agda-spa/Lattice.agda

292 lines
12 KiB
Agda
Raw Normal View History

module Lattice where
open import Equivalence
import Chain
open import Relation.Binary.Core using (_Preserves_⟶_ )
open import Relation.Nullary using (Dec; ¬_)
open import Data.Nat as Nat using ()
open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_)
open import Function.Definitions using (Injective)
record IsDecidable {a} {A : Set a} (R : A A Set a) : Set a where
field
R-dec : (a₁ a₂ : A) Dec (R a₁ a₂)
module _ {a b} {A : Set a} {B : Set b}
(_≼₁_ : A A Set a) (_≼₂_ : B B Set b) where
Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
Monotonicˡ : {c} {C : Set c} (A C B) Set (a ⊔ℓ b ⊔ℓ c)
Monotonicˡ f = c Monotonic (λ a f a c)
Monotonicʳ : {c} {C : Set c} (C A B) Set (a ⊔ℓ b ⊔ℓ c)
Monotonicʳ f = a Monotonic (f a)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(_≼₁_ : A A Set a) (_≼₂_ : B B Set b) (_≼₃_ : C C Set c) where
Monotonic₂ : (A B C) Set (a ⊔ℓ b ⊔ℓ c)
Monotonic₂ f = Monotonicˡ _≼₁_ _≼₃_ f × Monotonicʳ _≼₂_ _≼₃_ f
record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where
_≼_ : A A Set a
a b = (a b) b
_≺_ : A A Set a
a b = (a b) × (¬ a b)
field
≈-equiv : IsEquivalence A _≈_
≈-⊔-cong : {a₁ a₂ a₃ a₄} a₁ a₂ a₃ a₄ (a₁ a₃) (a₂ a₄)
⊔-assoc : (x y z : A) ((x y) z) (x (y z))
⊔-comm : (x y : A) (x y) (y x)
⊔-idemp : (x : A) (x x) x
open IsEquivalence ≈-equiv public
open import Relation.Binary.Reasoning.Base.Single _≈_ ≈-refl ≈-trans
⊔-Monotonicˡ : (a₁ : A) Monotonic _≼_ _≼_ (λ a₂ a₁ a₂)
⊔-Monotonicˡ a {a₁} {a₂} a₁≼a₂ = ≈-trans (≈-sym lhs) (≈-⊔-cong (≈-refl {a}) a₁≼a₂)
where
lhs =
begin
a (a₁ a₂)
∼⟨ ≈-⊔-cong (≈-sym (⊔-idemp _)) ≈-refl
(a a) (a₁ a₂)
∼⟨ ⊔-assoc _ _ _
a (a (a₁ a₂))
∼⟨ ≈-⊔-cong ≈-refl (≈-sym (⊔-assoc _ _ _))
a ((a a₁) a₂)
∼⟨ ≈-⊔-cong ≈-refl (≈-⊔-cong (⊔-comm _ _) ≈-refl)
a ((a₁ a) a₂)
∼⟨ ≈-⊔-cong ≈-refl (⊔-assoc _ _ _)
a (a₁ (a a₂))
∼⟨ ≈-sym (⊔-assoc _ _ _)
(a a₁) (a a₂)
⊔-Monotonicʳ : (a₂ : A) Monotonic _≼_ _≼_ (λ a₁ a₁ a₂)
⊔-Monotonicʳ a {a₁} {a₂} a₁≼a₂ = ≈-trans (≈-sym lhs) (≈-⊔-cong a₁≼a₂ (≈-refl {a}))
where
lhs =
begin
(a₁ a₂) a
∼⟨ ≈-⊔-cong ≈-refl (≈-sym (⊔-idemp _))
(a₁ a₂) (a a)
∼⟨ ≈-sym (⊔-assoc _ _ _)
((a₁ a₂) a) a
∼⟨ ≈-⊔-cong (⊔-assoc _ _ _) ≈-refl
(a₁ (a₂ a)) a
∼⟨ ≈-⊔-cong (≈-⊔-cong ≈-refl (⊔-comm _ _)) ≈-refl
(a₁ (a a₂)) a
∼⟨ ≈-⊔-cong (≈-sym (⊔-assoc _ _ _)) ≈-refl
((a₁ a) a₂) a
∼⟨ ⊔-assoc _ _ _
(a₁ a) (a₂ a)
≼-refl : (a : A) a a
≼-refl a = ⊔-idemp a
≼-trans : {a₁ a₂ a₃ : A} a₁ a₂ a₂ a₃ a₁ a₃
≼-trans {a₁} {a₂} {a₃} a₁≼a₂ a₂≼a₃ =
begin
a₁ a₃
∼⟨ ≈-⊔-cong ≈-refl (≈-sym a₂≼a₃)
a₁ (a₂ a₃)
∼⟨ ≈-sym (⊔-assoc _ _ _)
(a₁ a₂) a₃
∼⟨ ≈-⊔-cong a₁≼a₂ ≈-refl
a₂ a₃
∼⟨ a₂≼a₃
a₃
≼-cong : {a₁ a₂ a₃ a₄ : A} a₁ a₂ a₃ a₄ a₁ a₃ a₂ a₄
≼-cong {a₁} {a₂} {a₃} {a₄} a₁≈a₂ a₃≈a₄ a₁⊔a₃≈a₃ =
begin
a₂ a₄
∼⟨ ≈-⊔-cong (≈-sym a₁≈a₂) (≈-sym a₃≈a₄)
a₁ a₃
∼⟨ a₁⊔a₃≈a₃
a₃
∼⟨ a₃≈a₄
a₄
≺-cong : {a₁ a₂ a₃ a₄ : A} a₁ a₂ a₃ a₄ a₁ a₃ a₂ a₄
≺-cong a₁≈a₂ a₃≈a₄ (a₁≼a₃ , a₁̷≈a₃) =
( ≼-cong a₁≈a₂ a₃≈a₄ a₁≼a₃
, λ a₂≈a₄ a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
)
module _ {a} {A : Set a}
{_≈_ : A A Set a} {_⊔_ : A A A}
(lA : IsSemilattice A _≈_ _⊔_) where
open IsSemilattice lA using (_≼_)
id-Mono : Monotonic _≼_ _≼_ (λ x x)
id-Mono {a₁} {a₂} a₁≼a₂ = a₁≼a₂
module _ {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_⊔₁_ : A A A}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B}
(lA : IsSemilattice A _≈₁_ _⊔₁_) (lB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice lA using () renaming (_≼_ to _≼₁_)
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
const-Mono : (x : B) Monotonic _≼₁_ _≼₂_ (λ _ x)
const-Mono x _ = ⊔₂-idemp x
open import Data.List as List using (List; foldr; foldl; _∷_)
open import Utils using (Pairwise; _∷_)
foldr-Mono : (l₁ l₂ : List A) (f : A B B) (b₁ b₂ : B)
Pairwise _≼₁_ l₁ l₂ b₁ ≼₂ b₂
( b Monotonic _≼₁_ _≼₂_ (λ a f a b))
( a Monotonic _≼₂_ _≼₂_ (f a))
foldr f b₁ l₁ ≼₂ foldr f b₂ l₂
foldr-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
foldr-Mono (x xs) (y ys) f b₁ b₂ (x≼y xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
foldl-Mono : (l₁ l₂ : List A) (f : B A B) (b₁ b₂ : B)
Pairwise _≼₁_ l₁ l₂ b₁ ≼₂ b₂
( a Monotonic _≼₂_ _≼₂_ (λ b f b a))
( b Monotonic _≼₁_ _≼₂_ (f b))
foldl f b₁ l₁ ≼₂ foldl f b₂ l₂
foldl-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
foldl-Mono (x xs) (y ys) f b₁ b₂ (x≼y xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
foldl-Mono xs ys f (f b₁ x) (f b₂ y) xs≼ys (≼₂-trans (f-Mono₁ x b₁≼b₂) (f-Mono₂ b₂ x≼y)) f-Mono₁ f-Mono₂
module _ {a b} {A : Set a} {B : Set b}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B}
(lB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
open import Data.List as List using (List; foldr; foldl; _∷_)
open import Utils using (Pairwise; _∷_)
foldr-Mono' : (l : List A) (f : A B B)
( a Monotonic _≼₂_ _≼₂_ (f a))
Monotonic _≼₂_ _≼₂_ (λ b foldr f b l)
foldr-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
foldr-Mono' (x xs) f f-Mono₂ b₁≼b₂ = f-Mono₂ x (foldr-Mono' xs f f-Mono₂ b₁≼b₂)
foldl-Mono' : (l : List A) (f : B A B)
( b Monotonic _≼₂_ _≼₂_ (λ a f a b))
Monotonic _≼₂_ _≼₂_ (λ b foldl f b l)
foldl-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
foldl-Mono' (x xs) f f-Mono₁ b₁≼b₂ = foldl-Mono' xs f f-Mono₁ (f-Mono₁ x b₁≼b₂)
record IsLattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A)
(_⊓_ : A A A) : Set a where
field
{{joinSemilattice}} : IsSemilattice A _≈_ _⊔_
{{meetSemilattice}} : IsSemilattice A _≈_ _⊓_
absorb-⊔-⊓ : (x y : A) (x (x y)) x
absorb-⊓-⊔ : (x y : A) (x (x y)) x
open IsSemilattice joinSemilattice public
open IsSemilattice meetSemilattice public using () renaming
( ⊔-assoc to ⊓-assoc
; ⊔-comm to ⊓-comm
; ⊔-idemp to ⊓-idemp
; ⊔-Monotonicˡ to ⊓-Monotonicˡ
; ⊔-Monotonicʳ to ⊓-Monotonicʳ
; ≈-⊔-cong to ≈-⊓-cong
; _≼_ to _≽_
; _≺_ to _≻_
; ≼-refl to ≽-refl
; ≼-trans to ≽-trans
)
FixedHeight : (h : ) Set a
FixedHeight h = Chain.Height (_≈_) ≈-equiv _≺_ ≺-cong h
record IsFiniteHeightLattice {a} (A : Set a)
(h : )
(_≈_ : A A Set a)
(_⊔_ : A A A)
(_⊓_ : A A A) : Set (lsuc a) where
field
{{isLattice}} : IsLattice A _≈_ _⊔_ _⊓_
open IsLattice isLattice public
field
{{fixedHeight}} : FixedHeight h
module ChainMapping {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_≈₂_ : B B Set b}
{_⊔₁_ : A A A} {_⊔₂_ : B B B}
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_; ≈-equiv to ≈₁-equiv; ≺-cong to ≺₁-cong)
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_; ≈-equiv to ≈₂-equiv; ≺-cong to ≺₂-cong)
open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; step to step₁; done to done₁)
open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; step to step₂; done to done₂)
Chain-map : (f : A B)
Monotonic _≼₁_ _≼₂_ f
Injective _≈₁_ _≈₂_ f
f Preserves _≈₁_ _≈₂_
{a₁ a₂ : A} {n : } Chain₁ a₁ a₂ n Chain₂ (f a₁) (f a₂) n
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (done₁ a₁≈a₂) =
done₂ (Preservesᶠ a₁≈a₂)
Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ (step₁ (a₁≼₁a , a₁̷≈₁a) a≈₁a' a'a₂) =
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
fa≈fa' = Preservesᶠ a≈₁a'
in step₂ fa₁≺₂fa fa≈fa' (Chain-map f Monotonicᶠ Injectiveᶠ Preservesᶠ a'a₂)
record Semilattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a
_⊔_ : A A A
{{isSemilattice}} : IsSemilattice A _≈_ _⊔_
open IsSemilattice isSemilattice public
record Lattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a
_⊔_ : A A A
_⊓_ : A A A
{{isLattice}} : IsLattice A _≈_ _⊔_ _⊓_
open IsLattice isLattice public
record FiniteHeightLattice {a} (A : Set a) : Set (lsuc a) where
field
height :
_≈_ : A A Set a
_⊔_ : A A A
_⊓_ : A A A
{{isFiniteHeightLattice}} : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
open IsFiniteHeightLattice isFiniteHeightLattice public