2023-09-23 15:08:04 -07:00
|
|
|
|
open import Lattice
|
2023-08-19 16:30:53 -07:00
|
|
|
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
2023-07-23 00:51:34 -07:00
|
|
|
|
open import Relation.Binary.Definitions using (Decidable)
|
2023-08-05 14:13:06 -07:00
|
|
|
|
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
2023-07-23 00:51:34 -07:00
|
|
|
|
|
2024-03-10 18:35:29 -07:00
|
|
|
|
module Lattice.Map {a b : Level} {A : Set a} {B : Set b}
|
|
|
|
|
{_≈₂_ : B → B → Set b}
|
|
|
|
|
{_⊔₂_ : B → B → B} {_⊓₂_ : B → B → B}
|
2023-07-23 00:51:34 -07:00
|
|
|
|
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
2023-09-23 15:08:04 -07:00
|
|
|
|
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
2023-07-23 00:51:34 -07:00
|
|
|
|
|
2024-03-06 00:35:29 -08:00
|
|
|
|
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
2023-07-24 23:12:04 -07:00
|
|
|
|
|
2023-09-23 17:12:12 -07:00
|
|
|
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
2023-07-23 00:51:34 -07:00
|
|
|
|
open import Data.Nat using (ℕ)
|
2024-03-11 12:50:05 -07:00
|
|
|
|
open import Data.List using (List; map; []; _∷_; _++_) renaming (foldr to foldrˡ)
|
2023-07-24 22:51:27 -07:00
|
|
|
|
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
2023-07-23 17:50:25 -07:00
|
|
|
|
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
|
|
|
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
2023-09-23 15:08:04 -07:00
|
|
|
|
open import Data.Empty using (⊥; ⊥-elim)
|
|
|
|
|
open import Equivalence
|
2024-03-09 13:57:02 -08:00
|
|
|
|
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
2024-03-11 12:50:05 -07:00
|
|
|
|
open import Data.String using () renaming (_++_ to _++ˢ_)
|
|
|
|
|
open import Showable using (Showable; show)
|
2023-09-23 15:08:04 -07:00
|
|
|
|
|
|
|
|
|
open IsLattice lB using () renaming
|
|
|
|
|
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
|
|
|
|
; ≈-⊔-cong to ≈₂-⊔₂-cong; ≈-⊓-cong to ≈₂-⊓₂-cong
|
|
|
|
|
; ⊔-idemp to ⊔₂-idemp; ⊔-comm to ⊔₂-comm; ⊔-assoc to ⊔₂-assoc
|
|
|
|
|
; ⊓-idemp to ⊓₂-idemp; ⊓-comm to ⊓₂-comm; ⊓-assoc to ⊓₂-assoc
|
|
|
|
|
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
2024-03-06 00:35:29 -08:00
|
|
|
|
; _≼_ to _≼₂_
|
2023-09-23 15:08:04 -07:00
|
|
|
|
)
|
2023-07-23 00:51:34 -07:00
|
|
|
|
|
2024-02-10 16:51:43 -08:00
|
|
|
|
private module ImplKeys where
|
2024-02-10 16:35:21 -08:00
|
|
|
|
keys : List (A × B) → List A
|
|
|
|
|
keys = map proj₁
|
2023-07-24 20:38:34 -07:00
|
|
|
|
|
2024-03-09 13:57:02 -08:00
|
|
|
|
-- See note on `forget` for why this is defined in global scope even though
|
|
|
|
|
-- it operates on lists.
|
|
|
|
|
∈k-dec : ∀ (k : A) (l : List (A × B)) → Dec (k ∈ˡ (ImplKeys.keys l))
|
|
|
|
|
∈k-dec k [] = no (λ ())
|
|
|
|
|
∈k-dec k ((k' , v) ∷ xs)
|
|
|
|
|
with (≡-dec-A k k')
|
|
|
|
|
... | yes k≡k' = yes (here k≡k')
|
|
|
|
|
... | no k≢k' with (∈k-dec k xs)
|
|
|
|
|
... | yes k∈kxs = yes (there k∈kxs)
|
|
|
|
|
... | no k∉kxs = no witness
|
|
|
|
|
where
|
|
|
|
|
witness : ¬ k ∈ˡ (ImplKeys.keys ((k' , v) ∷ xs))
|
|
|
|
|
witness (here k≡k') = k≢k' k≡k'
|
|
|
|
|
witness (there k∈kxs) = k∉kxs k∈kxs
|
|
|
|
|
|
2023-07-25 19:56:47 -07:00
|
|
|
|
private module _ where
|
|
|
|
|
open MemProp using (_∈_)
|
2024-02-10 16:35:21 -08:00
|
|
|
|
open ImplKeys
|
2023-07-25 19:56:47 -07:00
|
|
|
|
|
2023-07-26 17:31:09 -07:00
|
|
|
|
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
|
|
|
|
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
|
|
|
|
unique-not-in {l = (k' , _) ∷ xs} (k≢k' ∷ _ , here k',≡x) =
|
|
|
|
|
k≢k' (cong proj₁ k',≡x)
|
|
|
|
|
unique-not-in {l = _ ∷ xs} (_ ∷ rest , there k,v'∈xs) =
|
|
|
|
|
unique-not-in (rest , k,v'∈xs)
|
|
|
|
|
|
|
|
|
|
ListAB-functional : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
|
|
|
|
Unique (keys l) → (k , v) ∈ l → (k , v') ∈ l → v ≡ v'
|
|
|
|
|
ListAB-functional _ (here k,v≡x) (here k,v'≡x) =
|
|
|
|
|
cong proj₂ (trans k,v≡x (sym k,v'≡x))
|
|
|
|
|
ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs)
|
2023-09-23 15:08:04 -07:00
|
|
|
|
rewrite sym k,v≡x = ⊥-elim (unique-not-in (k≢xs , k,v'∈xs))
|
2023-07-26 17:31:09 -07:00
|
|
|
|
ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x)
|
2023-09-23 15:08:04 -07:00
|
|
|
|
rewrite sym k,v'≡x = ⊥-elim (unique-not-in (k≢xs , k,v∈xs))
|
2023-07-26 17:31:09 -07:00
|
|
|
|
ListAB-functional {l = _ ∷ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) =
|
|
|
|
|
ListAB-functional uxs k,v∈xs k,v'∈xs
|
2023-07-25 19:56:47 -07:00
|
|
|
|
|
2024-03-06 00:35:29 -08:00
|
|
|
|
k∈-dec : ∀ (k : A) (l : List A) → Dec (k ∈ l)
|
|
|
|
|
k∈-dec k [] = no (λ ())
|
|
|
|
|
k∈-dec k (x ∷ xs)
|
|
|
|
|
with (≡-dec-A k x)
|
|
|
|
|
... | yes refl = yes (here refl)
|
|
|
|
|
... | no k≢x with (k∈-dec k xs)
|
|
|
|
|
... | yes k∈xs = yes (there k∈xs)
|
|
|
|
|
... | no k∉xs = no (λ { (here k≡x) → k≢x k≡x; (there k∈xs) → k∉xs k∈xs })
|
|
|
|
|
|
2023-07-28 00:05:41 -07:00
|
|
|
|
∈-cong : ∀ {c d} {C : Set c} {D : Set d} {c : C} {l : List C} →
|
|
|
|
|
(f : C → D) → c ∈ l → f c ∈ map f l
|
|
|
|
|
∈-cong f (here c≡c') = here (cong f c≡c')
|
|
|
|
|
∈-cong f (there c∈xs) = there (∈-cong f c∈xs)
|
|
|
|
|
|
2024-02-25 18:07:50 -08:00
|
|
|
|
locate-impl : ∀ {k : A} {l : List (A × B)} → k ∈ keys l → Σ B (λ v → (k , v) ∈ l)
|
|
|
|
|
locate-impl {k} {(k' , v) ∷ xs} (here k≡k') rewrite k≡k' = (v , here refl)
|
|
|
|
|
locate-impl {k} {(k' , v) ∷ xs} (there k∈kxs) = let (v , k,v∈xs) = locate-impl k∈kxs in (v , there k,v∈xs)
|
2023-07-28 00:05:41 -07:00
|
|
|
|
|
2023-09-23 15:08:04 -07:00
|
|
|
|
private module ImplRelation where
|
2023-07-25 19:56:47 -07:00
|
|
|
|
open MemProp using (_∈_)
|
|
|
|
|
|
2023-08-05 14:13:06 -07:00
|
|
|
|
subset : List (A × B) → List (A × B) → Set (a ⊔ℓ b)
|
2023-07-26 17:31:09 -07:00
|
|
|
|
subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ →
|
2023-09-23 15:08:04 -07:00
|
|
|
|
Σ B (λ v' → v ≈₂ v' × ((k , v') ∈ m₂))
|
2023-07-24 23:55:09 -07:00
|
|
|
|
|
|
|
|
|
private module ImplInsert (f : B → B → B) where
|
2023-07-25 22:58:42 -07:00
|
|
|
|
open import Data.List using (map)
|
2023-07-25 19:56:47 -07:00
|
|
|
|
open MemProp using (_∈_)
|
2024-02-10 16:35:21 -08:00
|
|
|
|
open ImplKeys
|
2023-07-25 19:56:47 -07:00
|
|
|
|
|
|
|
|
|
private
|
|
|
|
|
_∈k_ : A → List (A × B) → Set a
|
|
|
|
|
_∈k_ k m = k ∈ (keys m)
|
2023-07-24 23:12:04 -07:00
|
|
|
|
|
2023-07-25 19:56:47 -07:00
|
|
|
|
foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C
|
|
|
|
|
foldr f b [] = b
|
|
|
|
|
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
2023-07-25 00:10:57 -07:00
|
|
|
|
|
2023-07-24 23:12:04 -07:00
|
|
|
|
insert : A → B → List (A × B) → List (A × B)
|
|
|
|
|
insert k v [] = (k , v) ∷ []
|
|
|
|
|
insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
|
|
|
|
... | yes _ = (k' , f v v') ∷ xs
|
|
|
|
|
... | no _ = x ∷ insert k v xs
|
|
|
|
|
|
2023-07-30 15:18:09 -07:00
|
|
|
|
union : List (A × B) → List (A × B) → List (A × B)
|
|
|
|
|
union m₁ m₂ = foldr insert m₂ m₁
|
2023-07-24 23:12:04 -07:00
|
|
|
|
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-keys-∈ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
2023-07-26 17:31:09 -07:00
|
|
|
|
k ∈k l → keys l ≡ keys (insert k v l)
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-keys-∈ {k} {v} {(k' , v') ∷ xs} (here k≡k')
|
2023-07-26 17:31:09 -07:00
|
|
|
|
with (≡-dec-A k k')
|
|
|
|
|
... | yes _ = refl
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | no k≢k' = ⊥-elim (k≢k' k≡k')
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-keys-∈ {k} {v} {(k' , _) ∷ xs} (there k∈kxs)
|
2023-07-26 17:31:09 -07:00
|
|
|
|
with (≡-dec-A k k')
|
|
|
|
|
... | yes _ = refl
|
2023-07-30 13:19:00 -07:00
|
|
|
|
... | no _ = cong (λ xs' → k' ∷ xs') (insert-keys-∈ k∈kxs)
|
2023-07-26 17:31:09 -07:00
|
|
|
|
|
2023-09-23 15:08:04 -07:00
|
|
|
|
insert-keys-∉ : ∀ {k : A} {v : B} {l : List (A × B)} →
|
2023-07-26 17:31:09 -07:00
|
|
|
|
¬ (k ∈k l) → (keys l ++ (k ∷ [])) ≡ keys (insert k v l)
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-keys-∉ {k} {v} {[]} _ = refl
|
|
|
|
|
insert-keys-∉ {k} {v} {(k' , v') ∷ xs} k∉kl
|
2023-07-26 17:31:09 -07:00
|
|
|
|
with (≡-dec-A k k')
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
2023-07-26 17:31:09 -07:00
|
|
|
|
... | no _ = cong (λ xs' → k' ∷ xs')
|
2023-07-30 13:19:00 -07:00
|
|
|
|
(insert-keys-∉ (λ k∈kxs → k∉kl (there k∈kxs)))
|
2023-07-24 23:12:04 -07:00
|
|
|
|
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)}
|
2023-07-26 17:31:09 -07:00
|
|
|
|
→ Unique (keys l) → Unique (keys (insert k v l))
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-preserves-Unique {k} {v} {l} u
|
2023-07-26 17:31:09 -07:00
|
|
|
|
with (∈k-dec k l)
|
2023-07-30 13:19:00 -07:00
|
|
|
|
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
|
|
|
|
|
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
|
2023-07-25 22:58:42 -07:00
|
|
|
|
|
2024-02-11 12:45:43 -08:00
|
|
|
|
union-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
All (λ k → k ∈k l₂) (keys l₁) →
|
|
|
|
|
keys l₂ ≡ keys (union l₁ l₂)
|
|
|
|
|
union-subset-keys {[]} _ = refl
|
|
|
|
|
union-subset-keys {(k , v) ∷ l₁'} (k∈kl₂ ∷ kl₁'⊆kl₂)
|
|
|
|
|
rewrite union-subset-keys kl₁'⊆kl₂ =
|
|
|
|
|
insert-keys-∈ k∈kl₂
|
|
|
|
|
|
2024-02-11 13:19:46 -08:00
|
|
|
|
union-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
2024-02-11 12:45:43 -08:00
|
|
|
|
keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
union-equal-keys {l₁} {l₂} kl₁≡kl₂
|
2024-02-11 12:45:43 -08:00
|
|
|
|
with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁))
|
|
|
|
|
... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂)
|
|
|
|
|
|
2023-07-30 15:18:09 -07:00
|
|
|
|
union-preserves-Unique : ∀ (l₁ l₂ : List (A × B)) →
|
|
|
|
|
Unique (keys l₂) → Unique (keys (union l₁ l₂))
|
|
|
|
|
union-preserves-Unique [] l₂ u₂ = u₂
|
|
|
|
|
union-preserves-Unique ((k₁ , v₁) ∷ xs₁) l₂ u₂ =
|
|
|
|
|
insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂)
|
2023-07-26 17:31:09 -07:00
|
|
|
|
|
2023-07-30 13:49:38 -07:00
|
|
|
|
insert-fresh : ∀ {k : A} {v : B} {l : List (A × B)} →
|
|
|
|
|
¬ k ∈k l → (k , v) ∈ insert k v l
|
|
|
|
|
insert-fresh {l = []} k∉kl = here refl
|
|
|
|
|
insert-fresh {k} {l = (k' , v') ∷ xs} k∉kl
|
|
|
|
|
with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' = ⊥-elim (k∉kl (here k≡k'))
|
2023-07-30 13:49:38 -07:00
|
|
|
|
... | no _ = there (insert-fresh (λ k∈kxs → k∉kl (there k∈kxs)))
|
2023-07-26 20:40:28 -07:00
|
|
|
|
|
2023-07-30 13:46:52 -07:00
|
|
|
|
insert-preserves-∉k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
2023-07-26 20:40:28 -07:00
|
|
|
|
¬ k ≡ k' → ¬ k ∈k l → ¬ k ∈k insert k' v' l
|
2023-07-30 13:46:52 -07:00
|
|
|
|
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
|
|
|
|
|
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
|
|
|
|
|
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') ∷ xs} k≢k' k∉kl k∈kil
|
2023-07-26 20:40:28 -07:00
|
|
|
|
with ≡-dec-A k k''
|
|
|
|
|
... | yes k≡k'' = k∉kl (here k≡k'')
|
|
|
|
|
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
|
|
|
|
|
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
|
|
|
|
|
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
|
|
|
|
|
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
|
2023-07-30 13:46:52 -07:00
|
|
|
|
... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k'
|
2023-07-26 20:40:28 -07:00
|
|
|
|
(λ k∈kxs → k∉kl (there k∈kxs)) k∈kxs
|
|
|
|
|
|
2023-07-30 15:18:09 -07:00
|
|
|
|
union-preserves-∉ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₁ → ¬ k ∈k l₂ → ¬ k ∈k union l₁ l₂
|
|
|
|
|
union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂
|
|
|
|
|
union-preserves-∉ {k} {(k' , v') ∷ xs₁} k∉kl₁ k∉kl₂
|
2023-07-26 20:40:28 -07:00
|
|
|
|
with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' = ⊥-elim (k∉kl₁ (here k≡k'))
|
2023-07-30 15:18:09 -07:00
|
|
|
|
... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ → k∉kl₁ (there k∈kxs₁)) k∉kl₂)
|
2023-07-26 17:31:09 -07:00
|
|
|
|
|
2023-07-30 19:08:51 -07:00
|
|
|
|
insert-preserves-∈k : ∀ {k k' : A} {v' : B} {l : List (A × B)} →
|
|
|
|
|
k ∈k l → k ∈k insert k' v' l
|
|
|
|
|
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (here k≡k'')
|
|
|
|
|
with (≡-dec-A k' k'')
|
|
|
|
|
... | yes _ = here k≡k''
|
|
|
|
|
... | no _ = here k≡k''
|
|
|
|
|
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') ∷ xs} (there k∈kxs)
|
|
|
|
|
with (≡-dec-A k' k'')
|
|
|
|
|
... | yes _ = there k∈kxs
|
|
|
|
|
... | no _ = there (insert-preserves-∈k k∈kxs)
|
|
|
|
|
|
|
|
|
|
union-preserves-∈k₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
k ∈k l₁ → k ∈k (union l₁ l₂)
|
|
|
|
|
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (here k≡k')
|
|
|
|
|
with ∈k-dec k (union xs l₂)
|
|
|
|
|
... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂
|
|
|
|
|
... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂)
|
|
|
|
|
union-preserves-∈k₁ {k} {(k' , v') ∷ xs} {l₂} (there k∈kxs) =
|
|
|
|
|
insert-preserves-∈k (union-preserves-∈k₁ k∈kxs)
|
|
|
|
|
|
|
|
|
|
union-preserves-∈k₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
k ∈k l₂ → k ∈k (union l₁ l₂)
|
|
|
|
|
union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂
|
|
|
|
|
union-preserves-∈k₂ {k} {(k' , v') ∷ xs} {l₂} k∈kl₂ =
|
|
|
|
|
insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂)
|
|
|
|
|
|
|
|
|
|
∉-union-∉-either : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k union l₁ l₂ → ¬ k ∈k l₁ × ¬ k ∈k l₂
|
|
|
|
|
∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂
|
|
|
|
|
with ∈k-dec k l₁
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k∈kl₁ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁))
|
2023-07-30 19:08:51 -07:00
|
|
|
|
... | no k∉kl₁ with ∈k-dec k l₂
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k∈kl₂ = ⊥-elim (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂))
|
2023-07-30 19:08:51 -07:00
|
|
|
|
... | no k∉kl₂ = (k∉kl₁ , k∉kl₂)
|
|
|
|
|
|
|
|
|
|
|
2023-07-30 13:49:38 -07:00
|
|
|
|
insert-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
|
|
|
|
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ insert k' v' l
|
|
|
|
|
insert-preserves-∈ {k} {k'} {l = x ∷ xs} k≢k' (here k,v=x)
|
|
|
|
|
rewrite sym k,v=x with ≡-dec-A k' k
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k'≡k = ⊥-elim (k≢k' (sym k'≡k))
|
2023-07-30 13:49:38 -07:00
|
|
|
|
... | no _ = here refl
|
|
|
|
|
insert-preserves-∈ {k} {k'} {l = (k'' , _) ∷ xs} k≢k' (there k,v∈xs)
|
|
|
|
|
with ≡-dec-A k' k''
|
|
|
|
|
... | yes _ = there k,v∈xs
|
|
|
|
|
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
|
|
|
|
|
|
2023-07-30 17:57:06 -07:00
|
|
|
|
union-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
2023-07-30 15:18:09 -07:00
|
|
|
|
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ union l₁ l₂
|
2023-07-30 17:57:06 -07:00
|
|
|
|
union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
|
|
|
|
|
union-preserves-∈₂ {l₁ = (k' , v') ∷ xs₁} k∉kl₁ k,v∈l₂ =
|
|
|
|
|
let recursion = union-preserves-∈₂ (λ k∈xs₁ → k∉kl₁ (there k∈xs₁)) k,v∈l₂
|
2023-07-30 13:21:03 -07:00
|
|
|
|
in insert-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) recursion
|
2023-07-25 22:58:42 -07:00
|
|
|
|
|
2023-07-30 17:57:06 -07:00
|
|
|
|
union-preserves-∈₁ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
2023-07-30 15:18:09 -07:00
|
|
|
|
Unique (keys l₁) → (k , v) ∈ l₁ → ¬ k ∈k l₂ → (k , v) ∈ union l₁ l₂
|
2023-07-30 17:57:06 -07:00
|
|
|
|
union-preserves-∈₁ {k} {v} {(k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
|
2023-07-30 13:21:03 -07:00
|
|
|
|
insert-preserves-∈ k≢k' k,v∈mxs₁l
|
2023-07-26 20:40:28 -07:00
|
|
|
|
where
|
2023-07-30 17:57:06 -07:00
|
|
|
|
k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂
|
2023-07-26 20:40:28 -07:00
|
|
|
|
|
|
|
|
|
k≢k' : ¬ k ≡ k'
|
|
|
|
|
k≢k' with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
|
2023-07-26 20:40:28 -07:00
|
|
|
|
... | no k≢k' = k≢k'
|
2023-07-30 17:57:06 -07:00
|
|
|
|
union-preserves-∈₁ {l₁ = (k' , v') ∷ xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
|
2023-07-26 20:40:28 -07:00
|
|
|
|
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
|
2023-07-30 15:18:09 -07:00
|
|
|
|
insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
|
2023-07-26 20:40:28 -07:00
|
|
|
|
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
2023-07-26 20:40:28 -07:00
|
|
|
|
Unique (keys l) → (k , v') ∈ l → (k , f v v') ∈ (insert k v l)
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-combines {l = (k' , v'') ∷ xs} _ (here k,v'≡k',v'')
|
2023-07-26 20:40:28 -07:00
|
|
|
|
rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v''
|
|
|
|
|
with ≡-dec-A k' k'
|
|
|
|
|
... | yes _ = here refl
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | no k≢k' = ⊥-elim (k≢k' refl)
|
2023-07-30 13:19:00 -07:00
|
|
|
|
insert-combines {k} {l = (k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v'∈xs)
|
2023-07-26 20:40:28 -07:00
|
|
|
|
with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
|
2023-07-30 13:19:00 -07:00
|
|
|
|
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
|
2023-07-26 20:40:28 -07:00
|
|
|
|
|
2023-07-30 15:18:09 -07:00
|
|
|
|
union-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
2023-07-26 20:40:28 -07:00
|
|
|
|
Unique (keys l₁) → Unique (keys l₂) →
|
2023-07-30 15:18:09 -07:00
|
|
|
|
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ union l₁ l₂
|
|
|
|
|
union-combines {l₁ = (k' , v) ∷ xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
|
2023-07-26 20:40:28 -07:00
|
|
|
|
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
|
2023-07-30 17:57:06 -07:00
|
|
|
|
insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
|
2023-07-30 15:18:09 -07:00
|
|
|
|
union-combines {k} {l₁ = (k' , v) ∷ xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
|
|
|
|
|
insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
|
2023-07-26 20:40:28 -07:00
|
|
|
|
where
|
|
|
|
|
k≢k' : ¬ k ≡ k'
|
|
|
|
|
k≢k' with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
2023-07-26 20:40:28 -07:00
|
|
|
|
... | no k≢k' = k≢k'
|
2023-07-25 22:58:42 -07:00
|
|
|
|
|
2023-08-03 23:46:26 -07:00
|
|
|
|
update : A → B → List (A × B) → List (A × B)
|
|
|
|
|
update k v [] = []
|
|
|
|
|
update k v ((k' , v') ∷ xs) with ≡-dec-A k k'
|
|
|
|
|
... | yes _ = (k' , f v v') ∷ xs
|
|
|
|
|
... | no _ = (k' , v') ∷ update k v xs
|
|
|
|
|
|
2023-08-05 00:02:50 -07:00
|
|
|
|
updates : List (A × B) → List (A × B) → List (A × B)
|
|
|
|
|
updates l₁ l₂ = foldr update l₂ l₁
|
|
|
|
|
|
2023-08-03 23:46:26 -07:00
|
|
|
|
restrict : List (A × B) → List (A × B) → List (A × B)
|
|
|
|
|
restrict l [] = []
|
|
|
|
|
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
|
|
|
|
... | yes _ = (k' , v') ∷ restrict l xs
|
|
|
|
|
... | no _ = restrict l xs
|
|
|
|
|
|
|
|
|
|
intersect : List (A × B) → List (A × B) → List (A × B)
|
2023-08-05 00:02:50 -07:00
|
|
|
|
intersect l₁ l₂ = restrict l₁ (updates l₁ l₂)
|
2023-08-03 23:46:26 -07:00
|
|
|
|
|
|
|
|
|
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
|
|
|
|
keys l ≡ keys (update k v l)
|
|
|
|
|
update-keys {l = []} = refl
|
|
|
|
|
update-keys {k} {v} {l = (k' , v') ∷ xs}
|
|
|
|
|
with ≡-dec-A k k'
|
|
|
|
|
... | yes _ = refl
|
|
|
|
|
... | no _ rewrite update-keys {k} {v} {xs} = refl
|
|
|
|
|
|
2023-08-05 00:36:41 -07:00
|
|
|
|
updates-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
keys l₂ ≡ keys (updates l₁ l₂)
|
|
|
|
|
updates-keys {[]} = refl
|
|
|
|
|
updates-keys {(k , v) ∷ xs} {l₂}
|
|
|
|
|
rewrite updates-keys {xs} {l₂}
|
|
|
|
|
rewrite update-keys {k} {v} {updates xs l₂} = refl
|
|
|
|
|
|
2023-08-03 23:46:26 -07:00
|
|
|
|
update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} →
|
|
|
|
|
Unique (keys l) → Unique (keys (update k v l ))
|
|
|
|
|
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
|
|
|
|
|
|
|
|
|
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
2023-08-05 00:02:50 -07:00
|
|
|
|
Unique (keys l₂) → Unique (keys (updates l₁ l₂))
|
2023-08-03 23:46:26 -07:00
|
|
|
|
updates-preserve-Unique {[]} u = u
|
|
|
|
|
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
|
|
|
|
|
|
|
|
|
restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂))
|
|
|
|
|
restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂
|
|
|
|
|
restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs)
|
|
|
|
|
with ∈k-dec k' l₁
|
|
|
|
|
... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs
|
|
|
|
|
... | no _ = restrict-preserves-k≢ k≢xs
|
|
|
|
|
|
|
|
|
|
restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
Unique (keys l₂) → Unique (keys (restrict l₁ l₂))
|
2024-03-09 13:57:02 -08:00
|
|
|
|
restrict-preserves-Unique {l₁} {[]} _ = Utils.empty
|
2023-08-03 23:46:26 -07:00
|
|
|
|
restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs)
|
|
|
|
|
with ∈k-dec k l₁
|
|
|
|
|
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
|
|
|
|
|
... | no _ = restrict-preserves-Unique uxs
|
|
|
|
|
|
|
|
|
|
intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
|
|
|
|
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
|
|
|
|
|
2023-08-05 00:36:41 -07:00
|
|
|
|
updates-preserve-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₂ → ¬ k ∈k updates l₁ l₂
|
|
|
|
|
updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂
|
|
|
|
|
rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂
|
|
|
|
|
|
2023-08-05 00:02:50 -07:00
|
|
|
|
restrict-needs-both : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
k ∈k restrict l₁ l₂ → (k ∈k l₁ × k ∈k l₂)
|
|
|
|
|
restrict-needs-both {k} {l₁} {[]} ()
|
|
|
|
|
restrict-needs-both {k} {l₁} {(k' , _) ∷ xs} k∈l₁l₂
|
|
|
|
|
with ∈k-dec k' l₁ | k∈l₁l₂
|
|
|
|
|
... | yes k'∈kl₁ | here k≡k'
|
|
|
|
|
rewrite k≡k' =
|
2023-08-04 00:07:10 -07:00
|
|
|
|
(k'∈kl₁ , here refl)
|
2023-08-05 00:02:50 -07:00
|
|
|
|
... | yes _ | there k∈l₁xs =
|
|
|
|
|
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
|
|
|
|
in (k∈kl₁ , there k∈kxs)
|
|
|
|
|
... | no k'∉kl₁ | k∈l₁xs =
|
|
|
|
|
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
|
|
|
|
|
in (k∈kl₁ , there k∈kxs)
|
|
|
|
|
|
2024-02-11 12:45:43 -08:00
|
|
|
|
restrict-subset-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
All (λ k → k ∈k l₁) (keys l₂) →
|
|
|
|
|
keys l₂ ≡ keys (restrict l₁ l₂)
|
|
|
|
|
restrict-subset-keys {l₁} {[]} _ = refl
|
|
|
|
|
restrict-subset-keys {l₁} {(k , v) ∷ l₂'} (k∈kl₁ ∷ kl₂'⊆kl₁)
|
|
|
|
|
with ∈k-dec k l₁
|
|
|
|
|
... | no k∉kl₁ = ⊥-elim (k∉kl₁ k∈kl₁)
|
|
|
|
|
... | yes _ rewrite restrict-subset-keys {l₁} {l₂'} kl₂'⊆kl₁ = refl
|
|
|
|
|
|
|
|
|
|
restrict-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
keys l₁ ≡ keys l₂ →
|
|
|
|
|
keys l₁ ≡ keys (restrict l₁ l₂)
|
|
|
|
|
restrict-equal-keys {l₁} {l₂} kl₁≡kl₂
|
|
|
|
|
with subst (λ l → All (λ k → k ∈ l) (keys l₂)) (sym kl₁≡kl₂) (All-x∈xs (keys l₂))
|
|
|
|
|
... | kl₂⊆kl₁ = trans kl₁≡kl₂ (restrict-subset-keys {l₁} {l₂} kl₂⊆kl₁)
|
|
|
|
|
|
|
|
|
|
intersect-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
|
|
|
|
keys l₁ ≡ keys l₂ →
|
|
|
|
|
keys l₁ ≡ keys (intersect l₁ l₂)
|
|
|
|
|
intersect-equal-keys {l₁} {l₂} kl₁≡kl₂
|
|
|
|
|
rewrite restrict-equal-keys (trans kl₁≡kl₂ (updates-keys {l₁} {l₂}))
|
|
|
|
|
rewrite updates-keys {l₁} {l₂} = refl
|
|
|
|
|
|
2023-08-05 00:36:41 -07:00
|
|
|
|
restrict-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₁ → ¬ k ∈k restrict l₁ l₂
|
|
|
|
|
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
|
|
|
|
|
let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁
|
|
|
|
|
|
|
|
|
|
restrict-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₂ → ¬ k ∈k restrict l₁ l₂
|
|
|
|
|
restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ =
|
|
|
|
|
let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂
|
|
|
|
|
|
|
|
|
|
intersect-preserves-∉₁ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₁ → ¬ k ∈k intersect l₁ l₂
|
|
|
|
|
intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂}
|
|
|
|
|
|
|
|
|
|
intersect-preserves-∉₂ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₂ → ¬ k ∈k intersect l₁ l₂
|
|
|
|
|
intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ )
|
|
|
|
|
|
|
|
|
|
restrict-preserves-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ restrict l₁ l₂
|
|
|
|
|
restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') ∷ xs} k∈kl₁ (here k,v≡k',v')
|
|
|
|
|
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v'
|
|
|
|
|
with ∈k-dec k' l₁
|
|
|
|
|
... | yes _ = here refl
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | no k'∉kl₁ = ⊥-elim (k'∉kl₁ k∈kl₁)
|
2023-08-05 00:36:41 -07:00
|
|
|
|
restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') ∷ xs} k∈kl₁ (there k,v∈xs)
|
|
|
|
|
with ∈k-dec k' l₁
|
|
|
|
|
... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs)
|
|
|
|
|
... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs
|
|
|
|
|
|
2023-08-05 00:02:50 -07:00
|
|
|
|
update-preserves-∈ : ∀ {k k' : A} {v v' : B} {l : List (A × B)} →
|
|
|
|
|
¬ k ≡ k' → (k , v) ∈ l → (k , v) ∈ update k' v' l
|
|
|
|
|
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (here k,v≡k'',v'')
|
|
|
|
|
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
|
|
|
|
|
with ≡-dec-A k' k''
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k'≡k'' = ⊥-elim (k≢k' (sym k'≡k''))
|
2023-08-05 00:02:50 -07:00
|
|
|
|
... | no _ = here refl
|
|
|
|
|
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') ∷ xs} k≢k' (there k,v∈xs)
|
|
|
|
|
with ≡-dec-A k' k''
|
|
|
|
|
... | yes _ = there k,v∈xs
|
|
|
|
|
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
|
|
|
|
|
|
|
|
|
|
updates-preserve-∈₂ : ∀ {k : A} {v : B} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
¬ k ∈k l₁ → (k , v) ∈ l₂ → (k , v) ∈ updates l₁ l₂
|
|
|
|
|
updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂
|
|
|
|
|
updates-preserve-∈₂ {k} {v} {(k' , v') ∷ xs} {l₂} k∉kl₁ k,v∈l₂ =
|
|
|
|
|
update-preserves-∈ (λ k≡k' → k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs → k∉kl₁ (there k∈kxs)) k,v∈l₂)
|
|
|
|
|
|
|
|
|
|
update-combines : ∀ {k : A} {v v' : B} {l : List (A × B)} →
|
|
|
|
|
Unique (keys l) → (k , v) ∈ l → (k , f v' v) ∈ update k v' l
|
|
|
|
|
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} _ (here k,v=k',v'')
|
|
|
|
|
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
|
|
|
|
|
with ≡-dec-A k' k'
|
|
|
|
|
... | yes _ = here refl
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | no k'≢k' = ⊥-elim (k'≢k' refl)
|
2023-08-05 00:02:50 -07:00
|
|
|
|
update-combines {k} {v} {v'} {(k' , v'') ∷ xs} (push k'≢xs uxs) (there k,v∈xs)
|
|
|
|
|
with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
|
2023-08-05 00:02:50 -07:00
|
|
|
|
... | no _ = there (update-combines uxs k,v∈xs)
|
|
|
|
|
|
|
|
|
|
updates-combine : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
Unique (keys l₁) → Unique (keys l₂) →
|
|
|
|
|
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ updates l₁ l₂
|
|
|
|
|
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂
|
|
|
|
|
rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' =
|
|
|
|
|
update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂)
|
|
|
|
|
updates-combine {k} {v₁} {v₂} {(k' , v') ∷ xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ =
|
|
|
|
|
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
|
|
|
|
|
where
|
|
|
|
|
k≢k' : ¬ k ≡ k'
|
|
|
|
|
k≢k' with ≡-dec-A k k'
|
2023-09-23 15:08:04 -07:00
|
|
|
|
... | yes k≡k' rewrite k≡k' = ⊥-elim (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
|
2023-08-05 00:02:50 -07:00
|
|
|
|
... | no k≢k' = k≢k'
|
2023-08-04 00:07:10 -07:00
|
|
|
|
|
2023-08-05 12:40:30 -07:00
|
|
|
|
intersect-combines : ∀ {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)} →
|
|
|
|
|
Unique (keys l₁) → Unique (keys l₂) →
|
|
|
|
|
(k , v₁) ∈ l₁ → (k , v₂) ∈ l₂ → (k , f v₁ v₂) ∈ intersect l₁ l₂
|
|
|
|
|
intersect-combines u₁ u₂ k,v₁∈l₁ k,v₂∈l₂ =
|
|
|
|
|
restrict-preserves-∈₂ (∈-cong proj₁ k,v₁∈l₁) (updates-combine u₁ u₂ k,v₁∈l₁ k,v₂∈l₂)
|
|
|
|
|
|
2023-08-05 14:13:06 -07:00
|
|
|
|
Map : Set (a ⊔ℓ b)
|
2024-02-10 16:35:21 -08:00
|
|
|
|
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
|
|
|
|
|
2024-03-11 12:50:05 -07:00
|
|
|
|
instance
|
|
|
|
|
showable : {{ showableA : Showable A }} {{ showableB : Showable B }} →
|
|
|
|
|
Showable Map
|
|
|
|
|
showable = record
|
|
|
|
|
{ show = λ (kvs , _) →
|
|
|
|
|
"{" ++ˢ foldrˡ (λ (x , y) rest → show x ++ˢ " ↦ " ++ˢ show y ++ˢ ", " ++ˢ rest) "" kvs ++ˢ "}"
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-09 13:57:02 -08:00
|
|
|
|
empty : Map
|
|
|
|
|
empty = ([] , Utils.empty)
|
|
|
|
|
|
2024-02-10 16:35:21 -08:00
|
|
|
|
keys : Map → List A
|
|
|
|
|
keys (kvs , _) = ImplKeys.keys kvs
|
2023-07-25 19:56:47 -07:00
|
|
|
|
|
2023-08-05 14:13:06 -07:00
|
|
|
|
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
2023-07-25 19:56:47 -07:00
|
|
|
|
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
|
|
|
|
|
|
|
|
|
_∈k_ : A → Map → Set a
|
2024-02-10 16:35:21 -08:00
|
|
|
|
_∈k_ k m = MemProp._∈_ k (keys m)
|
2023-07-25 19:56:47 -07:00
|
|
|
|
|
2024-02-25 18:07:50 -08:00
|
|
|
|
locate : ∀ {k : A} {m : Map} → k ∈k m → Σ B (λ v → (k , v) ∈ m)
|
|
|
|
|
locate k∈km = locate-impl k∈km
|
|
|
|
|
|
2024-03-09 13:57:02 -08:00
|
|
|
|
-- `forget` and `∈k-dec` are defined this way because ∈ for maps uses
|
|
|
|
|
-- projection, so the full map can't be guessed. On the other hand, list can
|
|
|
|
|
-- be guessed.
|
2024-03-07 20:04:33 -08:00
|
|
|
|
forget : ∀ {k : A} {v : B} {l : List (A × B)} → (k , v) ∈ˡ l → k ∈ˡ (ImplKeys.keys l)
|
2024-02-25 18:07:50 -08:00
|
|
|
|
forget = ∈-cong proj₁
|
|
|
|
|
|
2023-07-25 19:56:47 -07:00
|
|
|
|
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
|
|
|
|
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
|
|
|
|
|
2024-02-25 13:57:28 -08:00
|
|
|
|
open ImplRelation using () renaming (subset to subset-impl) public
|
2023-07-30 16:43:07 -07:00
|
|
|
|
|
2023-09-23 15:08:04 -07:00
|
|
|
|
_⊆_ : Map → Map → Set (a ⊔ℓ b)
|
|
|
|
|
_⊆_ (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
|
2023-07-24 23:55:09 -07:00
|
|
|
|
|
2023-09-23 15:08:04 -07:00
|
|
|
|
⊆-refl : (m : Map) → m ⊆ m
|
|
|
|
|
⊆-refl _ k v k,v∈m = (v , (≈₂-refl , k,v∈m))
|
2023-07-24 23:55:09 -07:00
|
|
|
|
|
2023-09-23 15:08:04 -07:00
|
|
|
|
⊆-trans : (m₁ m₂ m₃ : Map) → m₁ ⊆ m₂ → m₂ ⊆ m₃ → m₁ ⊆ m₃
|
|
|
|
|
⊆-trans _ _ _ m₁⊆m₂ m₂⊆m₃ k v k,v∈m₁ =
|
|
|
|
|
let
|
|
|
|
|
(v' , (v≈v' , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
|
|
|
|
(v'' , (v'≈v'' , k,v''∈m₃)) = m₂⊆m₃ k v' k,v'∈m₂
|
|
|
|
|
in (v'' , (≈₂-trans v≈v' v'≈v'' , k,v''∈m₃)) |