803cc Stop displaying links as inline-block 2020-05-04 03:28:17 -07:00
ee4738b245 Add redesign CSS 2020-05-04 03:23:55 -07:00
b270fa78da Add draft of lazy evaluation post 2020-05-04 01:58:25 -07:00
18339d7e4d Build and test version 11 of the compiler instead of 10.
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 21:28:34 -07:00
78563448fb Update to LLVM 10.
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 21:24:24 -07:00
144d5f3324 Try to fix compiler build failure
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 21:05:28 -07:00
0fb315ec47 Prevent single-column tables in the case of highlighting
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 20:47:51 -07:00
1ff67341a1 Disable live uploading while the new server doesn't accept the files.
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 19:57:50 -07:00
a441280812 Add article about Crystal and Nix with OpenSSL.
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-26 19:56:15 -07:00
eda9bbb191 Add more to part 12 of compiler series 2020-04-25 18:07:32 -07:00
2d9da2899f Switch to no line breaks (for Ghostwriter support) 2020-04-25 15:45:15 -07:00
a95490d9d4 Add more content to part 12 of compiler series
Some checks failed
continuous-integration/drone/push Build is failing
2020-04-22 00:30:42 -07:00
44135b1824 Add experimental figure-based styles 2020-04-22 00:30:22 -07:00
129 changed files with 7419 additions and 182 deletions

View File

@@ -10,7 +10,7 @@ steps:
- name: test-compiler
image: archlinux
commands:
- pacman -Sy cmake gcc make llvm bison flex gettext --noconfirm
- pacman -Sy cmake gcc make llvm bison flex gettext libffi --noconfirm
- cd code/compiler
- ./test.sh
- name: build-live
@@ -22,17 +22,17 @@ steps:
path: /live-output
environment:
HUGO_DESTINATION: /live-output
- name: upload-live
image: eeacms/rsync
commands:
- eval `ssh-agent -s`
- echo "$CUSTOM_KEY" | ssh-add -
- mkdir -p ~/.ssh
- echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
- rsync -rv -e "ssh -p 22" /live-output/ blog-live@danilafe.com:/var/www/blog-live/ --checksum
environment:
CUSTOM_KEY:
from_secret: live_ssh_key
volumes:
- name: live-output
path: /live-output
# - name: upload-live
# image: eeacms/rsync
# commands:
# - eval `ssh-agent -s`
# - echo "$CUSTOM_KEY" | ssh-add -
# - mkdir -p ~/.ssh
# - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/.ssh/config
# - rsync -rv -e "ssh -p 22" /live-output/ blog-live@danilafe.com:/var/www/blog-live/ --checksum
# environment:
# CUSTOM_KEY:
# from_secret: live_ssh_key
# volumes:
# - name: live-output
# path: /live-output

View File

@@ -139,7 +139,7 @@ void output_llvm(llvm_context& ctx, const std::string& filename) {
if (ec) {
throw 0;
} else {
llvm::TargetMachine::CodeGenFileType type = llvm::TargetMachine::CGFT_ObjectFile;
llvm::CodeGenFileType type = llvm::CGFT_ObjectFile;
llvm::legacy::PassManager pm;
if (targetMachine->addPassesToEmitFile(pm, file, NULL, type)) {
throw 0;

View File

@@ -0,0 +1,46 @@
cmake_minimum_required(VERSION 3.1)
project(compiler)
# Find all the required packages
find_package(BISON)
find_package(FLEX)
find_package(LLVM REQUIRED CONFIG)
# Set up the flex and bison targets
bison_target(parser
${CMAKE_CURRENT_SOURCE_DIR}/parser.y
${CMAKE_CURRENT_BINARY_DIR}/parser.cpp
COMPILE_FLAGS "-d")
flex_target(scanner
${CMAKE_CURRENT_SOURCE_DIR}/scanner.l
${CMAKE_CURRENT_BINARY_DIR}/scanner.cpp)
add_flex_bison_dependency(scanner parser)
# Find all the relevant LLVM components
llvm_map_components_to_libnames(LLVM_LIBS core x86asmparser x86codegen)
# Create compiler executable
add_executable(compiler
definition.cpp definition.hpp
parsed_type.cpp parsed_type.hpp
ast.cpp ast.hpp
llvm_context.cpp llvm_context.hpp
type_env.cpp type_env.hpp
env.cpp env.hpp
type.cpp type.hpp
error.cpp error.hpp
binop.cpp binop.hpp
instruction.cpp instruction.hpp
graph.cpp graph.hpp
global_scope.cpp global_scope.hpp
${BISON_parser_OUTPUTS}
${FLEX_scanner_OUTPUTS}
main.cpp
)
# Configure compiler executable
target_include_directories(compiler PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
target_include_directories(compiler PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
target_include_directories(compiler PUBLIC ${LLVM_INCLUDE_DIRS})
target_compile_definitions(compiler PUBLIC ${LLVM_DEFINITIONS})
target_link_libraries(compiler ${LLVM_LIBS})

437
code/compiler/12/ast.cpp Normal file
View File

@@ -0,0 +1,437 @@
#include "ast.hpp"
#include <ostream>
#include "binop.hpp"
#include "error.hpp"
#include "type_env.hpp"
#include "env.hpp"
static void print_indent(int n, std::ostream& to) {
while(n--) to << " ";
}
void ast_int::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "INT: " << value << std::endl;
}
void ast_int::find_free(std::set<std::string>& into) {
}
type_ptr ast_int::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
return type_ptr(new type_app(env->lookup_type("Int")));
}
void ast_int::translate(global_scope& scope) {
}
void ast_int::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
into.push_back(instruction_ptr(new instruction_pushint(value)));
}
void ast_lid::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "LID: " << id << std::endl;
}
void ast_lid::find_free(std::set<std::string>& into) {
into.insert(id);
}
type_ptr ast_lid::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
return env->lookup(id)->instantiate(mgr);
}
void ast_lid::translate(global_scope& scope) {
}
void ast_lid::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
auto mangled_name = this->env->get_mangled_name(id);
into.push_back(instruction_ptr(
(env->has_variable(mangled_name) && !this->env->is_global(id)) ?
(instruction*) new instruction_push(env->get_offset(mangled_name)) :
(instruction*) new instruction_pushglobal(mangled_name)));
}
void ast_uid::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "UID: " << id << std::endl;
}
void ast_uid::find_free(std::set<std::string>& into) {
}
type_ptr ast_uid::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
return env->lookup(id)->instantiate(mgr);
}
void ast_uid::translate(global_scope& scope) {
}
void ast_uid::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
into.push_back(instruction_ptr(
new instruction_pushglobal(this->env->get_mangled_name(id))));
}
void ast_binop::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "BINOP: " << op_name(op) << std::endl;
left->print(indent + 1, to);
right->print(indent + 1, to);
}
void ast_binop::find_free(std::set<std::string>& into) {
left->find_free(into);
right->find_free(into);
}
type_ptr ast_binop::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
type_ptr ltype = left->typecheck(mgr, env);
type_ptr rtype = right->typecheck(mgr, env);
type_ptr ftype = env->lookup(op_name(op))->instantiate(mgr);
if(!ftype) throw type_error(std::string("unknown binary operator ") + op_name(op));
type_ptr return_type = mgr.new_type();
type_ptr arrow_one = type_ptr(new type_arr(rtype, return_type));
type_ptr arrow_two = type_ptr(new type_arr(ltype, arrow_one));
mgr.unify(arrow_two, ftype);
return return_type;
}
void ast_binop::translate(global_scope& scope) {
left->translate(scope);
right->translate(scope);
}
void ast_binop::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
right->compile(env, into);
left->compile(env_ptr(new env_offset(1, env)), into);
into.push_back(instruction_ptr(new instruction_pushglobal(op_action(op))));
into.push_back(instruction_ptr(new instruction_mkapp()));
into.push_back(instruction_ptr(new instruction_mkapp()));
}
void ast_app::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "APP:" << std::endl;
left->print(indent + 1, to);
right->print(indent + 1, to);
}
void ast_app::find_free(std::set<std::string>& into) {
left->find_free(into);
right->find_free(into);
}
type_ptr ast_app::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
type_ptr ltype = left->typecheck(mgr, env);
type_ptr rtype = right->typecheck(mgr, env);
type_ptr return_type = mgr.new_type();
type_ptr arrow = type_ptr(new type_arr(rtype, return_type));
mgr.unify(arrow, ltype);
return return_type;
}
void ast_app::translate(global_scope& scope) {
left->translate(scope);
right->translate(scope);
}
void ast_app::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
right->compile(env, into);
left->compile(env_ptr(new env_offset(1, env)), into);
into.push_back(instruction_ptr(new instruction_mkapp()));
}
void ast_case::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "CASE: " << std::endl;
for(auto& branch : branches) {
print_indent(indent + 1, to);
branch->pat->print(to);
to << std::endl;
branch->expr->print(indent + 2, to);
}
}
void ast_case::find_free(std::set<std::string>& into) {
of->find_free(into);
for(auto& branch : branches) {
std::set<std::string> free_in_branch;
std::set<std::string> pattern_variables;
branch->pat->find_variables(pattern_variables);
branch->expr->find_free(free_in_branch);
for(auto& free : free_in_branch) {
if(pattern_variables.find(free) == pattern_variables.end())
into.insert(free);
}
}
}
type_ptr ast_case::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
type_var* var;
type_ptr case_type = mgr.resolve(of->typecheck(mgr, env), var);
type_ptr branch_type = mgr.new_type();
for(auto& branch : branches) {
type_env_ptr new_env = type_scope(env);
branch->pat->typecheck(case_type, mgr, new_env);
type_ptr curr_branch_type = branch->expr->typecheck(mgr, new_env);
mgr.unify(branch_type, curr_branch_type);
}
input_type = mgr.resolve(case_type, var);
type_app* app_type;
if(!(app_type = dynamic_cast<type_app*>(input_type.get())) ||
!dynamic_cast<type_data*>(app_type->constructor.get())) {
throw type_error("attempting case analysis of non-data type");
}
return branch_type;
}
void ast_case::translate(global_scope& scope) {
of->translate(scope);
for(auto& branch : branches) {
branch->expr->translate(scope);
}
}
void ast_case::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
type_app* app_type = dynamic_cast<type_app*>(input_type.get());
type_data* type = dynamic_cast<type_data*>(app_type->constructor.get());
of->compile(env, into);
into.push_back(instruction_ptr(new instruction_eval()));
instruction_jump* jump_instruction = new instruction_jump();
into.push_back(instruction_ptr(jump_instruction));
for(auto& branch : branches) {
std::vector<instruction_ptr> branch_instructions;
pattern_var* vpat;
pattern_constr* cpat;
if((vpat = dynamic_cast<pattern_var*>(branch->pat.get()))) {
branch->expr->compile(env_ptr(new env_offset(1, env)), branch_instructions);
for(auto& constr_pair : type->constructors) {
if(jump_instruction->tag_mappings.find(constr_pair.second.tag) !=
jump_instruction->tag_mappings.end())
break;
jump_instruction->tag_mappings[constr_pair.second.tag] =
jump_instruction->branches.size();
}
jump_instruction->branches.push_back(std::move(branch_instructions));
} else if((cpat = dynamic_cast<pattern_constr*>(branch->pat.get()))) {
env_ptr new_env = env;
for(auto it = cpat->params.rbegin(); it != cpat->params.rend(); it++) {
new_env = env_ptr(new env_var(branch->expr->env->get_mangled_name(*it), new_env));
}
branch_instructions.push_back(instruction_ptr(new instruction_split(
cpat->params.size())));
branch->expr->compile(new_env, branch_instructions);
branch_instructions.push_back(instruction_ptr(new instruction_slide(
cpat->params.size())));
int new_tag = type->constructors[cpat->constr].tag;
if(jump_instruction->tag_mappings.find(new_tag) !=
jump_instruction->tag_mappings.end())
throw type_error("technically not a type error: duplicate pattern");
jump_instruction->tag_mappings[new_tag] =
jump_instruction->branches.size();
jump_instruction->branches.push_back(std::move(branch_instructions));
}
}
for(auto& constr_pair : type->constructors) {
if(jump_instruction->tag_mappings.find(constr_pair.second.tag) ==
jump_instruction->tag_mappings.end())
throw type_error("non-total pattern");
}
}
void ast_let::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "LET: " << std::endl;
in->print(indent + 1, to);
}
void ast_let::find_free(std::set<std::string>& into) {
definitions.find_free(into);
std::set<std::string> all_free;
in->find_free(all_free);
for(auto& free_var : all_free) {
if(definitions.defs_defn.find(free_var) == definitions.defs_defn.end())
into.insert(free_var);
}
}
type_ptr ast_let::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
definitions.typecheck(mgr, env);
return in->typecheck(mgr, definitions.env);
}
void ast_let::translate(global_scope& scope) {
for(auto& def : definitions.defs_data) {
def.second->into_globals(scope);
}
for(auto& def : definitions.defs_defn) {
size_t original_params = def.second->params.size();
std::string original_name = def.second->name;
auto& global_definition = def.second->into_global(scope);
size_t captured = global_definition.params.size() - original_params;
type_env_ptr mangled_env = type_scope(env);
mangled_env->bind(def.first, env->lookup(def.first), visibility::global);
mangled_env->set_mangled_name(def.first, global_definition.name);
ast_ptr global_app(new ast_lid(original_name));
global_app->env = mangled_env;
for(auto& param : global_definition.params) {
if(!(captured--)) break;
ast_ptr new_arg(new ast_lid(param));
new_arg->env = env;
global_app = ast_ptr(new ast_app(std::move(global_app), std::move(new_arg)));
global_app->env = env;
}
translated_definitions.push_back({ def.first, std::move(global_app) });
}
in->translate(scope);
}
void ast_let::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
into.push_back(instruction_ptr(new instruction_alloc(translated_definitions.size())));
env_ptr new_env = env;
for(auto& def : translated_definitions) {
new_env = env_ptr(new env_var(definitions.env->get_mangled_name(def.first), std::move(new_env)));
}
int offset = translated_definitions.size() - 1;
for(auto& def : translated_definitions) {
def.second->compile(new_env, into);
into.push_back(instruction_ptr(new instruction_update(offset--)));
}
in->compile(new_env, into);
into.push_back(instruction_ptr(new instruction_slide(translated_definitions.size())));
}
void ast_lambda::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "LAMBDA";
for(auto& param : params) {
to << " " << param;
}
to << std::endl;
body->print(indent+1, to);
}
void ast_lambda::find_free(std::set<std::string>& into) {
body->find_free(free_variables);
for(auto& param : params) {
free_variables.erase(param);
}
into.insert(free_variables.begin(), free_variables.end());
}
type_ptr ast_lambda::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = env;
var_env = type_scope(env);
type_ptr return_type = mgr.new_type();
type_ptr full_type = return_type;
for(auto it = params.rbegin(); it != params.rend(); it++) {
type_ptr param_type = mgr.new_type();
var_env->bind(*it, param_type);
full_type = type_ptr(new type_arr(std::move(param_type), full_type));
}
mgr.unify(return_type, body->typecheck(mgr, var_env));
return full_type;
}
void ast_lambda::translate(global_scope& scope) {
std::vector<std::string> function_params;
for(auto& free_variable : free_variables) {
if(env->is_global(free_variable)) continue;
function_params.push_back(free_variable);
}
size_t captured_count = function_params.size();
function_params.insert(function_params.end(), params.begin(), params.end());
auto& new_function = scope.add_function("lambda", std::move(function_params), std::move(body));
type_env_ptr mangled_env = type_scope(env);
mangled_env->bind("lambda", type_scheme_ptr(nullptr), visibility::global);
mangled_env->set_mangled_name("lambda", new_function.name);
ast_ptr new_application = ast_ptr(new ast_lid("lambda"));
new_application->env = mangled_env;
for(auto& param : new_function.params) {
if(!(captured_count--)) break;
ast_ptr new_arg = ast_ptr(new ast_lid(param));
new_arg->env = env;
new_application = ast_ptr(new ast_app(std::move(new_application), std::move(new_arg)));
new_application->env = env;
}
translated = std::move(new_application);
}
void ast_lambda::compile(const env_ptr& env, std::vector<instruction_ptr>& into) const {
translated->compile(env, into);
}
void pattern_var::print(std::ostream& to) const {
to << var;
}
void pattern_var::find_variables(std::set<std::string>& into) const {
into.insert(var);
}
void pattern_var::typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const {
env->bind(var, t);
}
void pattern_constr::print(std::ostream& to) const {
to << constr;
for(auto& param : params) {
to << " " << param;
}
}
void pattern_constr::find_variables(std::set<std::string>& into) const {
into.insert(params.begin(), params.end());
}
void pattern_constr::typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const {
type_scheme_ptr constructor_type_scheme = env->lookup(constr);
if(!constructor_type_scheme) {
throw type_error(std::string("pattern using unknown constructor ") + constr);
}
type_ptr constructor_type = constructor_type_scheme->instantiate(mgr);
for(auto& param : params) {
type_arr* arr = dynamic_cast<type_arr*>(constructor_type.get());
if(!arr) throw type_error("too many parameters in constructor pattern");
env->bind(param, arr->left);
constructor_type = arr->right;
}
mgr.unify(t, constructor_type);
}

189
code/compiler/12/ast.hpp Normal file
View File

@@ -0,0 +1,189 @@
#pragma once
#include <memory>
#include <vector>
#include <set>
#include "type.hpp"
#include "type_env.hpp"
#include "binop.hpp"
#include "instruction.hpp"
#include "env.hpp"
#include "definition.hpp"
#include "global_scope.hpp"
struct ast {
type_env_ptr env;
virtual ~ast() = default;
virtual void print(int indent, std::ostream& to) const = 0;
virtual void find_free(std::set<std::string>& into) = 0;
virtual type_ptr typecheck(type_mgr& mgr, type_env_ptr& env) = 0;
virtual void translate(global_scope& scope) = 0;
virtual void compile(const env_ptr& env,
std::vector<instruction_ptr>& into) const = 0;
};
using ast_ptr = std::unique_ptr<ast>;
struct pattern {
virtual ~pattern() = default;
virtual void print(std::ostream& to) const = 0;
virtual void find_variables(std::set<std::string>& into) const = 0;
virtual void typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const = 0;
};
using pattern_ptr = std::unique_ptr<pattern>;
struct branch {
pattern_ptr pat;
ast_ptr expr;
branch(pattern_ptr p, ast_ptr a)
: pat(std::move(p)), expr(std::move(a)) {}
};
using branch_ptr = std::unique_ptr<branch>;
struct ast_int : public ast {
int value;
explicit ast_int(int v)
: value(v) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_lid : public ast {
std::string id;
explicit ast_lid(std::string i)
: id(std::move(i)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_uid : public ast {
std::string id;
explicit ast_uid(std::string i)
: id(std::move(i)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_binop : public ast {
binop op;
ast_ptr left;
ast_ptr right;
ast_binop(binop o, ast_ptr l, ast_ptr r)
: op(o), left(std::move(l)), right(std::move(r)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_app : public ast {
ast_ptr left;
ast_ptr right;
ast_app(ast_ptr l, ast_ptr r)
: left(std::move(l)), right(std::move(r)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_case : public ast {
ast_ptr of;
type_ptr input_type;
std::vector<branch_ptr> branches;
ast_case(ast_ptr o, std::vector<branch_ptr> b)
: of(std::move(o)), branches(std::move(b)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_let : public ast {
using basic_definition = std::pair<std::string, ast_ptr>;
definition_group definitions;
ast_ptr in;
std::vector<basic_definition> translated_definitions;
ast_let(definition_group g, ast_ptr i)
: definitions(std::move(g)), in(std::move(i)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct ast_lambda : public ast {
std::vector<std::string> params;
ast_ptr body;
type_env_ptr var_env;
std::set<std::string> free_variables;
ast_ptr translated;
ast_lambda(std::vector<std::string> ps, ast_ptr b)
: params(std::move(ps)), body(std::move(b)) {}
void print(int indent, std::ostream& to) const;
void find_free(std::set<std::string>& into);
type_ptr typecheck(type_mgr& mgr, type_env_ptr& env);
void translate(global_scope& scope);
void compile(const env_ptr& env, std::vector<instruction_ptr>& into) const;
};
struct pattern_var : public pattern {
std::string var;
pattern_var(std::string v)
: var(std::move(v)) {}
void print(std::ostream &to) const;
void find_variables(std::set<std::string>& into) const;
void typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const;
};
struct pattern_constr : public pattern {
std::string constr;
std::vector<std::string> params;
pattern_constr(std::string c, std::vector<std::string> p)
: constr(std::move(c)), params(std::move(p)) {}
void print(std::ostream &to) const;
void find_variables(std::set<std::string>& into) const;
virtual void typecheck(type_ptr t, type_mgr& mgr, type_env_ptr& env) const;
};

View File

@@ -0,0 +1,21 @@
#include "binop.hpp"
std::string op_name(binop op) {
switch(op) {
case PLUS: return "+";
case MINUS: return "-";
case TIMES: return "*";
case DIVIDE: return "/";
}
return "??";
}
std::string op_action(binop op) {
switch(op) {
case PLUS: return "plus";
case MINUS: return "minus";
case TIMES: return "times";
case DIVIDE: return "divide";
}
return "??";
}

View File

@@ -0,0 +1,12 @@
#pragma once
#include <string>
enum binop {
PLUS,
MINUS,
TIMES,
DIVIDE
};
std::string op_name(binop op);
std::string op_action(binop op);

View File

@@ -0,0 +1,145 @@
#include "definition.hpp"
#include "error.hpp"
#include "ast.hpp"
#include "instruction.hpp"
#include "llvm_context.hpp"
#include "type.hpp"
#include "type_env.hpp"
#include "graph.hpp"
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Type.h>
void definition_defn::find_free() {
body->find_free(free_variables);
for(auto& param : params) {
free_variables.erase(param);
}
}
void definition_defn::insert_types(type_mgr& mgr, type_env_ptr& env, visibility v) {
this->env = env;
var_env = type_scope(env);
return_type = mgr.new_type();
full_type = return_type;
for(auto it = params.rbegin(); it != params.rend(); it++) {
type_ptr param_type = mgr.new_type();
full_type = type_ptr(new type_arr(param_type, full_type));
var_env->bind(*it, param_type);
}
env->bind(name, full_type, v);
}
void definition_defn::typecheck(type_mgr& mgr) {
type_ptr body_type = body->typecheck(mgr, var_env);
mgr.unify(return_type, body_type);
}
global_function& definition_defn::into_global(global_scope& scope) {
std::vector<std::string> all_params;
for(auto& free : free_variables) {
if(env->is_global(free)) continue;
all_params.push_back(free);
}
all_params.insert(all_params.end(), params.begin(), params.end());
body->translate(scope);
return scope.add_function(name, std::move(all_params), std::move(body));
}
void definition_data::insert_types(type_env_ptr& env) {
this->env = env;
env->bind_type(name, type_ptr(new type_data(name, vars.size())));
}
void definition_data::insert_constructors() const {
type_ptr this_type_ptr = env->lookup_type(name);
type_data* this_type = static_cast<type_data*>(this_type_ptr.get());
int next_tag = 0;
std::set<std::string> var_set;
type_app* return_app = new type_app(std::move(this_type_ptr));
type_ptr return_type(return_app);
for(auto& var : vars) {
if(var_set.find(var) != var_set.end()) throw 0;
var_set.insert(var);
return_app->arguments.push_back(type_ptr(new type_var(var)));
}
for(auto& constructor : constructors) {
constructor->tag = next_tag;
this_type->constructors[constructor->name] = { next_tag++ };
type_ptr full_type = return_type;
for(auto it = constructor->types.rbegin(); it != constructor->types.rend(); it++) {
type_ptr type = (*it)->to_type(var_set, env);
full_type = type_ptr(new type_arr(type, full_type));
}
type_scheme_ptr full_scheme(new type_scheme(std::move(full_type)));
full_scheme->forall.insert(full_scheme->forall.begin(), vars.begin(), vars.end());
env->bind(constructor->name, full_scheme);
}
}
void definition_data::into_globals(global_scope& scope) {
for(auto& constructor : constructors) {
global_constructor& c = scope.add_constructor(
constructor->name, constructor->tag, constructor->types.size());
env->set_mangled_name(constructor->name, c.name);
}
}
void definition_group::find_free(std::set<std::string>& into) {
for(auto& def_pair : defs_defn) {
def_pair.second->find_free();
for(auto& free_var : def_pair.second->free_variables) {
if(defs_defn.find(free_var) == defs_defn.end()) {
into.insert(free_var);
} else {
def_pair.second->nearby_variables.insert(free_var);
}
}
}
}
void definition_group::typecheck(type_mgr& mgr, type_env_ptr& env) {
this->env = type_scope(env);
for(auto& def_data : defs_data) {
def_data.second->insert_types(this->env);
}
for(auto& def_data : defs_data) {
def_data.second->insert_constructors();
}
function_graph dependency_graph;
for(auto& def_defn : defs_defn) {
def_defn.second->find_free();
dependency_graph.add_function(def_defn.second->name);
for(auto& dependency : def_defn.second->nearby_variables) {
if(defs_defn.find(dependency) == defs_defn.end())
throw 0;
dependency_graph.add_edge(def_defn.second->name, dependency);
}
}
std::vector<group_ptr> groups = dependency_graph.compute_order();
for(auto it = groups.rbegin(); it != groups.rend(); it++) {
auto& group = *it;
for(auto& def_defnn_name : group->members) {
auto& def_defn = defs_defn.find(def_defnn_name)->second;
def_defn->insert_types(mgr, this->env, vis);
}
for(auto& def_defnn_name : group->members) {
auto& def_defn = defs_defn.find(def_defnn_name)->second;
def_defn->typecheck(mgr);
}
for(auto& def_defnn_name : group->members) {
this->env->generalize(def_defnn_name, *group, mgr);
}
}
}

View File

@@ -0,0 +1,83 @@
#pragma once
#include <memory>
#include <vector>
#include <map>
#include <set>
#include "instruction.hpp"
#include "llvm_context.hpp"
#include "parsed_type.hpp"
#include "type_env.hpp"
#include "global_scope.hpp"
struct ast;
using ast_ptr = std::unique_ptr<ast>;
struct constructor {
std::string name;
std::vector<parsed_type_ptr> types;
int8_t tag;
constructor(std::string n, std::vector<parsed_type_ptr> ts)
: name(std::move(n)), types(std::move(ts)) {}
};
using constructor_ptr = std::unique_ptr<constructor>;
struct definition_defn {
std::string name;
std::vector<std::string> params;
ast_ptr body;
type_env_ptr env;
type_env_ptr var_env;
std::set<std::string> free_variables;
std::set<std::string> nearby_variables;
type_ptr full_type;
type_ptr return_type;
definition_defn(std::string n, std::vector<std::string> p, ast_ptr b)
: name(std::move(n)), params(std::move(p)), body(std::move(b)) {
}
void find_free();
void insert_types(type_mgr& mgr, type_env_ptr& env, visibility v);
void typecheck(type_mgr& mgr);
global_function& into_global(global_scope& scope);
};
using definition_defn_ptr = std::unique_ptr<definition_defn>;
struct definition_data {
std::string name;
std::vector<std::string> vars;
std::vector<constructor_ptr> constructors;
type_env_ptr env;
definition_data(
std::string n,
std::vector<std::string> vs,
std::vector<constructor_ptr> cs)
: name(std::move(n)), vars(std::move(vs)), constructors(std::move(cs)) {}
void insert_types(type_env_ptr& env);
void insert_constructors() const;
void into_globals(global_scope& scope);
};
using definition_data_ptr = std::unique_ptr<definition_data>;
struct definition_group {
std::map<std::string, definition_data_ptr> defs_data;
std::map<std::string, definition_defn_ptr> defs_defn;
visibility vis;
type_env_ptr env;
definition_group(visibility v = visibility::local) : vis(v) {}
void find_free(std::set<std::string>& into);
void typecheck(type_mgr& mgr, type_env_ptr& env);
};

23
code/compiler/12/env.cpp Normal file
View File

@@ -0,0 +1,23 @@
#include "env.hpp"
int env_var::get_offset(const std::string& name) const {
if(name == this->name) return 0;
if(parent) return parent->get_offset(name) + 1;
throw 0;
}
bool env_var::has_variable(const std::string& name) const {
if(name == this->name) return true;
if(parent) return parent->has_variable(name);
return false;
}
int env_offset::get_offset(const std::string& name) const {
if(parent) return parent->get_offset(name) + offset;
throw 0;
}
bool env_offset::has_variable(const std::string& name) const {
if(parent) return parent->has_variable(name);
return false;
}

34
code/compiler/12/env.hpp Normal file
View File

@@ -0,0 +1,34 @@
#pragma once
#include <memory>
#include <string>
struct env {
virtual ~env() = default;
virtual int get_offset(const std::string& name) const = 0;
virtual bool has_variable(const std::string& name) const = 0;
};
using env_ptr = std::shared_ptr<env>;
struct env_var : public env {
std::string name;
env_ptr parent;
env_var(std::string n, env_ptr p)
: name(std::move(n)), parent(std::move(p)) {}
int get_offset(const std::string& name) const;
bool has_variable(const std::string& name) const;
};
struct env_offset : public env {
int offset;
env_ptr parent;
env_offset(int o, env_ptr p)
: offset(o), parent(std::move(p)) {}
int get_offset(const std::string& name) const;
bool has_variable(const std::string& name) const;
};

View File

@@ -0,0 +1,5 @@
#include "error.hpp"
const char* type_error::what() const noexcept {
return "an error occured while checking the types of the program";
}

View File

@@ -0,0 +1,21 @@
#pragma once
#include <exception>
#include "type.hpp"
struct type_error : std::exception {
std::string description;
type_error(std::string d)
: description(std::move(d)) {}
const char* what() const noexcept override;
};
struct unification_error : public type_error {
type_ptr left;
type_ptr right;
unification_error(type_ptr l, type_ptr r)
: left(std::move(l)), right(std::move(r)),
type_error("failed to unify types") {}
};

View File

@@ -0,0 +1,2 @@
data Bool = { True, False }
defn main = { 3 + True }

View File

@@ -0,0 +1 @@
defn main = { 1 2 3 4 5 }

View File

@@ -0,0 +1,8 @@
data List = { Nil, Cons Int List }
defn head l = {
case l of {
Nil -> { 0 }
Cons x y z -> { x }
}
}

View File

@@ -0,0 +1,17 @@
data List a = { Nil, Cons a (List a) }
defn fix f = { let { defn x = { f x } } in { x } }
defn fixpointOnes fo = { Cons 1 fo }
defn sumTwo l = {
case l of {
Nil -> { 0 }
Cons x xs -> {
x + case xs of {
Nil -> { 0 }
Cons y ys -> { y }
}
}
}
}
defn main = { sumTwo (fix fixpointOnes) }

View File

@@ -0,0 +1,8 @@
data Bool = { True, False }
defn if c t e = {
case c of {
True -> { t }
False -> { e }
}
}
defn main = { if (if True False True) 11 3 }

View File

@@ -0,0 +1,19 @@
data List a = { Nil, Cons a (List a) }
defn sum l = {
case l of {
Nil -> { 0 }
Cons x xs -> { x + sum xs}
}
}
defn map f l = {
case l of {
Nil -> { Nil }
Cons x xs -> { Cons (f x) (map f xs) }
}
}
defn main = {
sum (map \x -> { x * x } (map (\x -> { x + x }) (Cons 1 (Cons 2 (Cons 3 Nil)))))
}

View File

@@ -0,0 +1,47 @@
data Bool = { True, False }
data List a = { Nil, Cons a (List a) }
defn if c t e = {
case c of {
True -> { t }
False -> { e }
}
}
defn mergeUntil l r p = {
let {
defn mergeLeft nl nr = {
case nl of {
Nil -> { Nil }
Cons x xs -> { if (p x) (Cons x (mergeRight xs nr)) Nil }
}
}
defn mergeRight nl nr = {
case nr of {
Nil -> { Nil }
Cons x xs -> { if (p x) (Cons x (mergeLeft nl xs)) Nil }
}
}
} in {
mergeLeft l r
}
}
defn const x y = { x }
defn sum l = {
case l of {
Nil -> { 0 }
Cons x xs -> { x + sum xs }
}
}
defn main = {
let {
defn firstList = { Cons 1 (Cons 3 (Cons 5 Nil)) }
defn secondList = { Cons 2 (Cons 4 (Cons 6 Nil)) }
} in {
sum (mergeUntil firstList secondList (const True))
}
}

View File

@@ -0,0 +1,32 @@
data List a = { Nil, Cons a (List a) }
defn map f l = {
case l of {
Nil -> { Nil }
Cons x xs -> { Cons (f x) (map f xs) }
}
}
defn foldl f b l = {
case l of {
Nil -> { b }
Cons x xs -> { foldl f (f b x) xs }
}
}
defn foldr f b l = {
case l of {
Nil -> { b }
Cons x xs -> { f x (foldr f b xs) }
}
}
defn list = { Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) }
defn add x y = { x + y }
defn sum l = { foldr add 0 l }
defn skipAdd x y = { y + 1 }
defn length l = { foldr skipAdd 0 l }
defn main = { sum list + length list }

View File

@@ -0,0 +1,25 @@
data Bool = { True, False }
data List = { Nil, Cons Int List }
defn if c t e = {
case c of {
True -> { t }
False -> { e }
}
}
defn oddEven l e = {
case l of {
Nil -> { e }
Cons x xs -> { evenOdd xs e }
}
}
defn evenOdd l e = {
case l of {
Nil -> { e }
Cons x xs -> { oddEven xs e }
}
}
defn main = { if (oddEven (Cons 1 (Cons 2 (Cons 3 Nil))) True) (oddEven (Cons 1 (Cons 2 (Cons 3 Nil))) 1) 3 }

View File

@@ -0,0 +1,23 @@
data Pair a b = { Pair a b }
defn packer = {
let {
data Packed a = { Packed a }
defn pack a = { Packed a }
defn unpack p = {
case p of {
Packed a -> { a }
}
}
} in {
Pair pack unpack
}
}
defn main = {
case packer of {
Pair pack unpack -> {
unpack (pack 3)
}
}
}

View File

@@ -0,0 +1,17 @@
data Pair a b = { MkPair a b }
defn fst p = {
case p of {
MkPair a b -> { a }
}
}
defn snd p = {
case p of {
MkPair a b -> { b }
}
}
defn pair = { MkPair 1 (MkPair 2 3) }
defn main = { fst pair + snd (snd pair) }

View File

@@ -0,0 +1,122 @@
data List = { Nil, Cons Nat List }
data Bool = { True, False }
data Nat = { O, S Nat }
defn if c t e = {
case c of {
True -> { t }
False -> { e }
}
}
defn toInt n = {
case n of {
O -> { 0 }
S np -> { 1 + toInt np }
}
}
defn lte n m = {
case m of {
O -> {
case n of {
O -> { True }
S np -> { False }
}
}
S mp -> {
case n of {
O -> { True }
S np -> { lte np mp }
}
}
}
}
defn minus n m = {
case m of {
O -> { n }
S mp -> {
case n of {
O -> { O }
S np -> {
minus np mp
}
}
}
}
}
defn mod n m = {
if (lte m n) (mod (minus n m) m) n
}
defn notDivisibleBy n m = {
case (mod m n) of {
O -> { False }
S mp -> { True }
}
}
defn filter f l = {
case l of {
Nil -> { Nil }
Cons x xs -> { if (f x) (Cons x (filter f xs)) (filter f xs) }
}
}
defn map f l = {
case l of {
Nil -> { Nil }
Cons x xs -> { Cons (f x) (map f xs) }
}
}
defn nats = {
Cons (S (S O)) (map S nats)
}
defn primesRec l = {
case l of {
Nil -> { Nil }
Cons p xs -> { Cons p (primesRec (filter (notDivisibleBy p) xs)) }
}
}
defn primes = {
primesRec nats
}
defn take n l = {
case l of {
Nil -> { Nil }
Cons x xs -> {
case n of {
O -> { Nil }
S np -> { Cons x (take np xs) }
}
}
}
}
defn head l = {
case l of {
Nil -> { O }
Cons x xs -> { x }
}
}
defn reverseAcc a l = {
case l of {
Nil -> { a }
Cons x xs -> { reverseAcc (Cons x a) xs }
}
}
defn reverse l = {
reverseAcc Nil l
}
defn main = {
toInt (head (reverse (take ((S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S O))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) primes)))
}

View File

@@ -0,0 +1,31 @@
#include "../runtime.h"
void f_add(struct stack* s) {
struct node_num* left = (struct node_num*) eval(stack_peek(s, 0));
struct node_num* right = (struct node_num*) eval(stack_peek(s, 1));
stack_push(s, (struct node_base*) alloc_num(left->value + right->value));
}
void f_main(struct stack* s) {
// PushInt 320
stack_push(s, (struct node_base*) alloc_num(320));
// PushInt 6
stack_push(s, (struct node_base*) alloc_num(6));
// PushGlobal f_add (the function for +)
stack_push(s, (struct node_base*) alloc_global(f_add, 2));
struct node_base* left;
struct node_base* right;
// MkApp
left = stack_pop(s);
right = stack_pop(s);
stack_push(s, (struct node_base*) alloc_app(left, right));
// MkApp
left = stack_pop(s);
right = stack_pop(s);
stack_push(s, (struct node_base*) alloc_app(left, right));
}

View File

@@ -0,0 +1,2 @@
defn main = { sum 320 6 }
defn sum x y = { x + y }

View File

@@ -0,0 +1,3 @@
defn add x y = { x + y }
defn double x = { add x x }
defn main = { double 163 }

View File

@@ -0,0 +1,9 @@
data List a = { Nil, Cons a (List a) }
data Bool = { True, False }
defn length l = {
case l of {
Nil -> { 0 }
Cons x xs -> { 1 + length xs }
}
}
defn main = { length (Cons 1 (Cons 2 (Cons 3 Nil))) + length (Cons True (Cons False (Cons True Nil))) }

View File

@@ -0,0 +1,16 @@
data List = { Nil, Cons Int List }
defn add x y = { x + y }
defn mul x y = { x * y }
defn foldr f b l = {
case l of {
Nil -> { b }
Cons x xs -> { f x (foldr f b xs) }
}
}
defn main = {
foldr add 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))) +
foldr mul 1 (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))))
}

View File

@@ -0,0 +1,17 @@
data List = { Nil, Cons Int List }
defn sumZip l m = {
case l of {
Nil -> { 0 }
Cons x xs -> {
case m of {
Nil -> { 0 }
Cons y ys -> { x + y + sumZip xs ys }
}
}
}
}
defn ones = { Cons 1 ones }
defn main = { sumZip ones (Cons 1 (Cons 2 (Cons 3 Nil))) }

View File

@@ -0,0 +1,83 @@
#include "global_scope.hpp"
#include "ast.hpp"
void global_function::compile() {
env_ptr new_env = env_ptr(new env_offset(0, nullptr));
for(auto it = params.rbegin(); it != params.rend(); it++) {
new_env = env_ptr(new env_var(*it, new_env));
}
body->compile(new_env, instructions);
instructions.push_back(instruction_ptr(new instruction_update(params.size())));
instructions.push_back(instruction_ptr(new instruction_pop(params.size())));
}
void global_function::declare_llvm(llvm_context& ctx) {
generated_function = ctx.create_custom_function(name, params.size());
}
void global_function::generate_llvm(llvm_context& ctx) {
ctx.builder.SetInsertPoint(&generated_function->getEntryBlock());
for(auto& instruction : instructions) {
instruction->gen_llvm(ctx, generated_function);
}
ctx.builder.CreateRetVoid();
}
void global_constructor::generate_llvm(llvm_context& ctx) {
auto new_function =
ctx.create_custom_function(name, arity);
std::vector<instruction_ptr> instructions;
instructions.push_back(instruction_ptr(new instruction_pack(tag, arity)));
instructions.push_back(instruction_ptr(new instruction_update(0)));
ctx.builder.SetInsertPoint(&new_function->getEntryBlock());
for (auto& instruction : instructions) {
instruction->gen_llvm(ctx, new_function);
}
ctx.builder.CreateRetVoid();
}
global_function& global_scope::add_function(std::string n, std::vector<std::string> ps, ast_ptr b) {
global_function* new_function = new global_function(mangle_name(n), std::move(ps), std::move(b));
functions.push_back(global_function_ptr(new_function));
return *new_function;
}
global_constructor& global_scope::add_constructor(std::string n, int8_t t, size_t a) {
global_constructor* new_constructor = new global_constructor(mangle_name(n), t, a);
constructors.push_back(global_constructor_ptr(new_constructor));
return *new_constructor;
}
void global_scope::compile() {
for(auto& function : functions) {
function->compile();
}
}
void global_scope::generate_llvm(llvm_context& ctx) {
for(auto& constructor : constructors) {
constructor->generate_llvm(ctx);
}
for(auto& function : functions) {
function->declare_llvm(ctx);
}
for(auto& function : functions) {
function->generate_llvm(ctx);
}
}
std::string global_scope::mangle_name(const std::string& n) {
auto occurence_it = occurence_count.find(n);
int occurence = 0;
if(occurence_it != occurence_count.end()) {
occurence = occurence_it->second + 1;
}
occurence_count[n] = occurence;
std::string final_name = n;
if (occurence != 0) {
final_name += "_";
final_name += std::to_string(occurence);
}
return final_name;
}

View File

@@ -0,0 +1,55 @@
#pragma once
#include <memory>
#include <string>
#include <vector>
#include <llvm/IR/Function.h>
#include "instruction.hpp"
struct ast;
using ast_ptr = std::unique_ptr<ast>;
struct global_function {
std::string name;
std::vector<std::string> params;
ast_ptr body;
std::vector<instruction_ptr> instructions;
llvm::Function* generated_function;
global_function(std::string n, std::vector<std::string> ps, ast_ptr b)
: name(std::move(n)), params(std::move(ps)), body(std::move(b)) {}
void compile();
void declare_llvm(llvm_context& ctx);
void generate_llvm(llvm_context& ctx);
};
using global_function_ptr = std::unique_ptr<global_function>;
struct global_constructor {
std::string name;
int8_t tag;
size_t arity;
global_constructor(std::string n, int8_t t, size_t a)
: name(std::move(n)), tag(t), arity(a) {}
void generate_llvm(llvm_context& ctx);
};
using global_constructor_ptr = std::unique_ptr<global_constructor>;
struct global_scope {
std::map<std::string, int> occurence_count;
std::vector<global_function_ptr> functions;
std::vector<global_constructor_ptr> constructors;
global_function& add_function(std::string n, std::vector<std::string> ps, ast_ptr b);
global_constructor& add_constructor(std::string n, int8_t t, size_t a);
void compile();
void generate_llvm(llvm_context& ctx);
private:
std::string mangle_name(const std::string& n);
};

114
code/compiler/12/graph.cpp Normal file
View File

@@ -0,0 +1,114 @@
#include "graph.hpp"
std::set<function_graph::edge> function_graph::compute_transitive_edges() {
std::set<edge> transitive_edges;
transitive_edges.insert(edges.begin(), edges.end());
for(auto& connector : adjacency_lists) {
for(auto& from : adjacency_lists) {
edge to_connector { from.first, connector.first };
for(auto& to : adjacency_lists) {
edge full_jump { from.first, to.first };
if(transitive_edges.find(full_jump) != transitive_edges.end()) continue;
edge from_connector { connector.first, to.first };
if(transitive_edges.find(to_connector) != transitive_edges.end() &&
transitive_edges.find(from_connector) != transitive_edges.end())
transitive_edges.insert(std::move(full_jump));
}
}
}
return transitive_edges;
}
void function_graph::create_groups(
const std::set<edge>& transitive_edges,
std::map<function, group_id>& group_ids,
std::map<group_id, data_ptr>& group_data_map) {
group_id id_counter = 0;
for(auto& vertex : adjacency_lists) {
if(group_ids.find(vertex.first) != group_ids.end())
continue;
data_ptr new_group(new group_data);
new_group->functions.insert(vertex.first);
group_data_map[id_counter] = new_group;
group_ids[vertex.first] = id_counter;
for(auto& other_vertex : adjacency_lists) {
if(transitive_edges.find({vertex.first, other_vertex.first}) != transitive_edges.end() &&
transitive_edges.find({other_vertex.first, vertex.first}) != transitive_edges.end()) {
group_ids[other_vertex.first] = id_counter;
new_group->functions.insert(other_vertex.first);
}
}
id_counter++;
}
}
void function_graph::create_edges(
std::map<function, group_id>& group_ids,
std::map<group_id, data_ptr>& group_data_map) {
std::set<std::pair<group_id, group_id>> group_edges;
for(auto& vertex : adjacency_lists) {
auto vertex_id = group_ids[vertex.first];
auto& vertex_data = group_data_map[vertex_id];
for(auto& other_vertex : vertex.second) {
auto other_id = group_ids[other_vertex];
if(vertex_id == other_id) continue;
if(group_edges.find({vertex_id, other_id}) != group_edges.end())
continue;
group_edges.insert({vertex_id, other_id});
vertex_data->adjacency_list.insert(other_id);
group_data_map[other_id]->indegree++;
}
}
}
std::vector<group_ptr> function_graph::generate_order(
std::map<function, group_id>& group_ids,
std::map<group_id, data_ptr>& group_data_map) {
std::queue<group_id> id_queue;
std::vector<group_ptr> output;
for(auto& group : group_data_map) {
if(group.second->indegree == 0) id_queue.push(group.first);
}
while(!id_queue.empty()) {
auto new_id = id_queue.front();
auto& group_data = group_data_map[new_id];
group_ptr output_group(new group);
output_group->members = std::move(group_data->functions);
id_queue.pop();
for(auto& adjacent_group : group_data->adjacency_list) {
if(--group_data_map[adjacent_group]->indegree == 0)
id_queue.push(adjacent_group);
}
output.push_back(std::move(output_group));
}
return output;
}
std::set<function>& function_graph::add_function(const function& f) {
auto adjacency_list_it = adjacency_lists.find(f);
if(adjacency_list_it != adjacency_lists.end()) {
return adjacency_list_it->second;
} else {
return adjacency_lists[f] = { };
}
}
void function_graph::add_edge(const function& from, const function& to) {
add_function(from).insert(to);
edges.insert({ from, to });
}
std::vector<group_ptr> function_graph::compute_order() {
std::set<edge> transitive_edges = compute_transitive_edges();
std::map<function, group_id> group_ids;
std::map<group_id, data_ptr> group_data_map;
create_groups(transitive_edges, group_ids, group_data_map);
create_edges(group_ids, group_data_map);
return generate_order(group_ids, group_data_map);
}

View File

@@ -0,0 +1,51 @@
#pragma once
#include <algorithm>
#include <cstddef>
#include <queue>
#include <set>
#include <string>
#include <map>
#include <memory>
#include <vector>
using function = std::string;
struct group {
std::set<function> members;
};
using group_ptr = std::unique_ptr<group>;
class function_graph {
using group_id = size_t;
struct group_data {
std::set<function> functions;
std::set<group_id> adjacency_list;
size_t indegree;
};
using data_ptr = std::shared_ptr<group_data>;
using edge = std::pair<function, function>;
using group_edge = std::pair<group_id, group_id>;
std::map<function, std::set<function>> adjacency_lists;
std::set<edge> edges;
std::set<edge> compute_transitive_edges();
void create_groups(
const std::set<edge>&,
std::map<function, group_id>&,
std::map<group_id, data_ptr>&);
void create_edges(
std::map<function, group_id>&,
std::map<group_id, data_ptr>&);
std::vector<group_ptr> generate_order(
std::map<function, group_id>&,
std::map<group_id, data_ptr>&);
public:
std::set<function>& add_function(const function& f);
void add_edge(const function& from, const function& to);
std::vector<group_ptr> compute_order();
};

View File

@@ -0,0 +1,177 @@
#include "instruction.hpp"
#include "llvm_context.hpp"
#include <llvm/IR/BasicBlock.h>
#include <llvm/IR/Function.h>
using namespace llvm;
static void print_indent(int n, std::ostream& to) {
while(n--) to << " ";
}
void instruction_pushint::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "PushInt(" << value << ")" << std::endl;
}
void instruction_pushint::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_push(f, ctx.create_num(f, ctx.create_i32(value)));
}
void instruction_pushglobal::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "PushGlobal(" << name << ")" << std::endl;
}
void instruction_pushglobal::gen_llvm(llvm_context& ctx, Function* f) const {
auto& global_f = ctx.custom_functions.at("f_" + name);
auto arity = ctx.create_i32(global_f->arity);
ctx.create_push(f, ctx.create_global(f, global_f->function, arity));
}
void instruction_push::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Push(" << offset << ")" << std::endl;
}
void instruction_push::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_push(f, ctx.create_peek(f, ctx.create_size(offset)));
}
void instruction_pop::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Pop(" << count << ")" << std::endl;
}
void instruction_pop::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_popn(f, ctx.create_size(count));
}
void instruction_mkapp::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "MkApp()" << std::endl;
}
void instruction_mkapp::gen_llvm(llvm_context& ctx, Function* f) const {
auto left = ctx.create_pop(f);
auto right = ctx.create_pop(f);
ctx.create_push(f, ctx.create_app(f, left, right));
}
void instruction_update::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Update(" << offset << ")" << std::endl;
}
void instruction_update::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_update(f, ctx.create_size(offset));
}
void instruction_pack::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Pack(" << tag << ", " << size << ")" << std::endl;
}
void instruction_pack::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_pack(f, ctx.create_size(size), ctx.create_i8(tag));
}
void instruction_split::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Split()" << std::endl;
}
void instruction_split::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_split(f, ctx.create_size(size));
}
void instruction_jump::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Jump(" << std::endl;
for(auto& instruction_set : branches) {
for(auto& instruction : instruction_set) {
instruction->print(indent + 2, to);
}
to << std::endl;
}
print_indent(indent, to);
to << ")" << std::endl;
}
void instruction_jump::gen_llvm(llvm_context& ctx, Function* f) const {
auto top_node = ctx.create_peek(f, ctx.create_size(0));
auto tag = ctx.unwrap_data_tag(top_node);
auto safety_block = BasicBlock::Create(ctx.ctx, "safety", f);
auto switch_op = ctx.builder.CreateSwitch(tag, safety_block, tag_mappings.size());
std::vector<BasicBlock*> blocks;
for(auto& branch : branches) {
auto branch_block = BasicBlock::Create(ctx.ctx, "branch", f);
ctx.builder.SetInsertPoint(branch_block);
for(auto& instruction : branch) {
instruction->gen_llvm(ctx, f);
}
ctx.builder.CreateBr(safety_block);
blocks.push_back(branch_block);
}
for(auto& mapping : tag_mappings) {
switch_op->addCase(ctx.create_i8(mapping.first), blocks[mapping.second]);
}
ctx.builder.SetInsertPoint(safety_block);
}
void instruction_slide::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Slide(" << offset << ")" << std::endl;
}
void instruction_slide::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_slide(f, ctx.create_size(offset));
}
void instruction_binop::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "BinOp(" << op_action(op) << ")" << std::endl;
}
void instruction_binop::gen_llvm(llvm_context& ctx, Function* f) const {
auto left_int = ctx.unwrap_num(ctx.create_pop(f));
auto right_int = ctx.unwrap_num(ctx.create_pop(f));
llvm::Value* result;
switch(op) {
case PLUS: result = ctx.builder.CreateAdd(left_int, right_int); break;
case MINUS: result = ctx.builder.CreateSub(left_int, right_int); break;
case TIMES: result = ctx.builder.CreateMul(left_int, right_int); break;
case DIVIDE: result = ctx.builder.CreateSDiv(left_int, right_int); break;
}
ctx.create_push(f, ctx.create_num(f, result));
}
void instruction_eval::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Eval()" << std::endl;
}
void instruction_eval::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_unwind(f);
}
void instruction_alloc::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Alloc(" << amount << ")" << std::endl;
}
void instruction_alloc::gen_llvm(llvm_context& ctx, Function* f) const {
ctx.create_alloc(f, ctx.create_size(amount));
}
void instruction_unwind::print(int indent, std::ostream& to) const {
print_indent(indent, to);
to << "Unwind()" << std::endl;
}
void instruction_unwind::gen_llvm(llvm_context& ctx, Function* f) const {
// Nothing
}

View File

@@ -0,0 +1,142 @@
#pragma once
#include <llvm/IR/Function.h>
#include <string>
#include <memory>
#include <vector>
#include <map>
#include <ostream>
#include "binop.hpp"
#include "llvm_context.hpp"
struct instruction {
virtual ~instruction() = default;
virtual void print(int indent, std::ostream& to) const = 0;
virtual void gen_llvm(llvm_context& ctx, llvm::Function* f) const = 0;
};
using instruction_ptr = std::unique_ptr<instruction>;
struct instruction_pushint : public instruction {
int value;
instruction_pushint(int v)
: value(v) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_pushglobal : public instruction {
std::string name;
instruction_pushglobal(std::string n)
: name(std::move(n)) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_push : public instruction {
int offset;
instruction_push(int o)
: offset(o) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_pop : public instruction {
int count;
instruction_pop(int c)
: count(c) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_mkapp : public instruction {
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_update : public instruction {
int offset;
instruction_update(int o)
: offset(o) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_pack : public instruction {
int tag;
int size;
instruction_pack(int t, int s)
: tag(t), size(s) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_split : public instruction {
int size;
instruction_split(int s)
: size(s) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_jump : public instruction {
std::vector<std::vector<instruction_ptr>> branches;
std::map<int, int> tag_mappings;
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_slide : public instruction {
int offset;
instruction_slide(int o)
: offset(o) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_binop : public instruction {
binop op;
instruction_binop(binop o)
: op(o) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_eval : public instruction {
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_alloc : public instruction {
int amount;
instruction_alloc(int a)
: amount(a) {}
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};
struct instruction_unwind : public instruction {
void print(int indent, std::ostream& to) const;
void gen_llvm(llvm_context& ctx, llvm::Function* f) const;
};

View File

@@ -0,0 +1,278 @@
#include "llvm_context.hpp"
#include <llvm/IR/DerivedTypes.h>
using namespace llvm;
void llvm_context::create_types() {
stack_type = StructType::create(ctx, "stack");
gmachine_type = StructType::create(ctx, "gmachine");
stack_ptr_type = PointerType::getUnqual(stack_type);
gmachine_ptr_type = PointerType::getUnqual(gmachine_type);
tag_type = IntegerType::getInt8Ty(ctx);
struct_types["node_base"] = StructType::create(ctx, "node_base");
struct_types["node_app"] = StructType::create(ctx, "node_app");
struct_types["node_num"] = StructType::create(ctx, "node_num");
struct_types["node_global"] = StructType::create(ctx, "node_global");
struct_types["node_ind"] = StructType::create(ctx, "node_ind");
struct_types["node_data"] = StructType::create(ctx, "node_data");
node_ptr_type = PointerType::getUnqual(struct_types.at("node_base"));
function_type = FunctionType::get(Type::getVoidTy(ctx), { gmachine_ptr_type }, false);
gmachine_type->setBody(
stack_ptr_type,
node_ptr_type,
IntegerType::getInt64Ty(ctx),
IntegerType::getInt64Ty(ctx)
);
struct_types.at("node_base")->setBody(
IntegerType::getInt32Ty(ctx),
IntegerType::getInt8Ty(ctx),
node_ptr_type
);
struct_types.at("node_app")->setBody(
struct_types.at("node_base"),
node_ptr_type,
node_ptr_type
);
struct_types.at("node_num")->setBody(
struct_types.at("node_base"),
IntegerType::getInt32Ty(ctx)
);
struct_types.at("node_global")->setBody(
struct_types.at("node_base"),
FunctionType::get(Type::getVoidTy(ctx), { stack_ptr_type }, false)
);
struct_types.at("node_ind")->setBody(
struct_types.at("node_base"),
node_ptr_type
);
struct_types.at("node_data")->setBody(
struct_types.at("node_base"),
IntegerType::getInt8Ty(ctx),
PointerType::getUnqual(node_ptr_type)
);
}
void llvm_context::create_functions() {
auto void_type = Type::getVoidTy(ctx);
auto sizet_type = IntegerType::get(ctx, sizeof(size_t) * 8);
functions["stack_init"] = Function::Create(
FunctionType::get(void_type, { stack_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_init",
&module
);
functions["stack_free"] = Function::Create(
FunctionType::get(void_type, { stack_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_free",
&module
);
functions["stack_push"] = Function::Create(
FunctionType::get(void_type, { stack_ptr_type, node_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_push",
&module
);
functions["stack_pop"] = Function::Create(
FunctionType::get(node_ptr_type, { stack_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_pop",
&module
);
functions["stack_peek"] = Function::Create(
FunctionType::get(node_ptr_type, { stack_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_peek",
&module
);
functions["stack_popn"] = Function::Create(
FunctionType::get(void_type, { stack_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"stack_popn",
&module
);
functions["gmachine_slide"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_slide",
&module
);
functions["gmachine_update"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_update",
&module
);
functions["gmachine_alloc"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_alloc",
&module
);
functions["gmachine_pack"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type, sizet_type, tag_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_pack",
&module
);
functions["gmachine_split"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type, sizet_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_split",
&module
);
functions["gmachine_track"] = Function::Create(
FunctionType::get(node_ptr_type, { gmachine_ptr_type, node_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"gmachine_track",
&module
);
auto int32_type = IntegerType::getInt32Ty(ctx);
functions["alloc_app"] = Function::Create(
FunctionType::get(node_ptr_type, { node_ptr_type, node_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"alloc_app",
&module
);
functions["alloc_num"] = Function::Create(
FunctionType::get(node_ptr_type, { int32_type }, false),
Function::LinkageTypes::ExternalLinkage,
"alloc_num",
&module
);
functions["alloc_global"] = Function::Create(
FunctionType::get(node_ptr_type, { function_type, int32_type }, false),
Function::LinkageTypes::ExternalLinkage,
"alloc_global",
&module
);
functions["alloc_ind"] = Function::Create(
FunctionType::get(node_ptr_type, { node_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"alloc_ind",
&module
);
functions["unwind"] = Function::Create(
FunctionType::get(void_type, { gmachine_ptr_type }, false),
Function::LinkageTypes::ExternalLinkage,
"unwind",
&module
);
}
ConstantInt* llvm_context::create_i8(int8_t i) {
return ConstantInt::get(ctx, APInt(8, i));
}
ConstantInt* llvm_context::create_i32(int32_t i) {
return ConstantInt::get(ctx, APInt(32, i));
}
ConstantInt* llvm_context::create_size(size_t i) {
return ConstantInt::get(ctx, APInt(sizeof(size_t) * 8, i));
}
Value* llvm_context::create_pop(Function* f) {
auto pop_f = functions.at("stack_pop");
return builder.CreateCall(pop_f, { unwrap_gmachine_stack_ptr(f->arg_begin()) });
}
Value* llvm_context::create_peek(Function* f, Value* off) {
auto peek_f = functions.at("stack_peek");
return builder.CreateCall(peek_f, { unwrap_gmachine_stack_ptr(f->arg_begin()), off });
}
void llvm_context::create_push(Function* f, Value* v) {
auto push_f = functions.at("stack_push");
builder.CreateCall(push_f, { unwrap_gmachine_stack_ptr(f->arg_begin()), v });
}
void llvm_context::create_popn(Function* f, Value* off) {
auto popn_f = functions.at("stack_popn");
builder.CreateCall(popn_f, { unwrap_gmachine_stack_ptr(f->arg_begin()), off });
}
void llvm_context::create_update(Function* f, Value* off) {
auto update_f = functions.at("gmachine_update");
builder.CreateCall(update_f, { f->arg_begin(), off });
}
void llvm_context::create_pack(Function* f, Value* c, Value* t) {
auto pack_f = functions.at("gmachine_pack");
builder.CreateCall(pack_f, { f->arg_begin(), c, t });
}
void llvm_context::create_split(Function* f, Value* c) {
auto split_f = functions.at("gmachine_split");
builder.CreateCall(split_f, { f->arg_begin(), c });
}
void llvm_context::create_slide(Function* f, Value* off) {
auto slide_f = functions.at("gmachine_slide");
builder.CreateCall(slide_f, { f->arg_begin(), off });
}
void llvm_context::create_alloc(Function* f, Value* n) {
auto alloc_f = functions.at("gmachine_alloc");
builder.CreateCall(alloc_f, { f->arg_begin(), n });
}
Value* llvm_context::create_track(Function* f, Value* v) {
auto track_f = functions.at("gmachine_track");
return builder.CreateCall(track_f, { f->arg_begin(), v });
}
void llvm_context::create_unwind(Function* f) {
auto unwind_f = functions.at("unwind");
builder.CreateCall(unwind_f, { f->args().begin() });
}
Value* llvm_context::unwrap_gmachine_stack_ptr(Value* g) {
auto offset_0 = create_i32(0);
return builder.CreateGEP(g, { offset_0, offset_0 });
}
Value* llvm_context::unwrap_num(Value* v) {
auto num_ptr_type = PointerType::getUnqual(struct_types.at("node_num"));
auto cast = builder.CreatePointerCast(v, num_ptr_type);
auto offset_0 = create_i32(0);
auto offset_1 = create_i32(1);
auto int_ptr = builder.CreateGEP(cast, { offset_0, offset_1 });
return builder.CreateLoad(int_ptr);
}
Value* llvm_context::create_num(Function* f, Value* v) {
auto alloc_num_f = functions.at("alloc_num");
auto alloc_num_call = builder.CreateCall(alloc_num_f, { v });
return create_track(f, alloc_num_call);
}
Value* llvm_context::unwrap_data_tag(Value* v) {
auto data_ptr_type = PointerType::getUnqual(struct_types.at("node_data"));
auto cast = builder.CreatePointerCast(v, data_ptr_type);
auto offset_0 = create_i32(0);
auto offset_1 = create_i32(1);
auto tag_ptr = builder.CreateGEP(cast, { offset_0, offset_1 });
return builder.CreateLoad(tag_ptr);
}
Value* llvm_context::create_global(Function* f, Value* gf, Value* a) {
auto alloc_global_f = functions.at("alloc_global");
auto alloc_global_call = builder.CreateCall(alloc_global_f, { gf, a });
return create_track(f, alloc_global_call);
}
Value* llvm_context::create_app(Function* f, Value* l, Value* r) {
auto alloc_app_f = functions.at("alloc_app");
auto alloc_app_call = builder.CreateCall(alloc_app_f, { l, r });
return create_track(f, alloc_app_call);
}
llvm::Function* llvm_context::create_custom_function(std::string name, int32_t arity) {
auto void_type = llvm::Type::getVoidTy(ctx);
auto new_function = llvm::Function::Create(
function_type,
llvm::Function::LinkageTypes::ExternalLinkage,
"f_" + name,
&module
);
auto start_block = llvm::BasicBlock::Create(ctx, "entry", new_function);
auto new_custom_f = custom_function_ptr(new custom_function());
new_custom_f->arity = arity;
new_custom_f->function = new_function;
custom_functions["f_" + name] = std::move(new_custom_f);
return new_function;
}

View File

@@ -0,0 +1,72 @@
#pragma once
#include <llvm/IR/DerivedTypes.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Value.h>
#include <map>
struct llvm_context {
struct custom_function {
llvm::Function* function;
int32_t arity;
};
using custom_function_ptr = std::unique_ptr<custom_function>;
llvm::LLVMContext ctx;
llvm::IRBuilder<> builder;
llvm::Module module;
std::map<std::string, custom_function_ptr> custom_functions;
std::map<std::string, llvm::Function*> functions;
std::map<std::string, llvm::StructType*> struct_types;
llvm::StructType* stack_type;
llvm::StructType* gmachine_type;
llvm::PointerType* stack_ptr_type;
llvm::PointerType* gmachine_ptr_type;
llvm::PointerType* node_ptr_type;
llvm::IntegerType* tag_type;
llvm::FunctionType* function_type;
llvm_context()
: builder(ctx), module("bloglang", ctx) {
create_types();
create_functions();
}
void create_types();
void create_functions();
llvm::ConstantInt* create_i8(int8_t);
llvm::ConstantInt* create_i32(int32_t);
llvm::ConstantInt* create_size(size_t);
llvm::Value* create_pop(llvm::Function*);
llvm::Value* create_peek(llvm::Function*, llvm::Value*);
void create_push(llvm::Function*, llvm::Value*);
void create_popn(llvm::Function*, llvm::Value*);
void create_update(llvm::Function*, llvm::Value*);
void create_pack(llvm::Function*, llvm::Value*, llvm::Value*);
void create_split(llvm::Function*, llvm::Value*);
void create_slide(llvm::Function*, llvm::Value*);
void create_alloc(llvm::Function*, llvm::Value*);
llvm::Value* create_track(llvm::Function*, llvm::Value*);
void create_unwind(llvm::Function*);
llvm::Value* unwrap_gmachine_stack_ptr(llvm::Value*);
llvm::Value* unwrap_num(llvm::Value*);
llvm::Value* create_num(llvm::Function*, llvm::Value*);
llvm::Value* unwrap_data_tag(llvm::Value*);
llvm::Value* create_global(llvm::Function*, llvm::Value*, llvm::Value*);
llvm::Value* create_app(llvm::Function*, llvm::Value*, llvm::Value*);
llvm::Function* create_custom_function(std::string name, int32_t arity);
};

163
code/compiler/12/main.cpp Normal file
View File

@@ -0,0 +1,163 @@
#include "ast.hpp"
#include <iostream>
#include "binop.hpp"
#include "definition.hpp"
#include "graph.hpp"
#include "instruction.hpp"
#include "llvm_context.hpp"
#include "parser.hpp"
#include "error.hpp"
#include "type.hpp"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetMachine.h"
void yy::parser::error(const std::string& msg) {
std::cout << "An error occured: " << msg << std::endl;
}
extern definition_group global_defs;
void typecheck_program(
definition_group& defs,
type_mgr& mgr, type_env_ptr& env) {
type_ptr int_type = type_ptr(new type_base("Int"));
env->bind_type("Int", int_type);
type_ptr int_type_app = type_ptr(new type_app(int_type));
type_ptr binop_type = type_ptr(new type_arr(
int_type_app,
type_ptr(new type_arr(int_type_app, int_type_app))));
env->bind("+", binop_type, visibility::global);
env->bind("-", binop_type, visibility::global);
env->bind("*", binop_type, visibility::global);
env->bind("/", binop_type, visibility::global);
std::set<std::string> free;
defs.find_free(free);
defs.typecheck(mgr, env);
for(auto& pair : defs.env->names) {
std::cout << pair.first << ": ";
pair.second.type->print(mgr, std::cout);
std::cout << std::endl;
}
}
global_scope translate_program(definition_group& group) {
global_scope scope;
for(auto& data : group.defs_data) {
data.second->into_globals(scope);
}
for(auto& defn : group.defs_defn) {
auto& function = defn.second->into_global(scope);
function.body->env->parent->set_mangled_name(defn.first, function.name);
}
return scope;
}
void gen_llvm_internal_op(llvm_context& ctx, binop op) {
auto new_function = ctx.create_custom_function(op_action(op), 2);
std::vector<instruction_ptr> instructions;
instructions.push_back(instruction_ptr(new instruction_push(1)));
instructions.push_back(instruction_ptr(new instruction_eval()));
instructions.push_back(instruction_ptr(new instruction_push(1)));
instructions.push_back(instruction_ptr(new instruction_eval()));
instructions.push_back(instruction_ptr(new instruction_binop(op)));
instructions.push_back(instruction_ptr(new instruction_update(2)));
instructions.push_back(instruction_ptr(new instruction_pop(2)));
ctx.builder.SetInsertPoint(&new_function->getEntryBlock());
for(auto& instruction : instructions) {
instruction->gen_llvm(ctx, new_function);
}
ctx.builder.CreateRetVoid();
}
void output_llvm(llvm_context& ctx, const std::string& filename) {
std::string targetTriple = llvm::sys::getDefaultTargetTriple();
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmParser();
llvm::InitializeNativeTargetAsmPrinter();
std::string error;
const llvm::Target* target =
llvm::TargetRegistry::lookupTarget(targetTriple, error);
if (!target) {
std::cerr << error << std::endl;
} else {
std::string cpu = "generic";
std::string features = "";
llvm::TargetOptions options;
llvm::TargetMachine* targetMachine =
target->createTargetMachine(targetTriple, cpu, features,
options, llvm::Optional<llvm::Reloc::Model>());
ctx.module.setDataLayout(targetMachine->createDataLayout());
ctx.module.setTargetTriple(targetTriple);
std::error_code ec;
llvm::raw_fd_ostream file(filename, ec, llvm::sys::fs::F_None);
if (ec) {
throw 0;
} else {
llvm::CodeGenFileType type = llvm::CGFT_ObjectFile;
llvm::legacy::PassManager pm;
if (targetMachine->addPassesToEmitFile(pm, file, NULL, type)) {
throw 0;
} else {
pm.run(ctx.module);
file.close();
}
}
}
}
void gen_llvm(global_scope& scope) {
llvm_context ctx;
gen_llvm_internal_op(ctx, PLUS);
gen_llvm_internal_op(ctx, MINUS);
gen_llvm_internal_op(ctx, TIMES);
gen_llvm_internal_op(ctx, DIVIDE);
scope.generate_llvm(ctx);
ctx.module.print(llvm::outs(), nullptr);
output_llvm(ctx, "program.o");
}
int main() {
yy::parser parser;
type_mgr mgr;
type_env_ptr env(new type_env);
parser.parse();
for(auto& def_defn : global_defs.defs_defn) {
std::cout << def_defn.second->name;
for(auto& param : def_defn.second->params) std::cout << " " << param;
std::cout << ":" << std::endl;
def_defn.second->body->print(1, std::cout);
}
try {
typecheck_program(global_defs, mgr, env);
global_scope scope = translate_program(global_defs);
scope.compile();
gen_llvm(scope);
} catch(unification_error& err) {
std::cout << "failed to unify types: " << std::endl;
std::cout << " (1) \033[34m";
err.left->print(mgr, std::cout);
std::cout << "\033[0m" << std::endl;
std::cout << " (2) \033[32m";
err.right->print(mgr, std::cout);
std::cout << "\033[0m" << std::endl;
} catch(type_error& err) {
std::cout << "failed to type check program: " << err.description << std::endl;
}
}

View File

@@ -0,0 +1,36 @@
#include "parsed_type.hpp"
#include "type.hpp"
#include "type_env.hpp"
type_ptr parsed_type_app::to_type(
const std::set<std::string>& vars,
const type_env& e) const {
auto parent_type = e.lookup_type(name);
if(parent_type == nullptr) throw 0;
type_base* base_type;
if(!(base_type = dynamic_cast<type_base*>(parent_type.get()))) throw 0;
if(base_type->arity != arguments.size()) throw 0;
type_app* new_app = new type_app(std::move(parent_type));
type_ptr to_return(new_app);
for(auto& arg : arguments) {
new_app->arguments.push_back(arg->to_type(vars, e));
}
return to_return;
}
type_ptr parsed_type_var::to_type(
const std::set<std::string>& vars,
const type_env& e) const {
if(vars.find(var) == vars.end()) throw 0;
return type_ptr(new type_var(var));
}
type_ptr parsed_type_arr::to_type(
const std::set<std::string>& vars,
const type_env& env) const {
auto new_left = left->to_type(vars, env);
auto new_right = right->to_type(vars, env);
return type_ptr(new type_arr(std::move(new_left), std::move(new_right)));
}

View File

@@ -0,0 +1,43 @@
#pragma once
#include <memory>
#include <set>
#include <string>
#include "type_env.hpp"
struct parsed_type {
virtual type_ptr to_type(
const std::set<std::string>& vars,
const type_env& env) const = 0;
};
using parsed_type_ptr = std::unique_ptr<parsed_type>;
struct parsed_type_app : parsed_type {
std::string name;
std::vector<parsed_type_ptr> arguments;
parsed_type_app(
std::string n,
std::vector<parsed_type_ptr> as)
: name(std::move(n)), arguments(std::move(as)) {}
type_ptr to_type(const std::set<std::string>& vars, const type_env& env) const;
};
struct parsed_type_var : parsed_type {
std::string var;
parsed_type_var(std::string v) : var(std::move(v)) {}
type_ptr to_type(const std::set<std::string>& vars, const type_env& env) const;
};
struct parsed_type_arr : parsed_type {
parsed_type_ptr left;
parsed_type_ptr right;
parsed_type_arr(parsed_type_ptr l, parsed_type_ptr r)
: left(std::move(l)), right(std::move(r)) {}
type_ptr to_type(const std::set<std::string>& vars, const type_env& env) const;
};

174
code/compiler/12/parser.y Normal file
View File

@@ -0,0 +1,174 @@
%{
#include <string>
#include <iostream>
#include <map>
#include "ast.hpp"
#include "definition.hpp"
#include "parser.hpp"
#include "parsed_type.hpp"
definition_group global_defs;
extern yy::parser::symbol_type yylex();
%}
%token BACKSLASH
%token PLUS
%token TIMES
%token MINUS
%token DIVIDE
%token <int> INT
%token DEFN
%token DATA
%token CASE
%token OF
%token LET
%token IN
%token OCURLY
%token CCURLY
%token OPAREN
%token CPAREN
%token COMMA
%token ARROW
%token EQUAL
%token <std::string> LID
%token <std::string> UID
%language "c++"
%define api.value.type variant
%define api.token.constructor
%type <std::vector<std::string>> lowercaseParams
%type <std::vector<branch_ptr>> branches
%type <std::vector<constructor_ptr>> constructors
%type <std::vector<parsed_type_ptr>> typeList
%type <definition_group> definitions
%type <parsed_type_ptr> type nonArrowType typeListElement
%type <ast_ptr> aAdd aMul case let lambda app appBase
%type <definition_data_ptr> data
%type <definition_defn_ptr> defn
%type <branch_ptr> branch
%type <pattern_ptr> pattern
%type <constructor_ptr> constructor
%start program
%%
program
: definitions { global_defs = std::move($1); global_defs.vis = visibility::global; }
;
definitions
: definitions defn { $$ = std::move($1); auto name = $2->name; $$.defs_defn[name] = std::move($2); }
| definitions data { $$ = std::move($1); auto name = $2->name; $$.defs_data[name] = std::move($2); }
| %empty { $$ = definition_group(); }
;
defn
: DEFN LID lowercaseParams EQUAL OCURLY aAdd CCURLY
{ $$ = definition_defn_ptr(
new definition_defn(std::move($2), std::move($3), std::move($6))); }
;
lowercaseParams
: %empty { $$ = std::vector<std::string>(); }
| lowercaseParams LID { $$ = std::move($1); $$.push_back(std::move($2)); }
;
aAdd
: aAdd PLUS aMul { $$ = ast_ptr(new ast_binop(PLUS, std::move($1), std::move($3))); }
| aAdd MINUS aMul { $$ = ast_ptr(new ast_binop(MINUS, std::move($1), std::move($3))); }
| aMul { $$ = std::move($1); }
;
aMul
: aMul TIMES app { $$ = ast_ptr(new ast_binop(TIMES, std::move($1), std::move($3))); }
| aMul DIVIDE app { $$ = ast_ptr(new ast_binop(DIVIDE, std::move($1), std::move($3))); }
| app { $$ = std::move($1); }
;
app
: app appBase { $$ = ast_ptr(new ast_app(std::move($1), std::move($2))); }
| appBase { $$ = std::move($1); }
;
appBase
: INT { $$ = ast_ptr(new ast_int($1)); }
| LID { $$ = ast_ptr(new ast_lid(std::move($1))); }
| UID { $$ = ast_ptr(new ast_uid(std::move($1))); }
| OPAREN aAdd CPAREN { $$ = std::move($2); }
| case { $$ = std::move($1); }
| let { $$ = std::move($1); }
| lambda { $$ = std::move($1); }
;
let
: LET OCURLY definitions CCURLY IN OCURLY aAdd CCURLY
{ $$ = ast_ptr(new ast_let(std::move($3), std::move($7))); }
;
lambda
: BACKSLASH lowercaseParams ARROW OCURLY aAdd CCURLY
{ $$ = ast_ptr(new ast_lambda(std::move($2), std::move($5))); }
;
case
: CASE aAdd OF OCURLY branches CCURLY
{ $$ = ast_ptr(new ast_case(std::move($2), std::move($5))); }
;
branches
: branches branch { $$ = std::move($1); $$.push_back(std::move($2)); }
| branch { $$ = std::vector<branch_ptr>(); $$.push_back(std::move($1));}
;
branch
: pattern ARROW OCURLY aAdd CCURLY
{ $$ = branch_ptr(new branch(std::move($1), std::move($4))); }
;
pattern
: LID { $$ = pattern_ptr(new pattern_var(std::move($1))); }
| UID lowercaseParams
{ $$ = pattern_ptr(new pattern_constr(std::move($1), std::move($2))); }
;
data
: DATA UID lowercaseParams EQUAL OCURLY constructors CCURLY
{ $$ = definition_data_ptr(new definition_data(std::move($2), std::move($3), std::move($6))); }
;
constructors
: constructors COMMA constructor { $$ = std::move($1); $$.push_back(std::move($3)); }
| constructor
{ $$ = std::vector<constructor_ptr>(); $$.push_back(std::move($1)); }
;
constructor
: UID typeList
{ $$ = constructor_ptr(new constructor(std::move($1), std::move($2))); }
;
type
: nonArrowType ARROW type { $$ = parsed_type_ptr(new parsed_type_arr(std::move($1), std::move($3))); }
| nonArrowType { $$ = std::move($1); }
;
nonArrowType
: UID typeList { $$ = parsed_type_ptr(new parsed_type_app(std::move($1), std::move($2))); }
| LID { $$ = parsed_type_ptr(new parsed_type_var(std::move($1))); }
| OPAREN type CPAREN { $$ = std::move($2); }
;
typeListElement
: OPAREN type CPAREN { $$ = std::move($2); }
| UID { $$ = parsed_type_ptr(new parsed_type_app(std::move($1), {})); }
| LID { $$ = parsed_type_ptr(new parsed_type_var(std::move($1))); }
;
typeList
: %empty { $$ = std::vector<parsed_type_ptr>(); }
| typeList typeListElement { $$ = std::move($1); $$.push_back(std::move($2)); }
;

269
code/compiler/12/runtime.c Normal file
View File

@@ -0,0 +1,269 @@
#include <stdint.h>
#include <assert.h>
#include <memory.h>
#include <stdio.h>
#include "runtime.h"
struct node_base* alloc_node() {
struct node_base* new_node = malloc(sizeof(struct node_app));
new_node->gc_next = NULL;
new_node->gc_reachable = 0;
assert(new_node != NULL);
return new_node;
}
struct node_app* alloc_app(struct node_base* l, struct node_base* r) {
struct node_app* node = (struct node_app*) alloc_node();
node->base.tag = NODE_APP;
node->left = l;
node->right = r;
return node;
}
struct node_num* alloc_num(int32_t n) {
struct node_num* node = (struct node_num*) alloc_node();
node->base.tag = NODE_NUM;
node->value = n;
return node;
}
struct node_global* alloc_global(void (*f)(struct gmachine*), int32_t a) {
struct node_global* node = (struct node_global*) alloc_node();
node->base.tag = NODE_GLOBAL;
node->arity = a;
node->function = f;
return node;
}
struct node_ind* alloc_ind(struct node_base* n) {
struct node_ind* node = (struct node_ind*) alloc_node();
node->base.tag = NODE_IND;
node->next = n;
return node;
}
void free_node_direct(struct node_base* n) {
if(n->tag == NODE_DATA) {
free(((struct node_data*) n)->array);
}
}
void gc_visit_node(struct node_base* n) {
if(n->gc_reachable) return;
n->gc_reachable = 1;
if(n->tag == NODE_APP) {
struct node_app* app = (struct node_app*) n;
gc_visit_node(app->left);
gc_visit_node(app->right);
} if(n->tag == NODE_IND) {
struct node_ind* ind = (struct node_ind*) n;
gc_visit_node(ind->next);
} if(n->tag == NODE_DATA) {
struct node_data* data = (struct node_data*) n;
struct node_base** to_visit = data->array;
while(*to_visit) {
gc_visit_node(*to_visit);
to_visit++;
}
}
}
void stack_init(struct stack* s) {
s->size = 4;
s->count = 0;
s->data = malloc(sizeof(*s->data) * s->size);
assert(s->data != NULL);
}
void stack_free(struct stack* s) {
free(s->data);
}
void stack_push(struct stack* s, struct node_base* n) {
while(s->count >= s->size) {
s->data = realloc(s->data, sizeof(*s->data) * (s->size *= 2));
assert(s->data != NULL);
}
s->data[s->count++] = n;
}
struct node_base* stack_pop(struct stack* s) {
assert(s->count > 0);
return s->data[--s->count];
}
struct node_base* stack_peek(struct stack* s, size_t o) {
assert(s->count > o);
return s->data[s->count - o - 1];
}
void stack_popn(struct stack* s, size_t n) {
assert(s->count >= n);
s->count -= n;
}
void gmachine_init(struct gmachine* g) {
stack_init(&g->stack);
g->gc_nodes = NULL;
g->gc_node_count = 0;
g->gc_node_threshold = 128;
}
void gmachine_free(struct gmachine* g) {
stack_free(&g->stack);
struct node_base* to_free = g->gc_nodes;
struct node_base* next;
while(to_free) {
next = to_free->gc_next;
free_node_direct(to_free);
free(to_free);
to_free = next;
}
}
void gmachine_slide(struct gmachine* g, size_t n) {
assert(g->stack.count > n);
g->stack.data[g->stack.count - n - 1] = g->stack.data[g->stack.count - 1];
g->stack.count -= n;
}
void gmachine_update(struct gmachine* g, size_t o) {
assert(g->stack.count > o + 1);
struct node_ind* ind =
(struct node_ind*) g->stack.data[g->stack.count - o - 2];
ind->base.tag = NODE_IND;
ind->next = g->stack.data[g->stack.count -= 1];
}
void gmachine_alloc(struct gmachine* g, size_t o) {
while(o--) {
stack_push(&g->stack,
gmachine_track(g, (struct node_base*) alloc_ind(NULL)));
}
}
void gmachine_pack(struct gmachine* g, size_t n, int8_t t) {
assert(g->stack.count >= n);
struct node_base** data = malloc(sizeof(*data) * (n + 1));
assert(data != NULL);
memcpy(data, &g->stack.data[g->stack.count - n], n * sizeof(*data));
data[n] = NULL;
struct node_data* new_node = (struct node_data*) alloc_node();
new_node->array = data;
new_node->base.tag = NODE_DATA;
new_node->tag = t;
stack_popn(&g->stack, n);
stack_push(&g->stack, gmachine_track(g, (struct node_base*) new_node));
}
void gmachine_split(struct gmachine* g, size_t n) {
struct node_data* node = (struct node_data*) stack_pop(&g->stack);
for(size_t i = 0; i < n; i++) {
stack_push(&g->stack, node->array[i]);
}
}
struct node_base* gmachine_track(struct gmachine* g, struct node_base* b) {
g->gc_node_count++;
b->gc_next = g->gc_nodes;
g->gc_nodes = b;
if(g->gc_node_count >= g->gc_node_threshold) {
uint64_t nodes_before = g->gc_node_count;
gc_visit_node(b);
gmachine_gc(g);
g->gc_node_threshold = g->gc_node_count * 2;
}
return b;
}
void gmachine_gc(struct gmachine* g) {
for(size_t i = 0; i < g->stack.count; i++) {
gc_visit_node(g->stack.data[i]);
}
struct node_base** head_ptr = &g->gc_nodes;
while(*head_ptr) {
if((*head_ptr)->gc_reachable) {
(*head_ptr)->gc_reachable = 0;
head_ptr = &(*head_ptr)->gc_next;
} else {
struct node_base* to_free = *head_ptr;
*head_ptr = to_free->gc_next;
free_node_direct(to_free);
free(to_free);
g->gc_node_count--;
}
}
}
void unwind(struct gmachine* g) {
struct stack* s = &g->stack;
while(1) {
struct node_base* peek = stack_peek(s, 0);
if(peek->tag == NODE_APP) {
struct node_app* n = (struct node_app*) peek;
stack_push(s, n->left);
} else if(peek->tag == NODE_GLOBAL) {
struct node_global* n = (struct node_global*) peek;
assert(s->count > n->arity);
for(size_t i = 1; i <= n->arity; i++) {
s->data[s->count - i]
= ((struct node_app*) s->data[s->count - i - 1])->right;
}
n->function(g);
} else if(peek->tag == NODE_IND) {
struct node_ind* n = (struct node_ind*) peek;
stack_pop(s);
stack_push(s, n->next);
} else {
break;
}
}
}
extern void f_main(struct gmachine* s);
void print_node(struct node_base* n) {
if(n->tag == NODE_APP) {
struct node_app* app = (struct node_app*) n;
print_node(app->left);
putchar(' ');
print_node(app->right);
} else if(n->tag == NODE_DATA) {
printf("(Packed)");
} else if(n->tag == NODE_GLOBAL) {
struct node_global* global = (struct node_global*) n;
printf("(Global: %p)", global->function);
} else if(n->tag == NODE_IND) {
print_node(((struct node_ind*) n)->next);
} else if(n->tag == NODE_NUM) {
struct node_num* num = (struct node_num*) n;
printf("%d", num->value);
}
}
int main(int argc, char** argv) {
struct gmachine gmachine;
struct node_global* first_node = alloc_global(f_main, 0);
struct node_base* result;
gmachine_init(&gmachine);
gmachine_track(&gmachine, (struct node_base*) first_node);
stack_push(&gmachine.stack, (struct node_base*) first_node);
unwind(&gmachine);
result = stack_pop(&gmachine.stack);
printf("Result: ");
print_node(result);
putchar('\n');
gmachine_free(&gmachine);
}

View File

@@ -0,0 +1,84 @@
#pragma once
#include <stdlib.h>
struct gmachine;
enum node_tag {
NODE_APP,
NODE_NUM,
NODE_GLOBAL,
NODE_IND,
NODE_DATA
};
struct node_base {
enum node_tag tag;
int8_t gc_reachable;
struct node_base* gc_next;
};
struct node_app {
struct node_base base;
struct node_base* left;
struct node_base* right;
};
struct node_num {
struct node_base base;
int32_t value;
};
struct node_global {
struct node_base base;
int32_t arity;
void (*function)(struct gmachine*);
};
struct node_ind {
struct node_base base;
struct node_base* next;
};
struct node_data {
struct node_base base;
int8_t tag;
struct node_base** array;
};
struct node_base* alloc_node();
struct node_app* alloc_app(struct node_base* l, struct node_base* r);
struct node_num* alloc_num(int32_t n);
struct node_global* alloc_global(void (*f)(struct gmachine*), int32_t a);
struct node_ind* alloc_ind(struct node_base* n);
void free_node_direct(struct node_base*);
void gc_visit_node(struct node_base*);
struct stack {
size_t size;
size_t count;
struct node_base** data;
};
void stack_init(struct stack* s);
void stack_free(struct stack* s);
void stack_push(struct stack* s, struct node_base* n);
struct node_base* stack_pop(struct stack* s);
struct node_base* stack_peek(struct stack* s, size_t o);
void stack_popn(struct stack* s, size_t n);
struct gmachine {
struct stack stack;
struct node_base* gc_nodes;
int64_t gc_node_count;
int64_t gc_node_threshold;
};
void gmachine_init(struct gmachine* g);
void gmachine_free(struct gmachine* g);
void gmachine_slide(struct gmachine* g, size_t n);
void gmachine_update(struct gmachine* g, size_t o);
void gmachine_alloc(struct gmachine* g, size_t o);
void gmachine_pack(struct gmachine* g, size_t n, int8_t t);
void gmachine_split(struct gmachine* g, size_t n);
struct node_base* gmachine_track(struct gmachine* g, struct node_base* b);
void gmachine_gc(struct gmachine* g);

View File

@@ -0,0 +1,38 @@
%option noyywrap
%{
#include <iostream>
#include "ast.hpp"
#include "definition.hpp"
#include "parser.hpp"
#define YY_DECL yy::parser::symbol_type yylex()
%}
%%
[ \n]+ {}
\\ { return yy::parser::make_BACKSLASH(); }
\+ { return yy::parser::make_PLUS(); }
\* { return yy::parser::make_TIMES(); }
- { return yy::parser::make_MINUS(); }
\/ { return yy::parser::make_DIVIDE(); }
[0-9]+ { return yy::parser::make_INT(atoi(yytext)); }
defn { return yy::parser::make_DEFN(); }
data { return yy::parser::make_DATA(); }
case { return yy::parser::make_CASE(); }
of { return yy::parser::make_OF(); }
let { return yy::parser::make_LET(); }
in { return yy::parser::make_IN(); }
\{ { return yy::parser::make_OCURLY(); }
\} { return yy::parser::make_CCURLY(); }
\( { return yy::parser::make_OPAREN(); }
\) { return yy::parser::make_CPAREN(); }
, { return yy::parser::make_COMMA(); }
-> { return yy::parser::make_ARROW(); }
= { return yy::parser::make_EQUAL(); }
[a-z][a-zA-Z]* { return yy::parser::make_LID(std::string(yytext)); }
[A-Z][a-zA-Z]* { return yy::parser::make_UID(std::string(yytext)); }
%%

23
code/compiler/12/test.cpp Normal file
View File

@@ -0,0 +1,23 @@
#include "graph.hpp"
int main() {
function_graph graph;
graph.add_edge("f", "g");
graph.add_edge("g", "h");
graph.add_edge("h", "f");
graph.add_edge("i", "j");
graph.add_edge("j", "i");
graph.add_edge("j", "f");
graph.add_edge("x", "f");
graph.add_edge("x", "i");
for(auto& group : graph.compute_order()) {
std::cout << "Group: " << std::endl;
for(auto& member : group->members) {
std::cout << member << std::endl;
}
}
}

219
code/compiler/12/type.cpp Normal file
View File

@@ -0,0 +1,219 @@
#include "type.hpp"
#include <ostream>
#include <sstream>
#include <algorithm>
#include <vector>
#include "error.hpp"
bool type::is_arrow(const type_mgr& mgr) const { return false; }
void type_scheme::print(const type_mgr& mgr, std::ostream& to) const {
if(forall.size() != 0) {
to << "forall ";
for(auto& var : forall) {
to << var << " ";
}
to << ". ";
}
monotype->print(mgr, to);
}
type_ptr type_scheme::instantiate(type_mgr& mgr) const {
if(forall.size() == 0) return monotype;
std::map<std::string, type_ptr> subst;
for(auto& var : forall) {
subst[var] = mgr.new_type();
}
return mgr.substitute(subst, monotype);
}
void type_var::print(const type_mgr& mgr, std::ostream& to) const {
auto it = mgr.types.find(name);
if(it != mgr.types.end()) {
it->second->print(mgr, to);
} else {
to << name;
}
}
bool type_var::is_arrow(const type_mgr& mgr) const {
auto it = mgr.types.find(name);
if(it != mgr.types.end()) {
return it->second->is_arrow(mgr);
} else {
return false;
}
}
void type_base::print(const type_mgr& mgr, std::ostream& to) const {
to << name;
}
void type_arr::print(const type_mgr& mgr, std::ostream& to) const {
bool print_parenths = left->is_arrow(mgr);
if(print_parenths) to << "(";
left->print(mgr, to);
if(print_parenths) to << ")";
to << " -> ";
right->print(mgr, to);
}
bool type_arr::is_arrow(const type_mgr& mgr) const {
return true;
}
void type_app::print(const type_mgr& mgr, std::ostream& to) const {
constructor->print(mgr, to);
to << "*";
for(auto& arg : arguments) {
to << " ";
arg->print(mgr, to);
}
}
std::string type_mgr::new_type_name() {
int temp = last_id++;
std::string str = "";
while(temp != -1) {
str += (char) ('a' + (temp % 26));
temp = temp / 26 - 1;
}
std::reverse(str.begin(), str.end());
return str;
}
type_ptr type_mgr::new_type() {
return type_ptr(new type_var(new_type_name()));
}
type_ptr type_mgr::new_arrow_type() {
return type_ptr(new type_arr(new_type(), new_type()));
}
type_ptr type_mgr::resolve(type_ptr t, type_var*& var) const {
type_var* cast;
var = nullptr;
while((cast = dynamic_cast<type_var*>(t.get()))) {
auto it = types.find(cast->name);
if(it == types.end()) {
var = cast;
break;
}
t = it->second;
}
return t;
}
void type_mgr::unify(type_ptr l, type_ptr r) {
type_var *lvar, *rvar;
type_arr *larr, *rarr;
type_base *lid, *rid;
type_app *lapp, *rapp;
l = resolve(l, lvar);
r = resolve(r, rvar);
if(lvar) {
bind(lvar->name, r);
return;
} else if(rvar) {
bind(rvar->name, l);
return;
} else if((larr = dynamic_cast<type_arr*>(l.get())) &&
(rarr = dynamic_cast<type_arr*>(r.get()))) {
unify(larr->left, rarr->left);
unify(larr->right, rarr->right);
return;
} else if((lid = dynamic_cast<type_base*>(l.get())) &&
(rid = dynamic_cast<type_base*>(r.get()))) {
if(lid->name == rid->name && lid->arity == rid->arity) return;
} else if((lapp = dynamic_cast<type_app*>(l.get())) &&
(rapp = dynamic_cast<type_app*>(r.get()))) {
unify(lapp->constructor, rapp->constructor);
auto left_it = lapp->arguments.begin();
auto right_it = rapp->arguments.begin();
while(left_it != lapp->arguments.end() &&
right_it != rapp->arguments.end()) {
unify(*left_it, *right_it);
left_it++, right_it++;
}
return;
}
throw unification_error(l, r);
}
type_ptr type_mgr::substitute(const std::map<std::string, type_ptr>& subst, const type_ptr& t) const {
type_ptr temp = t;
while(type_var* var = dynamic_cast<type_var*>(temp.get())) {
auto subst_it = subst.find(var->name);
if(subst_it != subst.end()) return subst_it->second;
auto var_it = types.find(var->name);
if(var_it == types.end()) return t;
temp = var_it->second;
}
if(type_arr* arr = dynamic_cast<type_arr*>(temp.get())) {
auto left_result = substitute(subst, arr->left);
auto right_result = substitute(subst, arr->right);
if(left_result == arr->left && right_result == arr->right) return t;
return type_ptr(new type_arr(left_result, right_result));
} else if(type_app* app = dynamic_cast<type_app*>(temp.get())) {
auto constructor_result = substitute(subst, app->constructor);
bool arg_changed = false;
std::vector<type_ptr> new_args;
for(auto& arg : app->arguments) {
auto arg_result = substitute(subst, arg);
arg_changed |= arg_result != arg;
new_args.push_back(std::move(arg_result));
}
if(constructor_result == app->constructor && !arg_changed) return t;
type_app* new_app = new type_app(std::move(constructor_result));
std::swap(new_app->arguments, new_args);
return type_ptr(new_app);
}
return t;
}
void type_mgr::bind(const std::string& s, type_ptr t) {
type_var* other = dynamic_cast<type_var*>(t.get());
if(other && other->name == s) return;
types[s] = t;
}
void type_mgr::find_free(const type_ptr& t, std::set<std::string>& into) const {
type_var* var;
type_ptr resolved = resolve(t, var);
if(var) {
into.insert(var->name);
} else if(type_arr* arr = dynamic_cast<type_arr*>(resolved.get())) {
find_free(arr->left, into);
find_free(arr->right, into);
} else if(type_app* app = dynamic_cast<type_app*>(resolved.get())) {
find_free(app->constructor, into);
for(auto& arg : app->arguments) find_free(arg, into);
}
}
void type_mgr::find_free(const type_scheme_ptr& t, std::set<std::string>& into) const {
std::set<std::string> monotype_free;
type_mgr limited_mgr;
for(auto& binding : types) {
auto existing_position = std::find(t->forall.begin(), t->forall.end(), binding.first);
if(existing_position != t->forall.end()) continue;
limited_mgr.types[binding.first] = binding.second;
}
limited_mgr.find_free(t->monotype, monotype_free);
for(auto& not_free : t->forall) {
monotype_free.erase(not_free);
}
into.insert(monotype_free.begin(), monotype_free.end());
}

99
code/compiler/12/type.hpp Normal file
View File

@@ -0,0 +1,99 @@
#pragma once
#include <memory>
#include <map>
#include <string>
#include <vector>
#include <set>
struct type_mgr;
struct type {
virtual ~type() = default;
virtual void print(const type_mgr& mgr, std::ostream& to) const = 0;
virtual bool is_arrow(const type_mgr& mgr) const;
};
using type_ptr = std::shared_ptr<type>;
struct type_scheme {
std::vector<std::string> forall;
type_ptr monotype;
type_scheme(type_ptr type) : forall(), monotype(std::move(type)) {}
void print(const type_mgr& mgr, std::ostream& to) const;
type_ptr instantiate(type_mgr& mgr) const;
};
using type_scheme_ptr = std::shared_ptr<type_scheme>;
struct type_var : public type {
std::string name;
type_var(std::string n)
: name(std::move(n)) {}
void print(const type_mgr& mgr, std::ostream& to) const;
bool is_arrow(const type_mgr& mgr) const;
};
struct type_base : public type {
std::string name;
int32_t arity;
type_base(std::string n, int32_t a = 0)
: name(std::move(n)), arity(a) {}
void print(const type_mgr& mgr, std::ostream& to) const;
};
struct type_data : public type_base {
struct constructor {
int tag;
};
std::map<std::string, constructor> constructors;
type_data(std::string n, int32_t a = 0)
: type_base(std::move(n), a) {}
};
struct type_arr : public type {
type_ptr left;
type_ptr right;
type_arr(type_ptr l, type_ptr r)
: left(std::move(l)), right(std::move(r)) {}
void print(const type_mgr& mgr, std::ostream& to) const;
bool is_arrow(const type_mgr& mgr) const;
};
struct type_app : public type {
type_ptr constructor;
std::vector<type_ptr> arguments;
type_app(type_ptr c)
: constructor(std::move(c)) {}
void print(const type_mgr& mgr, std::ostream& to) const;
};
struct type_mgr {
int last_id = 0;
std::map<std::string, type_ptr> types;
std::string new_type_name();
type_ptr new_type();
type_ptr new_arrow_type();
void unify(type_ptr l, type_ptr r);
type_ptr substitute(
const std::map<std::string, type_ptr>& subst,
const type_ptr& t) const;
type_ptr resolve(type_ptr t, type_var*& var) const;
void bind(const std::string& s, type_ptr t);
void find_free(const type_ptr& t, std::set<std::string>& into) const;
void find_free(const type_scheme_ptr& t, std::set<std::string>& into) const;
};

View File

@@ -0,0 +1,85 @@
#include "type_env.hpp"
#include "type.hpp"
void type_env::find_free(const type_mgr& mgr, std::set<std::string>& into) const {
if(parent != nullptr) parent->find_free(mgr, into);
for(auto& binding : names) {
mgr.find_free(binding.second.type, into);
}
}
void type_env::find_free_except(const type_mgr& mgr, const group& avoid,
std::set<std::string>& into) const {
if(parent != nullptr) parent->find_free(mgr, into);
for(auto& binding : names) {
if(avoid.members.find(binding.first) != avoid.members.end()) continue;
mgr.find_free(binding.second.type, into);
}
}
type_scheme_ptr type_env::lookup(const std::string& name) const {
auto it = names.find(name);
if(it != names.end()) return it->second.type;
if(parent) return parent->lookup(name);
return nullptr;
}
bool type_env::is_global(const std::string& name) const {
auto it = names.find(name);
if(it != names.end()) return it->second.vis == visibility::global;
if(parent) return parent->is_global(name);
return false;
}
void type_env::set_mangled_name(const std::string& name, const std::string& mangled) {
auto it = names.find(name);
if(it != names.end()) it->second.mangled_name = mangled;
}
const std::string& type_env::get_mangled_name(const std::string& name) const {
auto it = names.find(name);
if(it != names.end())
return (it->second.mangled_name != "") ? it->second.mangled_name : name;
if(parent) return parent->get_mangled_name(name);
return name;
}
type_ptr type_env::lookup_type(const std::string& name) const {
auto it = type_names.find(name);
if(it != type_names.end()) return it->second;
if(parent) return parent->lookup_type(name);
return nullptr;
}
void type_env::bind(const std::string& name, type_ptr t, visibility v) {
type_scheme_ptr new_scheme(new type_scheme(std::move(t)));
names[name] = variable_data(std::move(new_scheme), v, "");
}
void type_env::bind(const std::string& name, type_scheme_ptr t, visibility v) {
names[name] = variable_data(std::move(t), v, "");
}
void type_env::bind_type(const std::string& type_name, type_ptr t) {
if(lookup_type(type_name) != nullptr) throw 0;
type_names[type_name] = t;
}
void type_env::generalize(const std::string& name, const group& grp, type_mgr& mgr) {
auto names_it = names.find(name);
if(names_it == names.end()) throw 0;
if(names_it->second.type->forall.size() > 0) throw 0;
std::set<std::string> free_in_type;
std::set<std::string> free_in_env;
mgr.find_free(names_it->second.type->monotype, free_in_type);
find_free_except(mgr, grp, free_in_env);
for(auto& free : free_in_type) {
if(free_in_env.find(free) != free_in_env.end()) continue;
names_it->second.type->forall.push_back(free);
}
}
type_env_ptr type_scope(type_env_ptr parent) {
return type_env_ptr(new type_env(std::move(parent)));
}

View File

@@ -0,0 +1,49 @@
#pragma once
#include <map>
#include <string>
#include <set>
#include "graph.hpp"
#include "type.hpp"
struct type_env;
using type_env_ptr = std::shared_ptr<type_env>;
enum class visibility { global,local };
struct type_env {
struct variable_data {
type_scheme_ptr type;
visibility vis;
std::string mangled_name;
variable_data()
: variable_data(nullptr, visibility::local, "") {}
variable_data(type_scheme_ptr t, visibility v, std::string n)
: type(std::move(t)), vis(v), mangled_name(std::move(n)) {}
};
type_env_ptr parent;
std::map<std::string, variable_data> names;
std::map<std::string, type_ptr> type_names;
type_env(type_env_ptr p) : parent(std::move(p)) {}
type_env() : type_env(nullptr) {}
void find_free(const type_mgr& mgr, std::set<std::string>& into) const;
void find_free_except(const type_mgr& mgr, const group& avoid,
std::set<std::string>& into) const;
type_scheme_ptr lookup(const std::string& name) const;
bool is_global(const std::string& name) const;
void set_mangled_name(const std::string& name, const std::string& mangled);
const std::string& get_mangled_name(const std::string& name) const;
type_ptr lookup_type(const std::string& name) const;
void bind(const std::string& name, type_ptr t,
visibility v = visibility::local);
void bind(const std::string& name, type_scheme_ptr t,
visibility v = visibility::local);
void bind_type(const std::string& type_name, type_ptr t);
void generalize(const std::string& name, const group& grp, type_mgr& mgr);
};
type_env_ptr type_scope(type_env_ptr parent);

View File

@@ -1,4 +1,4 @@
cd 10
cd 11
mkdir -p build && cd build
cmake ..
make -j8

View File

@@ -0,0 +1,21 @@
takeUntilMax :: [Int] -> Int -> (Int, [Int])
takeUntilMax [] m = (m, [])
takeUntilMax [x] _ = (x, [x])
takeUntilMax (x:xs) m
| x == m = (x, [x])
| otherwise =
let (m', xs') = takeUntilMax xs m
in (max m' x, x:xs')
doTakeUntilMax :: [Int] -> [Int]
doTakeUntilMax l = l'
where (m, l') = takeUntilMax l m
takeUntilMax' :: [Int] -> Int -> (Int, [Int])
takeUntilMax' [] m = (m, [])
takeUntilMax' [x] _ = (x, [x])
takeUntilMax' (x:xs) m
| x == m = (maximum (x:xs), [x])
| otherwise =
let (m', xs') = takeUntilMax' xs m
in (max m' x, x:xs')

View File

@@ -0,0 +1,28 @@
import Data.Map as Map
import Data.Maybe
import Control.Applicative
data Element = A | B | C | D
deriving (Eq, Ord, Show)
addElement :: Element -> Map Element Int -> Map Element Int
addElement = alter ((<|> Just 1) . fmap (+1))
getScore :: Element -> Map Element Int -> Float
getScore e m = fromMaybe 1.0 $ ((1.0/) . fromIntegral) <$> Map.lookup e m
data BinaryTree a = Empty | Node a (BinaryTree a) (BinaryTree a) deriving Show
type ElementTree = BinaryTree Element
type ScoredElementTree = BinaryTree (Element, Float)
assignScores :: ElementTree -> Map Element Int -> (Map Element Int, ScoredElementTree)
assignScores Empty m = (Map.empty, Empty)
assignScores (Node e t1 t2) m = (m', Node (e, getScore e m) t1' t2')
where
(m1, t1') = assignScores t1 m
(m2, t2') = assignScores t2 m
m' = addElement e $ unionWith (+) m1 m2
doAssignScores :: ElementTree -> ScoredElementTree
doAssignScores t = t'
where (m, t') = assignScores t m

View File

@@ -0,0 +1,99 @@
data ExprType
= IntType
| BoolType
| StringType
repr : ExprType -> Type
repr IntType = Int
repr BoolType = Bool
repr StringType = String
intBoolImpossible : IntType = BoolType -> Void
intBoolImpossible Refl impossible
intStringImpossible : IntType = StringType -> Void
intStringImpossible Refl impossible
boolStringImpossible : BoolType = StringType -> Void
boolStringImpossible Refl impossible
decEq : (a : ExprType) -> (b : ExprType) -> Dec (a = b)
decEq IntType IntType = Yes Refl
decEq BoolType BoolType = Yes Refl
decEq StringType StringType = Yes Refl
decEq IntType BoolType = No intBoolImpossible
decEq BoolType IntType = No $ intBoolImpossible . sym
decEq IntType StringType = No intStringImpossible
decEq StringType IntType = No $ intStringImpossible . sym
decEq BoolType StringType = No boolStringImpossible
decEq StringType BoolType = No $ boolStringImpossible . sym
data Op
= Add
| Subtract
| Multiply
| Divide
data Expr
= IntLit Int
| BoolLit Bool
| StringLit String
| BinOp Op Expr Expr
| IfElse Expr Expr Expr
data SafeExpr : ExprType -> Type where
IntLiteral : Int -> SafeExpr IntType
BoolLiteral : Bool -> SafeExpr BoolType
StringLiteral : String -> SafeExpr StringType
BinOperation : (repr a -> repr b -> repr c) -> SafeExpr a -> SafeExpr b -> SafeExpr c
IfThenElse : SafeExpr BoolType -> SafeExpr t -> SafeExpr t -> SafeExpr t
typecheckOp : Op -> (a : ExprType) -> (b : ExprType) -> Either String (c : ExprType ** repr a -> repr b -> repr c)
typecheckOp Add IntType IntType = Right (IntType ** (+))
typecheckOp Subtract IntType IntType = Right (IntType ** (-))
typecheckOp Multiply IntType IntType = Right (IntType ** (*))
typecheckOp Divide IntType IntType = Right (IntType ** div)
typecheckOp _ _ _ = Left "Invalid binary operator application"
requireBool : (n : ExprType ** SafeExpr n) -> Either String (SafeExpr BoolType)
requireBool (BoolType ** e) = Right e
requireBool _ = Left "Not a boolean."
typecheck : Expr -> Either String (n : ExprType ** SafeExpr n)
typecheck (IntLit i) = Right (_ ** IntLiteral i)
typecheck (BoolLit b) = Right (_ ** BoolLiteral b)
typecheck (StringLit s) = Right (_ ** StringLiteral s)
typecheck (BinOp o l r) = do
(lt ** le) <- typecheck l
(rt ** re) <- typecheck r
(ot ** f) <- typecheckOp o lt rt
pure (_ ** BinOperation f le re)
typecheck (IfElse c t e) =
do
ce <- typecheck c >>= requireBool
(tt ** te) <- typecheck t
(et ** ee) <- typecheck e
case decEq tt et of
Yes p => pure (_ ** IfThenElse ce (replace p te) ee)
No _ => Left "Incompatible branch types."
eval : SafeExpr t -> repr t
eval (IntLiteral i) = i
eval (BoolLiteral b) = b
eval (StringLiteral s) = s
eval (BinOperation f l r) = f (eval l) (eval r)
eval (IfThenElse c t e) = if (eval c) then (eval t) else (eval e)
resultStr : {t : ExprType} -> repr t -> String
resultStr {t=IntType} i = show i
resultStr {t=BoolType} b = show b
resultStr {t=StringType} s = show s
tryEval : Expr -> String
tryEval ex =
case typecheck ex of
Left err => "Type error: " ++ err
Right (t ** e) => resultStr $ eval {t} e
main : IO ()
main = putStrLn $ tryEval $ BinOp Add (IfElse (BoolLit True) (IntLit 6) (IntLit 7)) (BinOp Multiply (IntLit 160) (IntLit 2))

View File

@@ -0,0 +1,120 @@
data ExprType
= IntType
| BoolType
| StringType
| PairType ExprType ExprType
repr : ExprType -> Type
repr IntType = Int
repr BoolType = Bool
repr StringType = String
repr (PairType t1 t2) = Pair (repr t1) (repr t2)
decEq : (a : ExprType) -> (b : ExprType) -> Maybe (a = b)
decEq IntType IntType = Just Refl
decEq BoolType BoolType = Just Refl
decEq StringType StringType = Just Refl
decEq (PairType lt1 lt2) (PairType rt1 rt2) = do
subEq1 <- decEq lt1 rt1
subEq2 <- decEq lt2 rt2
let firstEqual = replace {P = \t1 => PairType lt1 lt2 = PairType t1 lt2} subEq1 Refl
let secondEqual = replace {P = \t2 => PairType lt1 lt2 = PairType rt1 t2} subEq2 firstEqual
pure secondEqual
decEq _ _ = Nothing
data Op
= Add
| Subtract
| Multiply
| Divide
data Expr
= IntLit Int
| BoolLit Bool
| StringLit String
| BinOp Op Expr Expr
| IfElse Expr Expr Expr
| Pair Expr Expr
| Fst Expr
| Snd Expr
data SafeExpr : ExprType -> Type where
IntLiteral : Int -> SafeExpr IntType
BoolLiteral : Bool -> SafeExpr BoolType
StringLiteral : String -> SafeExpr StringType
BinOperation : (repr a -> repr b -> repr c) -> SafeExpr a -> SafeExpr b -> SafeExpr c
IfThenElse : SafeExpr BoolType -> SafeExpr t -> SafeExpr t -> SafeExpr t
NewPair : SafeExpr t1 -> SafeExpr t2 -> SafeExpr (PairType t1 t2)
First : SafeExpr (PairType t1 t2) -> SafeExpr t1
Second : SafeExpr (PairType t1 t2) -> SafeExpr t2
typecheckOp : Op -> (a : ExprType) -> (b : ExprType) -> Either String (c : ExprType ** repr a -> repr b -> repr c)
typecheckOp Add IntType IntType = Right (IntType ** (+))
typecheckOp Subtract IntType IntType = Right (IntType ** (-))
typecheckOp Multiply IntType IntType = Right (IntType ** (*))
typecheckOp Divide IntType IntType = Right (IntType ** div)
typecheckOp _ _ _ = Left "Invalid binary operator application"
requireBool : (n : ExprType ** SafeExpr n) -> Either String (SafeExpr BoolType)
requireBool (BoolType ** e) = Right e
requireBool _ = Left "Not a boolean."
typecheck : Expr -> Either String (n : ExprType ** SafeExpr n)
typecheck (IntLit i) = Right (_ ** IntLiteral i)
typecheck (BoolLit b) = Right (_ ** BoolLiteral b)
typecheck (StringLit s) = Right (_ ** StringLiteral s)
typecheck (BinOp o l r) = do
(lt ** le) <- typecheck l
(rt ** re) <- typecheck r
(ot ** f) <- typecheckOp o lt rt
pure (_ ** BinOperation f le re)
typecheck (IfElse c t e) =
do
ce <- typecheck c >>= requireBool
(tt ** te) <- typecheck t
(et ** ee) <- typecheck e
case decEq tt et of
Just p => pure (_ ** IfThenElse ce (replace p te) ee)
Nothing => Left "Incompatible branch types."
typecheck (Pair l r) =
do
(lt ** le) <- typecheck l
(rt ** re) <- typecheck r
pure (_ ** NewPair le re)
typecheck (Fst p) =
do
(pt ** pe) <- typecheck p
case pt of
PairType _ _ => pure $ (_ ** First pe)
_ => Left "Applying fst to non-pair."
typecheck (Snd p) =
do
(pt ** pe) <- typecheck p
case pt of
PairType _ _ => pure $ (_ ** Second pe)
_ => Left "Applying snd to non-pair."
eval : SafeExpr t -> repr t
eval (IntLiteral i) = i
eval (BoolLiteral b) = b
eval (StringLiteral s) = s
eval (BinOperation f l r) = f (eval l) (eval r)
eval (IfThenElse c t e) = if (eval c) then (eval t) else (eval e)
eval (NewPair l r) = (eval l, eval r)
eval (First p) = fst (eval p)
eval (Second p) = snd (eval p)
resultStr : {t : ExprType} -> repr t -> String
resultStr {t=IntType} i = show i
resultStr {t=BoolType} b = show b
resultStr {t=StringType} s = show s
resultStr {t=PairType t1 t2} (l,r) = "(" ++ resultStr l ++ ", " ++ resultStr r ++ ")"
tryEval : Expr -> String
tryEval ex =
case typecheck ex of
Left err => "Type error: " ++ err
Right (t ** e) => resultStr $ eval {t} e
main : IO ()
main = putStrLn $ tryEval $ BinOp Add (Fst (IfElse (BoolLit True) (Pair (IntLit 6) (BoolLit True)) (Pair (IntLit 7) (BoolLit False)))) (BinOp Multiply (IntLit 160) (IntLit 2))

View File

@@ -1,6 +1,18 @@
baseURL = "https://danilafe.com"
languageCode = "en-us"
languageCode = "en"
title = "Daniel's Blog"
theme = "vanilla"
pygmentsCodeFences = true
pygmentsStyle = "github"
pygmentsUseClasses = true
summaryLength = 20
[markup]
[markup.tableOfContents]
endLevel = 4
ordered = false
startLevel = 3
[languages]
[languages.en]
baseURL = "https://danilafe.com"
[languages.ru]
baseURL = "https://ru.danilafe.com"

View File

@@ -1,5 +1,6 @@
---
title: Daniel's Blog
description: Daniel Fedorin's personal blog, covering topics such as functional programming, compiler development, and more!
---
## Hello!
Welcome to my blog. Here, I write about various subjects, including (but not limited to)

8
content/_index.ru.md Normal file
View File

@@ -0,0 +1,8 @@
---
title: Daniel's Blog
description: Персональный блог Данилы Федорина о функциональном программировании, дизайне компиляторов, и многом другом!
---
## Привет!
Добро пожаловать на мой сайт. Здесь, я пишу на многие темы, включая фунциональное программирование, дизайн компилляторов, теорию языков программирования, и иногда компьютерные игры. Я надеюсь, что здесь вы найдете что-нибуть интересное!
Вы читаете русскою версию моего сайта. Я только недавно занялся его переводом, и до этого времени редко писал на русском. Я заранеее извиняюсь за присутствие орфографических или грамматических ошибок.

View File

@@ -1,8 +1,8 @@
---
title: About
---
I'm Daniel, a Computer Science student currently in my third (and final) undergraduate year at Oregon State University.
Due my initial interest in calculators and compilers, I got involved in the Programming Language Theory research
I'm Daniel, a Computer Science student currently working towards my Master's Degree at Oregon State University.
Due to my initial interest in calculators and compilers, I got involved in the Programming Language Theory research
group, gaining same experience in formal verification, domain specific language, and explainable computing.
For work, school, and hobby projects, I use a variety of programming languages, most commonly C/C++,

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 0 - Intro
date: 2019-08-03T01:02:30-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this first post of a larger series, we embark on a journey of developing a compiler for a lazily evaluated functional language."
---
During my last academic term, I was enrolled in a compilers course.
We had a final project - develop a compiler for a basic Python subset,
@@ -143,3 +144,5 @@ Here are the posts that I've written so far for this series:
* [Garbage Collection]({{< relref "09_compiler_garbage_collection.md" >}})
* [Polymorphism]({{< relref "10_compiler_polymorphism.md" >}})
* [Polymorphic Data Types]({{< relref "11_compiler_polymorphic_data_types.md" >}})
* [Let/In and Lambdas]({{< relref "12_compiler_let_in_lambda/index.md" >}})

View File

@@ -0,0 +1,97 @@
---
title: Пишем Компилятор Для Функционального Языка на С++, Часть 0 - Вступление
date: 2019-08-03T01:02:30-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "todo"
---
Год назад, я был записан на курс по компиляторам. Я ждал этого момента почти два учебных года: еще со времени школы меня интересовало создание языков программирования. Однако я был разочарован - заданный нам финальный проект полностью состоял из склеивания вместе написанных профессором кусочков кода. Склеив себе такой грустный компилятор, я не почувствовал бы никакой гордости. А я хотел бы гордиться всеми своими проектами.
Вместо стандартного задания, я решил -- с разрешением профессора -- написать компилятор для ленивого функционального языка, используя отличную книгу Саймона Пейтона Джоунса, _Implementing functional languages: a tutorial_. На курсе мы пользовались С++, и мой проект не был исключением. Получился прикольный маленький язык, и теперь я хочу рассказать вам, как вы тоже можете создать ваш собственный функциональный язык.
### Примечание к Русской Версии
Вы читаете русскою версию этой статьи. Оригинал ее был написан год назад, и с тех пор объем всей серии немного изменился. Я планировал описать только те части компилятора, которые я успел закончить и сдать профессору: лексический анализ, синтаксический разбор, мономорфную проверку типов, и компиляцию простых выражений с помощью LLVM. Закончив и описав все эти части, я решил продолжать разрабатывать компилятор, и описал сборку мусора, полиморфную проверку типов, полиморфные структуры данных, а также компиляцию более сложных выражений. Вместо того чтобы писать наивный перевод английской версии -- притворяясь что я не знаю о перемене моих планов -- я буду вносить в эту версию изменения соответствующие сегодняшнему состоянию компилятора. Части статей не затронутые этими изменениями я тоже не буду переводить слово в слово, иначе они будут звучать ненатурально. Тем не менее техническое содержание каждой статьи будет аналогично содержанию ее английской версии, и код будет тот же самый.
### Мотивация
Начать эту серию меня подтолкнули две причины.
Во-первых, почти все учебники и вступления к созданию компиляторов, с которыми я сталкивался, были написаны об императивных языках, часто похожих на C, C++, Python, или JavaScript. Я считаю, что в компиляции функциональных языков -- особенно ленивых -- есть много чего интересного, и все это относительно редко упоминается.
Во-вторых, меня вдохновили книги, как Software Foundations. Все содержание Software Foundations, например, написано в форме комментариев языка Coq. Таким образом, можно не только читать саму книгу, но и сразу же запускать находящийся рядом с комментариями код. Когда описываемый код под рукой, легче экспериментировать и интереснее читать. Принимая это во внимание, я выкладываю вместе с каждой статьей соответствующую версию компилятора; в самой статье описывается код именно из этой версии. Все части написанной мною программы полностью доступны.
### Обзор
Прежде чем начинать наш проект, давайте обсудим, чего мы будем добиваться, и какими способами.
#### “Классические” Стадии Компилятора
Части большинства компиляторов достаточно независимы друг от друга (по крайней мере в теории). Мы можем разделить их на следующие шаги:
* Лексический анализ
* Синтаксический разбор
* Анализ и оптимизация
* Генерация кода
Не все вышеописанные шаги встречаются в каждом компиляторе. Например, компилятор в моих статьях совсем не оптимизирует код. Также, в некоторых компиляторах присутствуют шаги не упомянутые в этом списке. Язык Idris -- как и многие другие функциональные языки -- переводится сначала в упрощённый язык “TT”, и только после этого проходит через анализ. Иногда, с целью ускорить компиляцию, несколько шагов производятся одновременно. В целом, все эти стадии помогут нам сориентироваться, но никаким образом нас не ограничат.
#### Темы, Которые Мы Рассмотрим
Мы начнем с нуля, и пошагово построим компилятор состоящий из следующих частей:
* Лексического анализа с помощью программы Flex.
* Синтаксического разбора с помощью программы Bison.
* Сначала мономорфной, а позже полиморфной проверки типов.
* Вычисления программ используя абстрактную машину G-machine.
* Компиляции абстрактных инструкций G-machine используя LLVM.
* Простого сбора мусора.
Наша цель - создать ленивый, функциональный язык.
#### Темы, Которые Мы Не Рассмотрим
Для того, чтобы создать любую нетривиальную программу, нужно иметь значительный объем опыта и знаний; одному человеку было бы сложно научить всему этому. У меня буквально не хватило бы на это времени, да и исход такой попытки был бы неблагоприятным: опытным читателям было бы труднее извлечь из статей новую информацию, а неопытным читателям все равно было бы недостаточно подробно. Вместо того, чтобы портить таким образом свои статьи, я буду полагаться на то, что вы достаточно комфортно себя чувствуете с некоторыми темами. В число этих тем входят:
* [Теория алгоритмов](https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2),
более конкретно [теория автоматов](https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%BE%D0%B2).
Детерминированные и недетерминированные автоматы кратко упоминаются в первой статье во время лексического анализа, a синтаксический разбор мы выполним используя контекстно-свободную грамматику.
* [Функциональное программирование](https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5), с легкой примесью [лямбда-исчисления](https://ru.wikipedia.org/wiki/%D0%9B%D1%8F%D0%BC%D0%B1%D0%B4%D0%B0-%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5).
Мы будем пользоваться лямбда-функциями, каррированием, и системой типов Хиндли-Мильнер, которая часто встречается в языках семейства ML.
* С++. Я стараюсь писать код правильно и по последним стандартам, но я не эксперт. Я не буду объяснять синтаксис или правила С++, но разумеется буду описывать что именно делает мой код с точки зрения компиляторов.
#### Синтаксис Нашего Языка
Саймон Пейтон Джоунс, в одном из своих [~~двух~~ многочисленных](https://www.reddit.com/r/ProgrammingLanguages/comments/dsu115/compiling_a_functional_language_using_c/f6t52mh?utm_source=share&utm_medium=web2x&context=3) трудов на тему функциональных языков, отметил что большинство из этих языков по сути очень похожи друг на друга; часто, главная разница состоит именно в их синтаксисе. На данный момент, выбор синтаксиса - наша главная степень свободы. Нам точно нужно предоставить доступ к следующим вещам:
* Декларациям функций
* Вызову функций
* Арифметике
*гебраическим типам данных
* Сопоставлению с образцом
Позже, мы добавим к этому списку выражения let/in и лямбда-функции. С арифметикой разобраться не сложно - числа будут писаться просто как `3`, значения выражений как `1+2*3` будут высчитываться по обычным математическим правилам. Вызов функций ненамного сложнее. Выражение `f x` будет значить “вызов функции `f` с параметром `x`”, а `f x + g y` - “сумма значений `f x` и `g y`”. Заметьте, что вызов функций имеет приоритет выше приоритета арифметических операций.
Теперь давайте придумаем синтаксис для деклараций функций. Я предлогаю следующий вариант:
```
defn f x = { x + x }
```
А для типов данных:
```
data List = { Nil, Cons Int List }
```
Заметьте, что мы пока пользуемся мономорфными декларациями типов данных. Позже, в одиннадцатой части, мы добавим синтаксис для полиморфных деклараций.
В последнюю очередь, давайте определимся с синтаксисом сопоставления с образцом:
```
case l of {
Nil -> { 0 }
Cons x xs -> { x }
}
```
Представленная выше распечатка читается как: “если лист `l` сопоставим с `Nil`, то все выражение возвращает значение `0`; иначе, если лист сопоставим с `Cons x xs` (что, опираясь на декларацию `List`, означает, что лист состоит из значений `x`, с типом `Int`, и `xs`, с типом `List`), то выражение возвращает `x`”.
Вот и конец нашего обзора! В следующей статье, мы начнем с лексического анализа, что является первым шагом в процессе трансформации программного текста в исполняемые файлы.
### Список Статей
* Ой! Тут как-то пусто.
* Вы, наверно, читаете черновик.
* Если нет, то пожалуйста напишите мне об этом!

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 1 - Tokenizing
date: 2019-08-03T01:02:30-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we tackle the first component of our compiler: tokenizing."
---
It makes sense to build a compiler bit by bit, following the stages we outlined in
the first post of the series. This is because these stages are essentially a pipeline,

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 2 - Parsing
date: 2019-08-03T01:02:30-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we combine our compiler's tokenizer with a parser, allowing us to extract structure from input source code."
---
In the previous post, we covered tokenizing. We learned how to convert an input string into logical segments, and even wrote up a tokenizer to do it according to the rules of our language. Now, it's time to make sense of the tokens, and parse our language.

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 3 - Type Checking
date: 2019-08-06T14:26:38-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we allow our compiler to throw away invalid programs, detected using a monomorphic typechecking algorithm."
---
I think tokenizing and parsing are boring. The thing is, looking at syntax
is a pretty shallow measure of how interesting a language is. It's like

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 4 - Small Improvements
date: 2019-08-06T14:26:38-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we take a little break from pushing our compiler forward to make some improvements to the code we've written so far."
---
We've done quite a big push in the previous post. We defined
type rules for our language, implemented unification,

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 5 - Execution
date: 2019-08-06T14:26:38-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we define the rules for a G-machine, the abstract machine that we will target with our compiler."
---
{{< gmachine_css >}}
We now have trees representing valid programs in our language,

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 6 - Compilation
date: 2019-08-06T14:26:38-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we enable our compiler to convert programs written in our functional language to G-machine instructions."
---
In the previous post, we defined a machine for graph reduction,
called a G-machine. However, this machine is still not particularly

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 7 - Runtime
date: 2019-08-06T14:26:38-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we implement the supporting code that will be shared between all executables our compiler will create."
---
Wikipedia has the following definition for a __runtime__:

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 8 - LLVM
date: 2019-10-30T22:16:22-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we enable our compiler to convert G-machine instructions to LLVM IR, which finally allows us to generate working executables."
---
We don't want a compiler that can only generate code for a single

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 9 - Garbage Collection
date: 2020-02-10T19:22:41-08:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we implement a garbage collector that frees memory no longer used by the executables our compiler creates."
---
> "When will you learn? When will you learn that __your actions have consequences?__"

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 10 - Polymorphism
date: 2020-03-25T17:14:20-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we extend our compiler's typechecking algorithm to implement the Hindley-Milner type system, allowing for polymorphic functions."
---
[In part 8]({{< relref "08_compiler_llvm.md" >}}), we wrote some pretty interesting programs in our little language.

View File

@@ -2,6 +2,7 @@
title: Compiling a Functional Language Using C++, Part 11 - Polymorphic Data Types
date: 2020-04-14T19:05:42-07:00
tags: ["C and C++", "Functional Languages", "Compilers"]
description: "In this post, we enable our compiler to understand polymorphic data types."
---
[In part 10]({{< relref "10_compiler_polymorphism.md" >}}), we managed to get our
compiler to accept functions that were polymorphically typed. However, a piece
@@ -395,4 +396,5 @@ Result: 4
This looks good! We have added support for polymorphic data types to our compiler.
We are now free to move on to `let/in` expressions, __lambda functions__, and __Input/Output__,
as promised! I'll see you then!
as promised, starting with [part 12]({{< relref "12_compiler_let_in_lambda/index.md" >}}) - `let/in`
and lambdas!

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,304 @@
---
title: Rendering Mathematics On The Back End
date: 2020-07-21T14:54:26-07:00
tags: ["Website", "Nix", "Ruby", "KaTeX"]
---
Due to something of a streak of bad luck when it came to computers, I spent a
significant amount of time using a Linux-based Chromebook, and then a
Pinebook Pro. It was, in some way, enlightening. The things that I used to take
for granted with a 'powerful' machine now became a rare luxury: StackOverflow,
and other relatively static websites, took upwards of ten seconds to finish
loading. On Slack, each of my keypresses could take longer than 500ms to
appear on the screen, and sometimes, it would take several seconds. Some
websites would present me with a white screen, and remain that way for much
longer than I had time to wait. It was awful.
At one point, I installed uMatrix, and made it the default policy to block
all JavaScript. For the most part, this worked well. Of course, I had to
enable JavaScript for applications that needed to be interactive, like
Slack, and Discord. But for the most part, I was able to browse the majority
of the websites I normally browse. This went on until I started working
on the [compiler series]({{< relref "00_compiler_intro.md" >}}) again,
and discovered that the LaTeX math on my page, which was required
for displaying things like inference rules, didn't work without
JavaScript. I was left with two options:
* Allow JavaScript, and continue using MathJax to render my math.
* Make it so that the mathematics are rendered on the back end.
I've [previously written about math rendering]({{< relref "math_rendering_is_wrong.md" >}}),
and made the observation that MathJax's output for LaTeX is __identical__
on every computer. From the MathJax 2.6 change log:
> _Improved CommonHTML output_. The CommonHTML output now provides the same layout quality and MathML support as the HTML-CSS and SVG output. It is on average 40% faster than the other outputs and the markup it produces are identical on all browsers and thus can also be pre-generated on the server via MathJax-node.
It seems absurd, then, to offload this kind of work into the users, to
be done over and over again. As should be clear from the title of
this post, this made me settle for the second option: it was
__obviously within reach__, especially for a statically-generated website
like mine, to render math on the backend.
I settled on the following architecture:
* As before, I would generate my pages using Hugo.
* I would use the KaTeX NPM package to render math.
* To build the website no matter what system I was on, I would use Nix.
It so happens that Nix isn't really required for using my approach in general.
I will give my setup here, but feel free to skip ahead.
### Setting Up A Nix Build
My `default.nix` file looks like this:
```Nix {linenos=table}
{ stdenv, hugo, fetchgit, pkgs, nodejs, ruby }:
let
url = "https://dev.danilafe.com/Web-Projects/blog-static.git";
rev = "<commit>";
sha256 = "<hash>";
requiredPackages = import ./required-packages.nix {
inherit pkgs nodejs;
};
in
stdenv.mkDerivation {
name = "blog-static";
version = rev;
src = fetchgit {
inherit url rev sha256;
};
builder = ./builder.sh;
converter = ./convert.rb;
buildInputs = [
hugo
requiredPackages.katex
(ruby.withPackages (ps: [ ps.nokogiri ]))
];
}
```
I'm using `node2nix` to generate the `required-packages.nix` file, which allows me,
even from a sandboxed Nix build, to download and install `npm` packages. This is needed
so that I have access to the `katex` binary at build time. I fed the following JSON file
to `node2nix`:
```JSON {linenos=table}
[
"katex"
]
```
The Ruby script I wrote for this (more on that soon) required the `nokogiri` gem, which
I used for traversing the HTML generated for my site. Hugo was obviously required to
generate the HTML.
### Converting LaTeX To HTML
After my first post complaining about the state of mathematics on the web, I received
the following email (which the author allowed me to share):
> Sorry for having a random stranger email you, but in your blog post
[(link)](https://danilafe.com/blog/math_rendering_is_wrong) you seem to focus on MathJax's
difficulty in rendering things server-side, while quietly ignoring that KaTeX's front
page advertises server-side rendering. Their documentation [(link)](https://katex.org/docs/options.html)
even shows (at least as of the time this email was sent) that it renders both HTML
(to be arranged nicely with their CSS) for visuals and MathML for accessibility.
The author of the email then kindly provided a link to a page they generated using KaTeX and
some Bash scripts. The math on this page was rendered at the time it was generated.
This is a great point, and KaTeX is indeed usable for server-side rendering. But I've
seen few people who do actually use it. Unfortunately, as I pointed out in my previous post on the subject,
few tools actually take your HTML page and replace LaTeX with rendered math.
Here's what I wrote about this last time:
> [In MathJax,] The bigger issue, though, was that the `page2html`
program, which rendered all the mathematics in a single HTML page,
was gone. I found `tex2html` and `text2htmlcss`, which could only
render equations without the surrounding HTML. I also found `mjpage`,
which replaced mathematical expressions in a page with their SVG forms.
This is still the case, in both MathJax and KaTeX. The ability
to render math in one step is the main selling point of front-end LaTeX renderers:
all you have to do is drop in a file from a CDN, and voila, you have your
math. There are no such easy answers for back-end rendering. In fact,
as we will soon see, it's not possible to just search-and-replace occurences
of mathematics on your page, either. To actually get KaTeX working
on the backend, you need access to tools that handle the potential variety
of edge cases associated with HTML. Such tools, to my knowledge, do not
currently exist.
I decided to write my own Ruby script to get the job done. From this script, I
would call the `katex` command-line program, which would perform
the heavy lifting of rendering the mathematics.
There are two types of math on my website: inline math and display math.
On the command line ([here are the docs](https://katex.org/docs/cli.html)),
the distinction is made using the `--display-mode` argument. So, the general algorithm
is to replace the code inside the `$$...$$` with their display-rendered version,
and the code inside the `\(...\)` with the inline-rendered version. I came up with
the following Ruby function:
```Ruby {linenos=table}
def render_cached(cache, command, string, render_comment = nil)
cache.fetch(string) do |new|
puts " Rendering #{render_comment || new}"
cache[string] = Open3.popen3(command) do |i, o, e, t|
i.write new
i.close
o.read.force_encoding(Encoding::UTF_8).strip
end
end
end
```
Here, the `cache` argument is used to prevent re-running the `katex` command
on an equation that was already rendered before (the output is the same, after all).
The `command` is the specific shell command that we want to invoke; this would
be either `katex` or `katex -d`. The `string` is the math equation to render,
and the `render_comment` is the string to print to the console instead of the equation
(so that long, display math equations are not printed out to standard out).
Then, given a substring of the HTML file, we use regular expressions
to find the `\(...\)` and `$$...$$`s, and use the `render_cached` method
on the LaTeX code inside.
```Ruby {linenos=table}
def perform_katex_sub(inline_cache, display_cache, content)
rendered = content.gsub /\\\(((?:[^\\]|\\[^\)])*)\\\)/ do |match|
render_cached(inline_cache, "katex", $~[1])
end
rendered = rendered.gsub /\$\$((?:[^\$]|$[^\$])*)\$\$/ do |match|
render_cached(display_cache, "katex -d", $~[1], "display")
end
return rendered
end
```
There's a bit of a trick to the final layer of this script. We want to be
really careful about where we replace LaTeX, and where we don't. In
particular, we _don't_ want to go into the `code` tags. Otherwise,
it wouldn't be possible to talk about LaTeX code! I also suspect that
some captions, alt texts, and similar elements should also be left alone.
However, I don't have those on my website (yet), and I won't worry about
them now. Either way, because of the code tags,
we can't just search-and-replace over the entire page; we need to be context
aware. This is where `nokogiri` comes in. We parse the HTML, and iterate
over all of the 'text' nodes, calling `perform_katex_sub` on all
of those that _aren't_ inside code tags.
Fortunately, this kind of iteration is pretty easy to specify thanks to something called XPath.
This was my first time encountering it, but it seems extremely useful: it's
a sort of language for selecting XML nodes. First, you provide an 'axis',
which is used to specify the positions of the nodes you want to look at
relative to the root node. The axis `/` looks at the immediate children
(this would be the `html` tag in a properly formatted document, I would imagine).
The axis `//` looks at all the transitive children. That is, it will look at the
children of the root, then its children, and so on. There's also the `self` axis,
which looks at the node itself.
After you provide an axis, you need to specify the type of node that you want to
select. We can write `code`, for instance, to pick only the `<code>....</code>` tags
from the axis we've chosen. We can also use `*` to select any node, and we can
use `text()` to select text nodes, such as the `Hello` inside of `<b>Hello</b>`.
We can also apply some more conditions to the nodes we pick using `[]`.
For us, the relevant feature here is `not(...)`, which allows us to
select nodes that do __not__ match a particular condition. This is all
we need to know.
We write:
* `//`, starting to search for nodes everywhere, not just the root of the document.
* `*`, to match _any_ node. We want to replace math inside of `div`s, `span`s, `nav`s,
all of the `h`s, and so on.
* `[not(self::code)]`, cutting out all the `code` tags.
* `/`, now selecting the nodes that are immediate descendants of the nodes we've selected.
* `text()`, giving us the text contents of all the nodes we've selected.
All in all:
```
//*[not(self::code)]/text()
```
Finally, we use this XPath from `nokogiri`:
```Ruby {linenos=table}
files = ARGV[0..-1]
inline_cache, display_cache = {}, {}
files.each do |file|
puts "Rendering file: #{file}"
document = Nokogiri::HTML.parse(File.open(file))
document.search('//*[not(self::code)]/text()').each do |t|
t.replace(perform_katex_sub(inline_cache, display_cache, t.content))
end
File.write(file, document.to_html)
end
```
I named this script `convert.rb`; it's used from inside of the Nix expression
and its builder, which we will cover below.
### Tying it All Together
Finally, I wanted an end-to-end script to generate HTML pages and render the LaTeX in them.
I used Nix for this, but the below script will largely be compatible with a non-Nix system.
I came up with the following, commenting on Nix-specific commands:
```Bash {linenos=table}
# Nix-specific; set up paths.
source $stdenv/setup
# Build site with Hugo
# The cp is Nix-specific; it copies the blog source into the current directory.
cp -r $src/* .
hugo --baseUrl="https://danilafe.com"
# Render math in HTML and XML files.
# $converter is Nix-specific; you can just use convert.rb.
find public/ -regex "public/.*\.html" | xargs ruby $converter
# Output result
# $out is Nix-specific; you can replace it with your destination folder.
mkdir $out
cp -r public/* $out/
```
This is it! Using the two scripts, `convert.rb` and `builder.sh`, I
was able to generate my blog with the math rendered on the back-end.
Please note, though, that I had to add the KaTeX CSS to my website's
`<head>`.
### Caveats
The main caveat of my approach is performance. For every piece of
mathematics that I render, I invoke the `katex` command. This incurs
the penalty of Node's startup time, every time, and makes my approach
take a few dozen seconds to run on my relatively small site. The
better approach would be to use a NodeJS script, rather than a Ruby one,
to perform the conversion. KaTeX also provides an API, so such a NodeJS
script can find the files, parse the HTML, and perform the substitutions.
I did quite like using `nokogiri` here, though, and I hope that an equivalently
pleasant solution exists in JavaScript.
Re-rendering the whole website is also pretty wasteful. I rarely change the
mathematics on more than one page at a time, but every time I do so, I have
to re-run the script, and therefore re-render every page. This makes sense
for me, since I use Nix, and my builds are pretty much always performed
from scratch. On the other hand, for others, this may not be the best solution.
### Alternatives
The same person who sent me the original email above also pointed out
[this `pandoc` filter for KaTeX](https://github.com/Zaharid/pandoc_static_katex).
I do not use Pandoc, but from what I can see, this fitler relies on
Pandoc's `Math` AST nodes, and applies KaTeX to each of those. This
should work, but wasn't applicable in my case, since Hugo's shrotcodes
don't mix well with Pandoc. However, it certainly seems like a workable
solution.
### Conclusion
With the removal of MathJax from my site, it is now completely JavaScript free,
and contains virtually the same HTML that it did beforehand. This, I hope,
makes it work better on devices where computational power is more limited.
I also hope that it illustrates a general principle - it's very possible,
and plausible, to render LaTeX on the back-end for a static site.

View File

@@ -0,0 +1,112 @@
---
title: Building a Crystal Project with Nix, Revisited
date: 2020-04-26T18:37:22-07:00
tags: ["Crystal", "Nix"]
---
As I've described in my [previous post]({{< relref "crystal_nix.md" >}}), the process for compiling a Crystal project with Nix is a fairly straightforward one. As is standard within the Nix ecosystem, the project's dependencies, as specified by the source language's build system (shards, in Crystal's case), are converted into a Nix expression (`shards.nix`). These dependencies are then used in a derivation, which, in Crystal's case, can take advantage of `buildCrystalPackage` to reduce boilerplate build scripts. All is well.
Things start to fall apart a little bit when the Crystal project being built is more complex. The predefined infrastructure (like `buildCrystalPackage`)
{{< sidenote "right" "versatility-note" "is not written with versatility in mind," >}}
This is not a bad thing at all; it's much better to get something working for the practical case, rather than concoct an overcomplicated solution that covers all theoretically possible cases.
{{< /sidenote >}} though it seems to work exceptionally in the common case. Additionally, I discovered that the compiler itself has some quirks, and have killed a few hours of my time trying to figure out some unexpected behaviors.
This post will cover the extra, more obscure steps I had to take to build an HTTPS-enabled Crystal project.
### First Problem: Git-Based Dependencies
A lot of my projects use Crystal libraries that are not hosted on GitHub at all; I use a private Git server, and most of my non-public code resides on it. The Crystal people within Nix don't seem to like this: let's look at the code for `crystal2nix.cr` file in the [nixpkgs repository](https://github.com/NixOS/nixpkgs/blob/1ffdf01777360f548cc7c10ef5b168cbe78fd183/pkgs/development/compilers/crystal/crystal2nix.cr). In particular, consider lines 18 and 19:
```Crystal {linenos=table,linenostart=18}
yaml.shards.each do |key, value|
owner, repo = value["github"].split("/")
```
Ouch! If you as much as mention a non-GitHub repository in your `shards.lock` file, you will experience a good old uncaught exception. Things don't end there, either. Nix provides a convenient `fetchFromGitHub` function, which only requires a repository name and its enclosing namespace (user or group). `crystal2nix` uses this, by generating a file with that information:
```Crystal {linenos=table,linenostart=34}
file.puts %( #{key} = {)
file.puts %( owner = "#{owner}";)
file.puts %( repo = "#{repo}";)
file.puts %( rev = "#{rev}";)
file.puts %( sha256 = "#{sha256}";)
file.puts %( };)
```
And, of course, `build-package.nix` (of which [this is the version at the time of writing](https://github.com/NixOS/nixpkgs/blob/912eb6b120eba15237ff053eafc4b5d90577685b/pkgs/development/compilers/crystal/build-package.nix)) uses this to declare dependencies:
```Nix {linenos=table,linenostart=26}
crystalLib = linkFarm "crystal-lib" (lib.mapAttrsToList (name: value: {
inherit name;
path = fetchFromGitHub value;
}) (import shardsFile));
```
This effectively creates a folder of dependencies cloned from GitHub, which is then placed into `lib` as if `shards` was run:
```Nix {linenos=table,linenostart=37}
configurePhase = args.configurePhase or lib.concatStringsSep "\n" ([
"runHook preConfigure"
] ++ lib.optional (lockFile != null) "ln -s ${lockFile} ./shard.lock"
++ lib.optional (shardsFile != null) "ln -s ${crystalLib} lib"
++ [ "runHook postConfigure "]);
```
Sleek, except that there's no place in this flow for dependencies based _only_ on Git! `crystalLib` is declared locally in a `let/in` expression, and we don't have access to it; neither can we call `linkFarm` again, since this results in a derivation, which, with different inputs, will be created at a different path. To work around this, I made my own Nix package, called `customCrystal`, and had it pass several modifications to `buildCrystalPackage`:
```Nix
{ stdenv, lib, linkFarm, fetchgit, fetchFromGitHub }:
{ crystal,
gitShardsFile ? null,
lockFile ? null,
shardsFile ? null, ...}@args:
let
buildArgs = builtins.removeAttrs args [ "crystal" ];
githubLinks = lib.mapAttrsToList (name: value: {
inherit name;
path = fetchFromGitHub value;
}) (import shardsFile);
gitLinks = lib.mapAttrsToList (name: value: {
inherit name;
path = fetchgit { inherit (value) url rev sha256; };
}) (import gitShardsFile);
crystalLib = linkFarm "crystal-lib" (githubLinks ++ gitLinks);
configurePhase = args.configurePhase or lib.concatStringsSep "\n" ([
"runHook preConfigure"
] ++ lib.optional (lockFile != null) "ln -s ${lockFile} ./shard.lock"
++ lib.optional (shardsFile != null) "ln -s ${crystalLib} lib"
++ [ "runHook postConfigure "]);
in
crystal.buildCrystalPackage (buildArgs // { inherit configurePhase; })
```
This does pretty much the equivalent of what `buildCrystalPackage` does (indeed, it does the heavy lifting). However, this snippet also retrieves Git repositories from the `gitShardsFile`, and creates the `lib` folder using both Git and GitHub dependencies. I didn't bother writing a `crystal2nix` equivalent for this, since I only had a couple of dependencies. I invoked my new function like `buildCrystalPackage`, with the addition of passing in the Crystal package, and that problem was solved.
### Second Problem: OpenSSL
The package I was trying to build used Crystal's built-in HTTP client, which, in turn, required OpenSSL. This, I thought, would be rather straightforward: add `openssl` to my package's `buildInputs`, and be done with it. It was not as simple, though, and I was greeted with a wall of errors like this one:
```
/nix/store/sq2b0dqlq243mqn4ql5h36xmpplyy20k-binutils-2.31.1/bin/ld: _main.o: in function `__crystal_main':
main_module:(.text+0x6f0): undefined reference to `SSL_library_init'
/nix/store/sq2b0dqlq243mqn4ql5h36xmpplyy20k-binutils-2.31.1/bin/ld: main_module:(.text+0x6f5): undefined reference to `SSL_load_error_strings'
/nix/store/sq2b0dqlq243mqn4ql5h36xmpplyy20k-binutils-2.31.1/bin/ld: main_module:(.text+0x6fa): undefined reference to `OPENSSL_add_all_algorithms_noconf'
/nix/store/sq2b0dqlq243mqn4ql5h36xmpplyy20k-binutils-2.31.1/bin/ld: main_module:(.text+0x6ff): undefined reference to `ERR_load_crypto_strings'
/nix/store/sq2b0dqlq243mqn4ql5h36xmpplyy20k-binutils-2.31.1/bin/ld: _main.o: in function `*HTTP::Client::new<String, (Int32 | Nil), Bool>:HTTP::Client':
```
Some snooping led me to discover that these symbols were part of OpenSSL 1.0.2, support for which ended in 2019. OpenSSL 1.1.0 has these symbols deprecated, and from what I can tell, they might be missing from the `.so` file altogether. I tried changing the package to specifically accept OpenSSL 1.0.2, but that didn't work, either: for some reason, the Crystal kept running the `gcc` command with `-L...openssl-1.1.0`. It also seemed like the compiler itself was built against the most recent version of OpenSSL, so what's the issue? I discovered this is a problem in the compiler itself. Consider the following line from Crystal's `openssl/lib_ssl.cr` [source file](https://github.com/crystal-lang/crystal/blob/0.34.0/src/openssl/lib_ssl.cr):
```Crystal {linenos=table,linenostart=8}
{% ssl_version = `hash pkg-config 2> /dev/null && pkg-config --silence-errors --modversion libssl || printf %s 0.0.0`.split.last.gsub(/[^0-9.]/, "") %}
```
Excuse me? If `pkg-config` is not found (which, in Nix, it won't be by default), Crystal assumes that it's using the _least_ up-to-date version of OpenSSL,
{{< sidenote "right" "version-note" "indicated by version code 0.0.0." >}}
The Crystal compiler compares version numbers based on semantic versioning, it seems, and 0.0.0 will always compare to be less than any other version of OpenSSL. Thus, code 0.0.0 indicates that Crystal should assume it's dealing with an extremely old version of OpenSSL.
{{< /sidenote >}} This matters, because later on in the file, we get this beauty:
```Crystal {linenos=table,linenostart=215}
{% if compare_versions(OPENSSL_VERSION, "1.1.0") >= 0 %}
fun tls_method = TLS_method : SSLMethod
{% else %}
fun ssl_library_init = SSL_library_init
fun ssl_load_error_strings = SSL_load_error_strings
fun sslv23_method = SSLv23_method : SSLMethod
{% end %}
```
That would be where the linker errors are coming from. Adding `pkg-config`to `buildInputs` along with `openssl` fixes the issue, and my package builds without problems.
### Conclusion
Crystal is a rather obscure language, and Nix is a rather obscure build system. I'm grateful that the infrastructure I'm using exists, and that using it is as streamlined as it is. There is, however, always room for improvement. If I have time, I will be opening pull requests for the `crystal2nix` tool on GitHub (to allow Git-based repositories), and perhaps on the Crystal compiler as well (to try figure out what to do about `pkg-config`). If someone else wants to do it themselves, I'd be happy to hear how it goes! Otherwise, I hope you found this post useful.

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

View File

@@ -0,0 +1,381 @@
---
title: DELL Is A Horrible Company And You Should Avoid Them At All Costs
date: 2020-07-23T13:40:05-07:00
tags: ["Electronics"]
---
I really do not want this to be a consumer electronics blog. Such things
aren't interesting to me, and nor do I have much knowledge
about them. However, sometimes, ripples from these areas make their way
into my life, and this is one such instance. Let me tell you
{{< sidenote "right" "source-note" "a story" >}}
I originally wrote about this in
<a href="https://www.dell.com/community/XPS/Ridiculously-Bad-Support-Experience/td-p/7554383">a thread on DELL's support website</a>. Some of this post is
going to be adapted from the support website, but some things have happened
since. You will probably notice the change between the terse language I used
in the original post and the fresh text that I'm writing now.
{{< /sidenote >}} of
my experience with DELL and their XPS 2-in-1 laptop, which has gone on since
around January of 2020, and is still going at the time of writing, in July
2020, half a year later.
I was, until recently, an undergraduate student in Computer Science. I will
soon be starting my Masters in Computer Science, too. I say this to make one
thing clear: I need a computer. Not only is it a necessity for my major,
but the majority of my hobbies -- including this blog -- are digital, too.
Since my university is a couple of hours from my home, I travel back and forth
a lot. I also have a cozy little spot in the
{{< sidenote "right" "offices-note" "graduate student offices" >}}
They're a bunch of cubicles in a keycard-protected room, really. Nothing fancy.
{{< /sidenote >}}at my university, but travel by bus, so I find myself spending
roughly equal portions of my work time at home and 'elsewhere'. A laptop
as my primary machine, I thought, made sense. But it had to be a decent one.
Persuaded by one of my instructors, who stressed the importance of vision and
a decent screen, I settled on a DELL XPS, which at the time came with a 4k
display.
As is commonplace, things went great at first. The screen _was_ really nice,
all of my code compiled swiftly, and even the games I occasionally played ran
at a solid 60fps. I was happy with my purchase.
There was one hiccup before things went really downhill, a sort of
foreshadowing of things to come. My trackpad didn't work at peculiar times.
### Prologue: Trackpad Hiccups
While working, booted into Linux, I noticed that my trackpad was having some
trouble. It was stuttering, and occasionally wouldn't work at all for seconds
at a time. I assumed that this was a problem with the trackpad drivers on
Linux, or perhaps the whole system was freezing up. I rebooted, and the
problem went away.
Until it came back.
A few days later, my trackpad was freezing virtually every minute.
It was strange, but fortunately, I'm used to a keyboard-based workflow, and
the malfunctions did not affect me too much. It was just a little troubling.
What soon made it more troubling, was that I noticed this exact same issue
occurring on Windows. To me, this meant one dreadful thing: it was a hardware
issue.
I poked and prodded for a little bit, and finally discovered the cause:
whenever I put my hand on the left palmrest, the trackpad would reliably stop
working. Knowing what the issue was, I called DELL. I spoke to a guy on the
other end, who had me run through diagnostics, driver updates, and BIOS
settings (I imagined this was procedure, so I didn't mind doing the extra
work to make the other guy's job easier). Finally, he scheduled a repair
appointment. A technician came into my house, took off the laptop cover,
and said something along the lines of:
> Now look. They gave me a whole new motherboard and case to replace yours,
but in my personal opinion, this is a bad idea. Things are bound to break
when you do this. See how the replacement case has an insulating piece
of fabric under the left palmrest, and yours doesn't? Why don't we rip
the fabric off the replacement case, and tape it in place on your machine,
without any reassembly?
This man was wiser than any of the other DELL technicians, I now understand.
The repair went without a hitch. He grilled me for going to college instead of
just picking up a trade, which was cheaper and offered more job security.
In the end, I felt a little weird about having a piece of fabric duct taped
inside my computer, but the trackpad had no more issues ever since. All was
well.
### Service Request 1: Broken D Key
All was well, that is, until the middle of winter term. I was typing up an
assignment for a university class. I was working as usual, when I suddenly
noticed that the "d" key stopped working - it had to be pressed rather weird
to register on the computer. I looked down, and discovered that the key had
snapped in half. The top part of the key fell off shortly thereafter.
{{< figure src="brokenkey.jpg" caption="The broken D key shortly after the above events." >}}
At that point, I was more surprised than anything. I hadn't heard of something
like this ever happening, especially under circumstances as normal as typing.
Regardless, I contacted support, and set up a repair appointment. Things only
went downhill from there.
Again, the appointment was scheduled, and only a few days later, another
technician arrived at my house. The only way to repair the key, he said,
was to replace the whole keyboard. They keyboard happens to be located
underneath all the other hardware, and so, the entire laptop had to be
disassembled and reassembled from scratch. He worked for about an hour, and
eventually, he put the machine together. The words of the previous
technician, who wanted to avoid doing exactly what had just been done, echoed
in my head:
> Things are bound to break when you do this.
I asked him to test it, just to make sure everything works. Sure enough,
not everything did work: the machine no longer had sound!
### Service Request 2: No sound
During diagnostics, the laptop did not emit the "beep" it usually does. This
was the first sign. Booting into Windows, the sound icon was crossed out in
red, and no sound was present. Booting into Linux led to similar results.
The microphone on the machine did not seem to work either. The service
technician said that he didn't have the parts to repair it, told me he'd call
it in, and left. Soon after, I got an email asking for times I'm available to
call: I said "any time except for 1-4 pacific time". DELL support proceeded
to call me at 3pm pacific time, when I had no service. Unable to reach me,
they promptly notified me that they are archiving my service request.
This all occurred near finals week at my university, so I had to put the issue
on hold. I had to maintain my grades, and I had to grade heaps of assignments
from other students. Though the lack of sound was annoying, it wasn't as
pressing as preparing for exams, so it was during spring break that I finally
called again, and scheduled the service appointment. By then,
{{< sidenote "right" "pandemic-note" "the pandemic was in full swing," >}}
Just for posterity, in 2020, there had been an outbreak of COVID-19,
a Coronavirus. Many states in the U.S., including my own, issued
the orders for lockdown and social distancing, which meant the closing
of schools, restaurants, and, apparently, the cessation of in-person
repairs.
{{< /sidenote >}}and DELL told me they'd mail me a box to put my laptop in, and
I'd have to mail it off to their service center. Sure, I thought, that's
fine. If it's at the service center, they won't ever "not have the required
parts". I told the tech support person my address, he read it back to me, and
so it was settled.
Until, that is, the box arrived at the wrong address.
I had received the machine as a gift from my family, who purchased the
computer to arrive at their address. The box arrived at that address too,
despite my explicit instructions to have it deliver to my current residence.
Since my family and I live 2 hours apart, it took 4 total hours to get the box
to me (a drive that couldn't be made right away!), and by the time I had it,
DELL was already threatening me again with closing the service request.
Eventually, I was able to mail the machine off, and about 5 business days
later (business days during which I did not have a working machine, which is
very necessary for my school and job) I received it back. I was excited to
have the machine back, but that didn't last very long. As I was using the
computer with Wolfram Mathematica (a rather heavy piece of software running
under Linux), I noticed that it was discharging even while plugged in. I
booted into Windows, and was greeted with a warning, something along the
lines of: "you are using a slow charger. Please use the official adapter".
But I was using the official adapter! I also tried to plug my mouse into the
relevant USB-C port, only to discover that it did not work. I had to make
another service requests.
### Service Request 3: Broken Charging Port
This time, I made sure to tell the person on the other end of the support
call to please send it to my address. I asked if there was anything I can do,
or anyone I can contact, and was told "no, just mail the computer in again."
I obliged. The box arrived at the right address this time, so I was able to
ship it off.
In the "describe your issue" field on the provided form, I begged the
technicians to send me a working machine. "Please", I wrote "Last time I got
a machine back from support, it was still broken. I really need it for school
and work!". 5 business days later, I received the machine back. I plugged it
in to make sure it worked, only to find out . . . that the very same charging
port that I requested be repaired, is still broken! It would've been funny,
if it wasn't infuriating. How is it possible for me to receive a machine from
repairs, without the thing I asked to repair being as much as improved?!
Worse, a day after I received the machine back (I was able to keep using it
thanks to it having two USB-C ports capable of charging), the LCD suddenly
flashed, and started flickering. Thinking it was a software glitch, I
restarted the machine, only to discover the same flickering during the boot
animation and menu. Not only was the charging port not repaired, but now my
LCD was broken! (in the below picture, the screen is meant to be blue, but
the bottom part of the display is purple and flickering).
{{< figure src="brokenlcd.jpg" caption="The broken LCD." >}}
### Service Request 4: Broken LCD
I called in to support again, and they once again told me to ship the machine
off. What's worse, they accused me of breaking the port myself, and told me
this was no longer covered under basic warranty. I had to explain all over
again that the port worked fine before the fateful day the D-key snapped. They
told me they'd "look into it". Eventually, I received a box in the mail. I
wasn't told I would be receiving a box, but that wasn't a big deal. I mailed
off the machine.
The UPS shipping was always the most streamlined part of the process. A day
later, I was told my machine was received intact. Another day, and I was
informed that the technicians are starting to work on it. And then,
a few hours later:
> __Current Status:__
> The part(s) needed to repair your system are not currently in stock.
> __What's Next:__
> In most cases the parts are available is less than five days.
A few days is no big deal, and it made sense that DELL wouldn't just
have screens lying around. So I waited. And waited. And waited. Two weeks
later, I got a little tired of waiting, and called the repair center.
An automated message told me:
> We're currently experiencing heavy call volumes. Please try again later. Goodbye.
And the call was dropped. This happened every time I tried to call, no matter
the hour. The original status update -- the one that notified me about the
part shortage -- came on May 8th, but the machine finally arrived to me
(without prior warning) on June 2nd, almost a month later.
The charging port worked. Sound
worked. The screen wasn't flickering. I was happy for the brief moments that
my computer was loading. As soon as I started vim, though, I noticed something
was off: the fonts looked more pixelated. The DPI settings I'd painstakingly
tweaked were wrong. Now that I thought about it, even the GRUB menu was
larger. My suspicion growing, I booted into Windows, and looked at the display
settings. Noticeably fewer resolutions were listed in the drop-down menu;
worse, the highest resolution was 1080p. After almost a month of waiting,
DELL replaced my 4k laptop display with a 1080p one.
### System Replacement: Worse LCD Screen
I admit, I was angry. At the same time, the absurdity of it all was also
unbearable. Was this constant loop of hardware damage, the endless number of
support calls filled with hoarse jazz music, part of some kind of Kafkaesque
dream? I didn't know. I was at the end of my wits as to what to do. As a last
resort, I made [a tweet](https://twitter.com/DanilaTheWalrus/status/1268056637383692289)
from my almost-abandoned account. DELL Support's Twitter
account [quickly responded](https://twitter.com/DellCares/status/1268064691416334344), eager as always to destroy any semblance of
transparency by switching to private messages. I let them know my thoughts on the matter. I wanted a new machine.
{{< figure src="dm_1.png" caption="The first real exchange between me and DELL support." >}}
Of course we can proceed further. I wanted to know what kind of machine I was getting,
though. As long as it was the same model that I originally bought,
{{< sidenote "right" "replacement-note" "it would be better than what I have." >}}
At least in principle, it would be. Perhaps the wear and tear on the replacement
parts would be greater, but at least I would have, presumably, a machine
in good condition that had the 4k screen that made me buy it in the first place.
{{< /sidenote >}}
Despite this, I knew that the machine I was getting was likely refurbished.
This _had_ to mean that some of the parts would come from other, used, machines.
This irked me, because, well, I payed for a new machine.
{{< figure src="dm_2.png" caption="Ah, the classic use of canned responses." >}}
Their use of the canned response, and their unwillingness to answer this simple
question, was transparent. Indeed, the machine would be made of used
parts. I still wanted to proceed. DELL requested that I sent an image of
my machine which included its service tag, together with a piece of
paper which included my name and email address. I obliged, and quickly got a response:
{{< figure src="dm_3.png" caption="If it was me who was silent for 4 days, my request would've long been cancelled. " >}}
Thanks, Kalpana. You will never hear this name again, not in this post.
Only one or two messages from DELL support are ever from the same person.
About a week later, I get the following beauty:
{{< figure src="dm_4.png" caption="Excuse me? What's going on?" >}}
My initial request was cancelled? Why wasn't I told? What was the reason?
What the heck was going on at DELL Support? Should I be worried?
My question of "Why" was answered with the apt response of "Yes",
and a message meant to pacify me. While this was going on, I ordered
a
{{< sidenote "right" "pinebook-note" "Pinebook Pro." >}}
The Pinebook a $200 machine has, thus far, worked more reliably than any DELL product
I've had the misfortune of owning.
{{< /sidenote >}} It was not a replacement for the DELL machine, but rather
the first step towards migrating my setup to a stationary computer,
and a small, lightweight SSH device. At this point,
there was no more faith in DELL left in my mind.
Soon, DELL required my attention, only to tell me that they put in
a request to see that status of my request. How bureaucratic. Two
more names -- Kareem and JKC -- flickered through the chats,
also never to be seen again.
{{< figure src="dm_5.png" caption="Not much of a conversation, really." >}}
Finally, on July 9th (a month and six days after my first real message to DELL
support), I was notified by my roommates that FedEx tried to deliver a package
to our house, but gave up when no one came to sign for it. On one hand, this
is great: FedEx didn't just leave my laptop on the porch. On the other hand,
though, this was the first time I heard about receiving the machine. I got
to the house the next day, unpacked the new computer, and tested all the things
that had, at one point, failed. Everything seemed to work. I transfered all my
files, wiped the old computer clean, and mailed it off. I also spent some
time dealing with the fallout of DELL PremierColor starting on its own,
and permanently altering the color profile of my display. I don't have the
special, physical calibration device, and therefore still suspect that my
screen is somewhat green.
Today, I discovered that the microphone of the replacement machine didn't work.
### Am I The Problem?
When the mysterious FedEx package arrived at my door on July 9th, I did some
digging to verify my suspicion that it was from DELL. I discovered their
HQ in Lebanon, TN. This gave me an opportunity to
{{< sidenote "right" "reviews-note" "see" >}}
See, of course, modulo whatever bias arises when only those who feel strongly leave reviews.
{{< /sidenote >}} whether or not I was alone in this situation. I was genuinely
worried that I was suffering from the technical variant of
[Munchausen Syndrome](https://www.webmd.com/mental-health/munchausen-syndrome#1),
and that I was compulsively breaking my electronics. These worries were
dispelled by the reviews on Google:
{{< figure src="reviews_1.png" caption="Most of the reviews are pretty terse, but the ratings convey the general idea." >}}
There were even some that were shockingly similar in terms of the apparent
incompetence of the DELL technicians:
{{< figure src="reviews_2.png" caption="Now, now, Maggie, I wouldn't go as far as recommending Apple." >}}
So, this is not uncommon. This is how DELL deals with customers now. It's
awfully tiring, really; I've been in and out of repairs continuously for
almost half a year, now. That's 2.5% of my life at the time of writing,
all non-stop since the D-key. And these people probably have spent considerable
amounts of time, too.
### It's About the Principle
The microphone on my machine is rather inconsequential to me. I can, and regularly do,
teleconference from my phone (a habit that I developed thanks to DELL, since
my computer was so often unavailable). I don't need to dictate anything. Most
of my communication is via chat.
Really, compared to the other issues (keyboard, sound, charging, USB ports, the broken or low-resolution screen)
the microphone is a benign problem. As I have now learned, things could be worse.
But why should the thought, _"It could be worse"_, even cross my mind
when dealing with such a matter? Virtually every issue that has
occurred with my computer thus far could -- should! -- have been diagnosed
at the repair center. The 'slow charger' warning shows up in BIOS,
so just turning the computer on while plugged in should make it obvious something
is wrong; doubly so when the very reason that the laptop was in repairs
in the first place was because of the faulty charger. I refuse to believe
that screens with different resolutions have the same part identifier,
either. How have the standards of service from DELL fallen so low?
How come this absurd scenario plays out not just for me, but
for others as well? It would be comforting, in a way, to think
that I was just the 'exceptional case'. But apparently, I'm not.
This is standard practice.
### Tl;DR
Here are he problems I've had with DELL:
* The machine shipped, apparently, with a missing piece of insulation.
* The "D" key on the keyboard snapped after only a few months of use.
* While repairing the "D" key, the DELL technician broke the computer's sound and microphone.
* While repairing the sound and microphone, the DELL technicians broke a charging port.
* The DELL technicians failed to repair the charging port, mailing me back a machine
exhibiting the same issues, in addition to a broken LCD screen.
* The repair of the LCD screen took almost a month, and concluded
with me receiving a worse quality screen than I originally had.
* The system replacement that followed the botched LCD repair took
over a month to go through.
* The replaced system was made partially of used parts, which
DELL refused to admit.
* The microphone on the replacement system was broken.
### Closing Thoughts
I will not be sending my system in again. It doesn't make sense to do so -
after mailing my system in for repairs three times, I've measured empirically that
the chance of failure is 100%. Every service request is a lottery, dutifully
giving out a random prize of another broken part. I no longer wish to play;
as any person who gambles should, I will quit while I'm ahead, and cut my losses.
However, I hope for this story, which may be unusual in its level of detail,
but not its content, to be seen by seen by someone. I hope to prevent
someone out there from feeling the frustration, and anger, and peculiar amusement
that I felt during this process. I hope for someone else to purchase a computer
with money, and not with their sanity. A guy can hope.
If you're reading this, please take this as a warning. __DELL is a horrible
company. They have the lowest standards of customer support of any
U.S. company that I've encountered. Their technicians are largely incompetent.
Their quality assurance is non-existent. Stay away from them.__

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 227 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -0,0 +1,564 @@
---
title: "Time Traveling In Haskell: How It Works And How To Use It"
date: 2020-07-30T00:58:10-07:00
tags: ["Haskell"]
---
I recently got to use a very curious Haskell technique
{{< sidenote "right" "production-note" "in production:" >}}
As production as research code gets, anyway!
{{< /sidenote >}} time traveling. I say this with
the utmost seriousness. This technique worked like
magic for the problem I was trying to solve, and so
I thought I'd share what I learned. In addition
to the technique and its workings, I will also explain how
time traveling can be misused, yielding computations that
never terminate.
### Time Traveling
Some time ago, I read [this post](https://kcsongor.github.io/time-travel-in-haskell-for-dummies/) by Csongor Kiss about time traveling in Haskell. It's
really cool, and makes a lot of sense if you have wrapped your head around
lazy evaluation. I'm going to present my take on it here, but please check out
Csongor's original post if you are interested.
Say that you have a list of integers, like `[3,2,6]`. Next, suppose that
you want to find the maximum value in the list. You can implement such
behavior quite simply with pattern matching:
```Haskell
myMax :: [Int] -> Int
myMax [] = error "Being total sucks"
myMax (x:xs) = max x $ myMax xs
```
You could even get fancy with a `fold`:
```Haskell
myMax :: [Int] -> Int
myMax = foldr1 max
```
All is well, and this is rather elementary Haskell. But now let's look at
something that Csongor calls the `repMax` problem:
> Imagine you had a list, and you wanted to replace all the elements of the
> list with the largest element, by only passing the list once.
How can we possibly do this in one pass? First, we need to find the maximum
element, and only then can we have something to replace the other numbers
with! It turns out, though, that we can just expect to have the future
value, and all will be well. Csongor provides the following example:
```Haskell
repMax :: [Int] -> Int -> (Int, [Int])
repMax [] rep = (rep, [])
repMax [x] rep = (x, [rep])
repMax (l : ls) rep = (m', rep : ls')
where (m, ls') = repMax ls rep
m' = max m l
```
In this example, `repMax` takes the list of integers,
each of which it must replace with their maximum element.
It also takes __as an argument__ the maximum element,
as if it had already been computed. It does, however,
still compute the intermediate maximum element,
in the form of `m'`. Otherwise, where would the future
value even come from?
Thus far, nothing too magical has happened. It's a little
strange to expect the result of the computation to be
given to us; it just looks like wishful
thinking. The real magic happens in Csongor's `doRepMax`
function:
```Haskell
doRepMax :: [Int] -> [Int]
doRepMax xs = xs'
where (largest, xs') = repMax xs largest
```
Look, in particular, on the line with the `where` clause.
We see that `repMax` returns the maximum element of the
list, `largest`, and the resulting list `xs'` consisting
only of `largest` repeated as many times as `xs` had elements.
But what's curious is the call to `repMax` itself. It takes
as input `xs`, the list we're supposed to process... and
`largest`, the value that _it itself returns_.
This works because Haskell's evaluation model is, effectively,
[lazy graph reduction](https://en.wikipedia.org/wiki/Graph_reduction). That is,
you can think of Haskell as manipulating your code as
{{< sidenote "right" "tree-note" "a syntax tree," >}}
Why is it called graph reduction, you may be wondering, if the runtime is
manipulating syntax trees? To save on work, if a program refers to the
same value twice, Haskell has both of those references point to the
exact same graph. This violates the tree's property of having only one path
from the root to any node, and makes our program a DAG (at least). Graph nodes that
refer to themselves (which are also possible in the model) also violate the properties of a
a DAG, and thus, in general, we are working with graphs.
{{< /sidenote >}} performing
substitutions and simplifications as necessary until it reaches a final answer.
What the lazy part means is that parts of the syntax tree that are not yet
needed to compute the final answer can exist, unsimplified, in the tree.
Why don't we draw a few graphs to get familiar with the idea?
### Visualizing Graphs and Their Reduction
Let's start with something that doesn't have anything fancy. We can
take a look at the graph of the expression:
```Haskell
length [1]
```
Stripping away Haskell's syntax sugar for lists, we can write this expression as:
```Haskell
length (1:[])
```
Then, recalling that `(:)`, or 'cons', is just a binary function, we rewrite:
```Haskell
length ((:) 1 [])
```
We're now ready to draw the graph; in this case, it's pretty much identical
to the syntax tree of the last form of our expression:
{{< figure src="length_1.png" caption="The initial graph of `length [1]`." class="small" >}}
In this image, the `@` nodes represent function application. The
root node is an application of the function `length` to the graph that
represents the list `[1]`. The list itself is represented using two
application nodes: `(:)` takes two arguments, the head and tail of the
list, and function applications in Haskell are
[curried](https://en.wikipedia.org/wiki/Currying). Eventually,
in the process of evaluation, the body of `length` will be reached,
and leave us with the following graph:
{{< figure src="length_2.png" caption="The graph of `length [1]` after the body of `length` is expanded." class="small" >}}
Conceptually, we only took one reduction step, and thus, we haven't yet gotten
to evaluating the recursive call to `length`. Since `(+)`
is also a binary function, `1+length xs` is represented in this
new graph as two applications of `(+)`, first to `1`, and then
to `length []`.
But what is that box at the root? This box _used to be_ the root of the
first graph, which was an application node. However, it is now a
an _indirection_. Conceptually, reducing
this indirection amounts to reducing the graph
it points to. But why have we {{< sidenote "right" "altered-note" "altered the graph" >}}
This is a key aspect of implementing functional languages.
The language itself may be pure, while the runtime
can be, and usually is, impure and stateful. After all,
computers are impure and stateful, too!
{{< /sidenote >}} in this manner? Because Haskell is a pure language,
of course! If we know that a particular graph reduces to some value,
there's no reason to reduce it again. However, as we will
soon see, it may be _used_ again, so we want to preserve its value.
Thus, when we're done reducing a graph, we replace its root node with
an indirection that points to its result.
When can a graph be used more than once? Well, how about this:
```Haskell
let x = square 5 in x + x
```
Here, the initial graph looks as follows:
{{< figure src="square_1.png" caption="The initial graph of `let x = square 5 in x + x`." class="small" >}}
As you can see, this _is_ a graph, but not a tree! Since both
variables `x` refer to the same expression, `square 5`, they
are represented by the same subgraph. Then, when we evaluate `square 5`
for the first time, and replace its root node with an indirection,
we end up with the following:
{{< figure src="square_2.png" caption="The graph of `let x = square 5 in x + x` after `square 5` is reduced." class="small" >}}
There are two `25`s in the graph, and no more `square`s! We only
had to evaluate `square 5` exactly once, even though `(+)`
will use it twice (once for the left argument, and once for the right).
Our graphs can also include cycles.
A simple, perhaps _the most_ simple example of this in practice is Haskell's
`fix` function. It computes a function's fixed point,
{{< sidenote "right" "fixpoint-note" "and can be used to write recursive functions." >}}
In fact, in the lambda calculus, <code>fix</code> is pretty much <em>the only</em>
way to write recursive functions. In the untyped lambda calculus, it can
be written as: $$\lambda f . (\lambda x . f (x \ x)) \ (\lambda x . f (x \ x))$$
In the simply typed lambda calculus, it cannot be written in any way, and
needs to be added as an extension, typically written as \(\textbf{fix}\).
{{< /sidenote >}}
It's implemented as follows:
```Haskell
fix f = let x = f x in x
```
See how the definition of `x` refers to itself? This is what
it looks like in graph form:
{{< figure src="fixpoint_1.png" caption="The initial graph of `let x = f x in x`." class="tiny" >}}
I think it's useful to take a look at how this graph is processed. Let's
pick `f = (1:)`. That is, `f` is a function that takes a list,
and prepends `1` to it. Then, after constructing the graph of `f x`,
we end up with the following:
{{< figure src="fixpoint_2.png" caption="The graph of `fix (1:)` after it's been reduced." class="small" >}}
We see the body of `f`, which is the application of `(:)` first to the
constant `1`, and then to `f`'s argument (`x`, in this case). As
before, once we evaluated `f x`, we replaced the application with
an indirection; in the image, this indirection is the top box. But the
argument, `x`, is itself an indirection which points to the root of `f x`,
thereby creating a cycle in our graph. Traversing this graph looks like
traversing an infinite list of `1`s.
Almost there! A node can refer to itself, and, when evaluated, it
is replaced with its own value. Thus, a node can effectively reference
its own value! The last piece of the puzzle is how a node can access
_parts_ of its own value: recall that `doRepMax` calls `repMax`
with only `largest`, while `repMax` returns `(largest, xs')`.
I have to admit, I don't know the internals of GHC, but I suspect
this is done by translating the code into something like:
```Haskell
doRepMax :: [Int] -> [Int]
doRepMax xs = snd t
where t = repMax xs (fst t)
```
#### Detailed Example: Reducing `doRepMax`
If the above examples haven't elucidated how `doRepMax` works,
stick around in this section and we will go through it step-by-step.
This is a rather long and detailed example, so feel free to skip
this section to read more about actually using time traveling.
If you're sticking around, why don't we watch how the graph of `doRepMax [1, 2]` unfolds.
This example will be more complex than the ones we've seen
so far; to avoid overwhelming ourselves with notation,
let's adopt a different convention of writing functions. Instead
of using application nodes `@`, let's draw an application of a
function `f` to arguments `x1` through `xn` as a subgraph with root `f`
and children `x`s. The below figure demonstrates what I mean:
{{< figure src="notation.png" caption="The new visual notation used in this section." class="small" >}}
Now, let's write the initial graph for `doRepMax [1,2]`:
{{< figure src="repmax_1.png" caption="The initial graph of `doRepMax [1,2]`." class="small" >}}
Other than our new notation, there's nothing too surprising here.
The first step of our hypothetical reduction would replace the application of `doRepMax` with its
body, and create our graph's first cycle. At a high level, all we want is the second element of the tuple
returned by `repMax`, which contains the output list. To get
the tuple, we apply `repMax` to the list `[1,2]` and the first element
of its result. The list `[1,2]` itself
consists of two uses of the `(:)` function.
{{< figure src="repmax_2.png" caption="The first step of reducing `doRepMax [1,2]`." class="small" >}}
Next, we would also expand the body of `repMax`. In
the following diagram, to avoid drawing a noisy amount of
crossing lines, I marked the application of `fst` with
a star, and replaced the two edges to `fst` with
edges to similar looking stars. This is merely
a visual trick; an edge leading to a little star is
actually an edge leading to `fst`. Take a look:
{{< figure src="repmax_3.png" caption="The second step of reducing `doRepMax [1,2]`." class="medium" >}}
Since `(,)` is a constructor, let's say that it doesn't
need to be evaluated, and that its
{{< sidenote "right" "normal-note" "graph cannot be reduced further" >}}
A graph that can't be reduced further is said to be in <em>normal form</em>,
by the way.
{{< /sidenote >}} (in practice, other things like
packing may occur here, but they are irrelevant to us).
If `(,)` can't be reduced, we can move on to evaluating `snd`. Given a pair, `snd`
simply returns the second element, which in our
case is the subgraph starting at `(:)`. We
thus replace the application of `snd` with an
indirection to this subgraph. This leaves us
with the following:
{{< figure src="repmax_4.png" caption="The third step of reducing `doRepMax [1,2]`." class="medium" >}}
Since it's becoming hard to keep track of what part of the graph
is actually being evaluated, I marked the former root of `doRepMax [1,2]` with
a blue star. If our original expression occured at the top level,
the graph reduction would probably stop here. After all,
we're evaluating our graphs using call-by-need, and there
doesn't seem to be a need for knowing the what the arguments of `(:)` are.
However, stopping at `(:)` wouldn't be very interesting,
and we wouldn't learn much from doing so. So instead, let's assume
that _something_ is trying to read the elements of our list;
perhaps we are trying to print this list to the screen in GHCi.
In this case, our mysterious external force starts unpacking and
inspecting the arguments to `(:)`. The first argument to `(:)` is
the list's head, which is the subgraph starting with the starred application
of `fst`. We evaluate it in a similar manner to `snd`. That is,
we replace this `fst` with an indirection to the first element
of the argument tuple, which happens to be the subgraph starting with `max`:
{{< figure src="repmax_5.png" caption="The fourth step of reducing `doRepMax [1,2]`." class="medium" >}}
Phew! Next, we need to evaluate the body of `max`. Let's make one more
simplification here: rather than substitututing `max` for its body
here, let's just reason about what evaluating `max` would entail.
We would need to evaluate its two arguments, compare them,
and return the larger one. The argument `1` can't be reduced
any more (it's just a number!), but the second argument,
a call to `fst`, needs to be processed. To do so, we need to
evaluate the call to `repMax`. We thus replace `repMax`
with its body:
{{< figure src="repmax_6.png" caption="The fifth step of reducing `doRepMax [1,2]`." class="medium" >}}
We've reached one of the base cases here, and there
are no more calls to `max` or `repMax`. The whole reason
we're here is to evaluate the call to `fst` that's one
of the arguments to `max`. Given this graph, doing so is easy.
We can clearly see that `2` is the first element of the tuple
returned by `repMax [2]`. We thus replace `fst` with
an indirection to this node:
{{< figure src="repmax_7.png" caption="The sixth step of reducing `doRepMax [1,2]`." class="medium" >}}
This concludes our task of evaluating the arguments to `max`.
Comparing them, we see that `2` is greater than `1`, and thus,
we replace `max` with an indirection to `2`:
{{< figure src="repmax_8.png" caption="The seventh step of reducing `doRepMax [1,2]`." class="medium" >}}
The node that we starred in our graph is now an indirection (the
one that used to be the call to `fst`) which points to
another indirection (formerly the call to `max`), which
points to `2`. Thus, any edge pointing to a star now
points to the value 2.
By finding the value of the starred node, we have found the first
argument of `(:)`, and returned it to our mysterious external force.
If we were printing to GHCi, the number `2` would appear on the screen
right about now. The force then moves on to the second argument of `(:)`,
which is the call to `snd`. This `snd` is applied to an instance of `(,)`, which
can't be reduced any further. Thus, all we have to do is take the second
element of the tuple, and replace `snd` with an indirection to it:
{{< figure src="repmax_9.png" caption="The eighth step of reducing `doRepMax [1,2]`." class="medium" >}}
The second element of the tuple was a call to `(:)`, and that's what the mysterious
force is processing now. Just like it did before, it starts by looking at the
first argument of this list, which is the list's head. This argument is a reference to
the starred node, which, as we've established, eventually points to `2`.
Another `2` pops up on the console.
Finally, the mysterious force reaches the second argument of the `(:)`,
which is the empty list. The empty list also cannot be evaluated any
further, so that's what the mysterious force receives. Just like that,
there's nothing left to print to the console. The mysterious force ceases.
After removing the unused nodes, we are left with the following graph:
{{< figure src="repmax_10.png" caption="The result of reducing `doRepMax [1,2]`." class="small" >}}
As we would have expected, two `2`s were printed to the console, and our
final graph represents the list `[2,2]`.
### Using Time Traveling
Is time tarveling even useful? I would argue yes, especially
in cases where Haskell's purity can make certain things
difficult.
As a first example, Csongor provides an assembler that works
in a single pass. The challenge in this case is to resolve
jumps to code segments occuring _after_ the jump itself;
in essence, the address of the target code segment needs to be
known before the segment itself is processed. Csongor's
code uses the [Tardis monad](https://hackage.haskell.org/package/tardis-0.4.1.0/docs/Control-Monad-Tardis.html),
which combines regular state, to which you can write and then
later read from, and future state, from which you can
read values before your write them. Check out
[his complete example](https://kcsongor.github.io/time-travel-in-haskell-for-dummies/#a-single-pass-assembler-an-example) here.
Alternatively, here's an example from my research, which my
coworker and coauthor Kai helped me formulate. I'll be fairly
vague, since all of this is still in progress. The gist is that
we have some kind of data structure (say, a list or a tree),
and we want to associate with each element in this data
structure a 'score' of how useful it is. There are many possible
heuristics of picking 'scores'; a very simple one is
to make it inversely propertional to the number of times
an element occurs. To be more concrete, suppose
we have some element type `Element`:
{{< codelines "Haskell" "time-traveling/ValueScore.hs" 5 6 >}}
Suppose also that our data structure is a binary tree:
{{< codelines "Haskell" "time-traveling/ValueScore.hs" 14 16 >}}
We then want to transform an input `ElementTree`, such as:
```Haskell
Node A (Node A Empty Empty) Empty
```
Into a scored tree, like:
```Haskell
Node (A,0.5) (Node (A,0.5) Empty Empty) Empty
```
Since `A` occured twice, its score is `1/2 = 0.5`.
Let's define some utility functions before we get to the
meat of the implementation:
{{< codelines "Haskell" "time-traveling/ValueScore.hs" 8 12 >}}
The `addElement` function simply increments the counter for a particular
element in the map, adding the number `1` if it doesn't exist. The `getScore`
function computes the score of a particular element, defaulting to `1.0` if
it's not found in the map.
Just as before -- noticing that passing around the future values is getting awfully
bothersome -- we write our scoring function as though we have
a 'future value'.
{{< codelines "Haskell" "time-traveling/ValueScore.hs" 18 24 >}}
The actual `doAssignScores` function is pretty much identical to
`doRepMax`:
{{< codelines "Haskell" "time-traveling/ValueScore.hs" 26 28 >}}
There's quite a bit of repetition here, especially in the handling
of future values - all of our functions now accept an extra
future argument, and return a work-in-progress future value.
This is what the `Tardis` monad, and its corresponding
`TardisT` monad transformer, aim to address. Just like the
`State` monad helps us avoid writing plumbing code for
forward-traveling values, `Tardis` helps us do the same
for backward-traveling ones.
#### Cycles in Monadic Bind
We've seen that we're able to write code like the following:
```Haskell
(a, b) = f a c
```
That is, we were able to write function calls that referenced
their own return values. What if we try doing this inside
a `do` block? Say, for example, we want to sprinkle some time
traveling into our program, but don't want to add a whole new
transformer into our monad stack. We could write code as follows:
```Haskell
do
(a, b) <- f a c
return b
```
Unfortunately, this doesn't work. However, it's entirely
possible to enable this using the `RecursiveDo` language
extension:
```Haskell
{-# LANGUAGE RecursiveDo #-}
```
Then, we can write the above as follows:
```Haskell
do
rec (a, b) <- f a c
return b
```
This power, however, comes at a price. It's not as straightforward
to build graphs from recursive monadic computations; in fact,
it's not possible in general. The translation of the above
code uses `MonadFix`. A monad that satisfies `MonadFix` has
an operation `mfix`, which is the monadic version of the `fix`
function we saw earlier:
```Haskell
mfix :: Monad m => (a -> m a) -> m a
-- Regular fix, for comparison
fix :: (a -> a) -> a
```
To really understand how the translation works, check out the
[paper on recursive do notation](http://leventerkok.github.io/papers/recdo.pdf).
### Beware The Strictness
Though Csongor points out other problems with the
time traveling approach, I think he doesn't mention
an important idea: you have to be _very_ careful about introducing
strictness into your programs when running time-traveling code.
For example, suppose we wanted to write a function,
`takeUntilMax`, which would return the input list,
cut off after the first occurence of the maximum number.
Following the same strategy, we come up with:
{{< codelines "Haskell" "time-traveling/TakeMax.hs" 1 12 >}}
In short, if we encounter our maximum number, we just return
a list of that maximum number, since we do not want to recurse
further. On the other hand, if we encounter a number that's
_not_ the maximum, we continue our recursion.
Unfortunately, this doesn't work; our program never terminates.
You may be thinking:
> Well, obviously this doesn't work! We didn't actually
compute the maximum number properly, since we stopped
recursing too early. We need to traverse the whole list,
and not just the part before the maximum number.
To address this, we can reformulate our `takeUntilMax`
function as follows:
{{< codelines "Haskell" "time-traveling/TakeMax.hs" 14 21 >}}
Now we definitely compute the maximum correctly! Alas,
this doesn't work either. The issue lies on lines 5 and 18,
more specifically in the comparison `x == m`. Here, we
are trying to base the decision of what branch to take
on a future value. This is simply impossible; to compute
the value, we need to know the value!
This is no 'silly mistake', either! In complicated programs
that use time traveling, strictness lurks behind every corner.
In my research work, I was at one point inserting a data structure into
a set; however, deep in the structure was a data type containing
a 'future' value, and using the default `Eq` instance!
Adding the data structure to a set ended up invoking `(==)` (or perhaps
some function from the `Ord` typeclass),
which, in turn, tried to compare the lazily evaluated values.
My code therefore didn't terminate, much like `takeUntilMax`.
Debugging time traveling code is, in general,
a pain. This is especially true since future values don't look any different
from regular values. You can see it in the type signatures
of `repMax` and `takeUntilMax`: the maximum number is just an `Int`!
And yet, trying to see what its value is will kill the entire program.
As always, remember Brian W. Kernighan's wise words:
> Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it.
### Conclusion
This is about it! In a way, time traveling can make code performing
certain operations more expressive. Furthermore, even if it's not groundbreaking,
thinking about time traveling is a good exercise to get familiar
with lazy evaluation in general. I hope you found this useful!

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Some files were not shown because too many files have changed in this diff Show More