agda-spa/Map.agda

749 lines
48 KiB
Agda
Raw Normal View History

open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary using (Dec; yes; no; Reflects; ofʸ; ofⁿ)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
module Map {a b : Level} (A : Set a) (B : Set b)
(≡-dec-A : Decidable (_≡_ {a} {A}))
where
import Data.List.Membership.Propositional as MemProp
open import Relation.Nullary using (¬_)
open import Data.Nat using ()
open import Data.List using (List; map; []; _∷_; _++_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
open import Data.Empty using ()
keys : List (A × B) List A
keys = map proj₁
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
Unique-append : {c} {C : Set c} {x : C} {xs : List C}
¬ MemProp._∈_ x xs Unique xs Unique (xs ++ (x []))
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
Unique-append {c} {C} {x} {x' xs'} x∉xs (push x'≢ uxs') =
push (help x'≢) (Unique-append (λ x∈xs' x∉xs (there x∈xs')) uxs')
where
x'≢x : ¬ x' x
x'≢x x'≡x = x∉xs (here (sym x'≡x))
help : {l : List C} All (λ x'' ¬ x' x'') l All (λ x'' ¬ x' x'') (l ++ (x []))
help {[]} _ = x'≢x []
help {e es} (x'≢e x'≢es) = x'≢e help x'≢es
All¬-¬Any : {p c} {C : Set c} {P : C Set p} {l : List C} All (λ x ¬ P x) l ¬ Any P l
All¬-¬Any {l = x xs} (¬Px _) (here Px) = ¬Px Px
All¬-¬Any {l = x xs} (_ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
absurd : {a} {A : Set a} A
absurd ()
private module _ where
open MemProp using (_∈_)
unique-not-in : {k : A} {v : B} {l : List (A × B)}
¬ (All (λ k' ¬ k k') (keys l) × (k , v) l)
unique-not-in {l = (k' , _) xs} (k≢k' _ , here k',≡x) =
k≢k' (cong proj₁ k',≡x)
unique-not-in {l = _ xs} (_ rest , there k,v'∈xs) =
unique-not-in (rest , k,v'∈xs)
ListAB-functional : {k : A} {v v' : B} {l : List (A × B)}
Unique (keys l) (k , v) l (k , v') l v v'
ListAB-functional _ (here k,v≡x) (here k,v'≡x) =
cong proj₂ (trans k,v≡x (sym k,v'≡x))
ListAB-functional (push k≢xs _) (here k,v≡x) (there k,v'∈xs)
rewrite sym k,v≡x = absurd (unique-not-in (k≢xs , k,v'∈xs))
ListAB-functional (push k≢xs _) (there k,v∈xs) (here k,v'≡x)
rewrite sym k,v'≡x = absurd (unique-not-in (k≢xs , k,v∈xs))
ListAB-functional {l = _ xs } (push _ uxs) (there k,v∈xs) (there k,v'∈xs) =
ListAB-functional uxs k,v∈xs k,v'∈xs
∈k-dec : (k : A) (l : List (A × B)) Dec (k keys l)
∈k-dec k [] = no (λ ())
∈k-dec k ((k' , v) xs)
with (≡-dec-A k k')
... | yes k≡k' = yes (here k≡k')
... | no k≢k' with (∈k-dec k xs)
... | yes k∈kxs = yes (there k∈kxs)
... | no k∉kxs = no witness
where
witness : ¬ k keys ((k' , v) xs)
witness (here k≡k') = k≢k' k≡k'
witness (there k∈kxs) = k∉kxs k∈kxs
∈-cong : {c d} {C : Set c} {D : Set d} {c : C} {l : List C}
(f : C D) c l f c map f l
∈-cong f (here c≡c') = here (cong f c≡c')
∈-cong f (there c∈xs) = there (∈-cong f c∈xs)
locate : {k : A} {l : List (A × B)} k keys l Σ B (λ v (k , v) l)
locate {k} {(k' , v) xs} (here k≡k') rewrite k≡k' = (v , here refl)
locate {k} {(k' , v) xs} (there k∈kxs) = let (v , k,v∈xs) = locate k∈kxs in (v , there k,v∈xs)
private module ImplRelation (_≈_ : B B Set b) where
open MemProp using (_∈_)
subset : List (A × B) List (A × B) Set (a ⊔ℓ b)
subset m₁ m₂ = (k : A) (v : B) (k , v) m₁
Σ B (λ v' v v' × ((k , v') m₂))
private module ImplInsert (f : B B B) where
open import Data.List using (map)
open MemProp using (_∈_)
private
_∈k_ : A List (A × B) Set a
_∈k_ k m = k (keys m)
foldr : {c} {C : Set c} (A B C C) -> C -> List (A × B) -> C
foldr f b [] = b
foldr f b ((k , v) xs) = f k v (foldr f b xs)
insert : A B List (A × B) List (A × B)
insert k v [] = (k , v) []
insert k v (x@(k' , v') xs) with ≡-dec-A k k'
... | yes _ = (k' , f v v') xs
... | no _ = x insert k v xs
union : List (A × B) List (A × B) List (A × B)
union m₁ m₂ = foldr insert m₂ m₁
insert-keys-∈ : {k : A} {v : B} {l : List (A × B)}
k ∈k l keys l keys (insert k v l)
insert-keys-∈ {k} {v} {(k' , v') xs} (here k≡k')
with (≡-dec-A k k')
... | yes _ = refl
... | no k≢k' = absurd (k≢k' k≡k')
insert-keys-∈ {k} {v} {(k' , _) xs} (there k∈kxs)
with (≡-dec-A k k')
... | yes _ = refl
... | no _ = cong (λ xs' k' xs') (insert-keys-∈ k∈kxs)
insert-keys-∉ : {k : A} {v : B} {l : List (A × B)}
¬ (k ∈k l) (keys l ++ (k [])) keys (insert k v l)
insert-keys-∉ {k} {v} {[]} _ = refl
insert-keys-∉ {k} {v} {(k' , v') xs} k∉kl
with (≡-dec-A k k')
... | yes k≡k' = absurd (k∉kl (here k≡k'))
... | no _ = cong (λ xs' k' xs')
(insert-keys-∉ (λ k∈kxs k∉kl (there k∈kxs)))
insert-preserves-Unique : {k : A} {v : B} {l : List (A × B)}
Unique (keys l) Unique (keys (insert k v l))
insert-preserves-Unique {k} {v} {l} u
with (∈k-dec k l)
... | yes k∈kl rewrite insert-keys-∈ {v = v} k∈kl = u
... | no k∉kl rewrite sym (insert-keys-∉ {v = v} k∉kl) = Unique-append k∉kl u
union-preserves-Unique : (l₁ l₂ : List (A × B))
Unique (keys l₂) Unique (keys (union l₁ l₂))
union-preserves-Unique [] l₂ u₂ = u₂
union-preserves-Unique ((k₁ , v₁) xs₁) l₂ u₂ =
insert-preserves-Unique (union-preserves-Unique xs₁ l₂ u₂)
2023-07-30 13:49:38 -07:00
insert-fresh : {k : A} {v : B} {l : List (A × B)}
¬ k ∈k l (k , v) insert k v l
insert-fresh {l = []} k∉kl = here refl
insert-fresh {k} {l = (k' , v') xs} k∉kl
with ≡-dec-A k k'
... | yes k≡k' = absurd (k∉kl (here k≡k'))
... | no _ = there (insert-fresh (λ k∈kxs k∉kl (there k∈kxs)))
insert-preserves-∉k : {k k' : A} {v' : B} {l : List (A × B)}
¬ k k' ¬ k ∈k l ¬ k ∈k insert k' v' l
insert-preserves-∉k {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
insert-preserves-∉k {l = []} k≢k' k∉kl (there ())
insert-preserves-∉k {k} {k'} {v'} {(k'' , v'') xs} k≢k' k∉kl k∈kil
with ≡-dec-A k k''
... | yes k≡k'' = k∉kl (here k≡k'')
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
... | no k'≢k'' | there k∈kxs = insert-preserves-∉k k≢k'
(λ k∈kxs k∉kl (there k∈kxs)) k∈kxs
union-preserves-∉ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ ¬ k ∈k l₂ ¬ k ∈k union l₁ l₂
union-preserves-∉ {l₁ = []} _ k∉kl₂ = k∉kl₂
union-preserves-∉ {k} {(k' , v') xs₁} k∉kl₁ k∉kl₂
with ≡-dec-A k k'
... | yes k≡k' = absurd (k∉kl₁ (here k≡k'))
... | no k≢k' = insert-preserves-∉k k≢k' (union-preserves-∉ (λ k∈kxs₁ k∉kl₁ (there k∈kxs₁)) k∉kl₂)
insert-preserves-∈k : {k k' : A} {v' : B} {l : List (A × B)}
k ∈k l k ∈k insert k' v' l
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') xs} (here k≡k'')
with (≡-dec-A k' k'')
... | yes _ = here k≡k''
... | no _ = here k≡k''
insert-preserves-∈k {k} {k'} {v'} {(k'' , v'') xs} (there k∈kxs)
with (≡-dec-A k' k'')
... | yes _ = there k∈kxs
... | no _ = there (insert-preserves-∈k k∈kxs)
union-preserves-∈k₁ : {k : A} {l₁ l₂ : List (A × B)}
k ∈k l₁ k ∈k (union l₁ l₂)
union-preserves-∈k₁ {k} {(k' , v') xs} {l₂} (here k≡k')
with ∈k-dec k (union xs l₂)
... | yes k∈kxsl₂ = insert-preserves-∈k k∈kxsl₂
... | no k∉kxsl₂ rewrite k≡k' = ∈-cong proj₁ (insert-fresh k∉kxsl₂)
union-preserves-∈k₁ {k} {(k' , v') xs} {l₂} (there k∈kxs) =
insert-preserves-∈k (union-preserves-∈k₁ k∈kxs)
union-preserves-∈k₂ : {k : A} {l₁ l₂ : List (A × B)}
k ∈k l₂ k ∈k (union l₁ l₂)
union-preserves-∈k₂ {k} {[]} {l₂} k∈kl₂ = k∈kl₂
union-preserves-∈k₂ {k} {(k' , v') xs} {l₂} k∈kl₂ =
insert-preserves-∈k (union-preserves-∈k₂ {l₁ = xs} k∈kl₂)
∉-union-∉-either : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k union l₁ l₂ ¬ k ∈k l₁ × ¬ k ∈k l₂
∉-union-∉-either {k} {l₁} {l₂} k∉l₁l₂
with ∈k-dec k l₁
... | yes k∈kl₁ = absurd (k∉l₁l₂ (union-preserves-∈k₁ k∈kl₁))
... | no k∉kl₁ with ∈k-dec k l₂
... | yes k∈kl₂ = absurd (k∉l₁l₂ (union-preserves-∈k₂ {l₁ = l₁} k∈kl₂))
... | no k∉kl₂ = (k∉kl₁ , k∉kl₂)
2023-07-30 13:49:38 -07:00
insert-preserves-∈ : {k k' : A} {v v' : B} {l : List (A × B)}
¬ k k' (k , v) l (k , v) insert k' v' l
insert-preserves-∈ {k} {k'} {l = x xs} k≢k' (here k,v=x)
rewrite sym k,v=x with ≡-dec-A k' k
... | yes k'≡k = absurd (k≢k' (sym k'≡k))
... | no _ = here refl
insert-preserves-∈ {k} {k'} {l = (k'' , _) xs} k≢k' (there k,v∈xs)
with ≡-dec-A k' k''
... | yes _ = there k,v∈xs
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
union-preserves-∈₂ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ (k , v) l₂ (k , v) union l₁ l₂
union-preserves-∈₂ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
union-preserves-∈₂ {l₁ = (k' , v') xs₁} k∉kl₁ k,v∈l₂ =
let recursion = union-preserves-∈₂ (λ k∈xs₁ k∉kl₁ (there k∈xs₁)) k,v∈l₂
in insert-preserves-∈ (λ k≡k' k∉kl₁ (here k≡k')) recursion
union-preserves-∈₁ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
Unique (keys l₁) (k , v) l₁ ¬ k ∈k l₂ (k , v) union l₁ l₂
union-preserves-∈₁ {k} {v} {(k' , v') xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
insert-preserves-∈ k≢k' k,v∈mxs₁l
where
k,v∈mxs₁l = union-preserves-∈₁ uxs₁ k,v∈xs₁ k∉kl₂
k≢k' : ¬ k k'
k≢k' with ≡-dec-A k k'
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v∈xs₁))
... | no k≢k' = k≢k'
union-preserves-∈₁ {l₁ = (k' , v') xs₁} (push k'≢xs₁ uxs₁) (here k,v≡k',v') k∉kl₂
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v' =
insert-fresh (union-preserves-∉ (All¬-¬Any k'≢xs₁) k∉kl₂)
insert-combines : {k : A} {v v' : B} {l : List (A × B)}
Unique (keys l) (k , v') l (k , f v v') (insert k v l)
insert-combines {l = (k' , v'') xs} _ (here k,v'≡k',v'')
rewrite cong proj₁ k,v'≡k',v'' rewrite cong proj₂ k,v'≡k',v''
with ≡-dec-A k' k'
... | yes _ = here refl
... | no k≢k' = absurd (k≢k' refl)
insert-combines {k} {l = (k' , v'') xs} (push k'≢xs uxs) (there k,v'∈xs)
with ≡-dec-A k k'
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v'∈xs))
... | no k≢k' = there (insert-combines uxs k,v'∈xs)
union-combines : {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)}
Unique (keys l₁) Unique (keys l₂)
(k , v₁) l₁ (k , v₂) l₂ (k , f v₁ v₂) union l₁ l₂
union-combines {l₁ = (k' , v) xs₁} {l₂} (push k'≢xs₁ uxs₁) ul₂ (here k,v₁≡k',v) k,v₂∈l₂
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
insert-combines (union-preserves-Unique xs₁ l₂ ul₂) (union-preserves-∈₂ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
union-combines {k} {l₁ = (k' , v) xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
insert-preserves-∈ k≢k' (union-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
where
k≢k' : ¬ k k'
k≢k' with ≡-dec-A k k'
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
... | no k≢k' = k≢k'
update : A B List (A × B) List (A × B)
update k v [] = []
update k v ((k' , v') xs) with ≡-dec-A k k'
... | yes _ = (k' , f v v') xs
... | no _ = (k' , v') update k v xs
updates : List (A × B) List (A × B) List (A × B)
updates l₁ l₂ = foldr update l₂ l₁
restrict : List (A × B) List (A × B) List (A × B)
restrict l [] = []
restrict l ((k' , v') xs) with ∈k-dec k' l
... | yes _ = (k' , v') restrict l xs
... | no _ = restrict l xs
intersect : List (A × B) List (A × B) List (A × B)
intersect l₁ l₂ = restrict l₁ (updates l₁ l₂)
update-keys : {k : A} {v : B} {l : List (A × B)}
keys l keys (update k v l)
update-keys {l = []} = refl
update-keys {k} {v} {l = (k' , v') xs}
with ≡-dec-A k k'
... | yes _ = refl
... | no _ rewrite update-keys {k} {v} {xs} = refl
updates-keys : {l₁ l₂ : List (A × B)}
keys l₂ keys (updates l₁ l₂)
updates-keys {[]} = refl
updates-keys {(k , v) xs} {l₂}
rewrite updates-keys {xs} {l₂}
rewrite update-keys {k} {v} {updates xs l₂} = refl
update-preserves-Unique : {k : A} {v : B} {l : List (A × B)}
Unique (keys l) Unique (keys (update k v l ))
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
updates-preserve-Unique : {l₁ l₂ : List (A × B)}
Unique (keys l₂) Unique (keys (updates l₁ l₂))
updates-preserve-Unique {[]} u = u
updates-preserve-Unique {(k , v) xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
restrict-preserves-k≢ : {k : A} {l₁ l₂ : List (A × B)}
All (λ k' ¬ k k') (keys l₂) All (λ k' ¬ k k') (keys (restrict l₁ l₂))
restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂
restrict-preserves-k≢ {k} {l₁} {(k' , v') xs} (k≢k' k≢xs)
with ∈k-dec k' l₁
... | yes _ = k≢k' restrict-preserves-k≢ k≢xs
... | no _ = restrict-preserves-k≢ k≢xs
restrict-preserves-Unique : {l₁ l₂ : List (A × B)}
Unique (keys l₂) Unique (keys (restrict l₁ l₂))
restrict-preserves-Unique {l₁} {[]} _ = empty
restrict-preserves-Unique {l₁} {(k , v) xs} (push k≢xs uxs)
with ∈k-dec k l₁
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
... | no _ = restrict-preserves-Unique uxs
intersect-preserves-Unique : {l₁ l₂ : List (A × B)}
Unique (keys l₂) Unique (keys (intersect l₁ l₂))
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
updates-preserve-∉₂ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₂ ¬ k ∈k updates l₁ l₂
updates-preserve-∉₂ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂
rewrite updates-keys {l₁} {l₂} = k∉kl₁ k∈kl₁l₂
restrict-needs-both : {k : A} {l₁ l₂ : List (A × B)}
k ∈k restrict l₁ l₂ (k ∈k l₁ × k ∈k l₂)
restrict-needs-both {k} {l₁} {[]} ()
restrict-needs-both {k} {l₁} {(k' , _) xs} k∈l₁l₂
with ∈k-dec k' l₁ | k∈l₁l₂
... | yes k'∈kl₁ | here k≡k'
rewrite k≡k' =
(k'∈kl₁ , here refl)
... | yes _ | there k∈l₁xs =
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
in (k∈kl₁ , there k∈kxs)
... | no k'∉kl₁ | k∈l₁xs =
let (k∈kl₁ , k∈kxs) = restrict-needs-both k∈l₁xs
in (k∈kl₁ , there k∈kxs)
restrict-preserves-∉₁ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ ¬ k ∈k restrict l₁ l₂
restrict-preserves-∉₁ {k} {l₁} {l₂} k∉kl₁ k∈kl₁l₂ =
let (k∈kl₁ , _) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₁ k∈kl₁
restrict-preserves-∉₂ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₂ ¬ k ∈k restrict l₁ l₂
restrict-preserves-∉₂ {k} {l₁} {l₂} k∉kl₂ k∈kl₁l₂ =
let (_ , k∈kl₂) = restrict-needs-both {l₂ = l₂} k∈kl₁l₂ in k∉kl₂ k∈kl₂
intersect-preserves-∉₁ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ ¬ k ∈k intersect l₁ l₂
intersect-preserves-∉₁ {k} {l₁} {l₂} = restrict-preserves-∉₁ {k} {l₁} {updates l₁ l₂}
intersect-preserves-∉₂ : {k : A} {l₁ l₂ : List (A × B)}
¬ k ∈k l₂ ¬ k ∈k intersect l₁ l₂
intersect-preserves-∉₂ {k} {l₁} {l₂} k∉l₂ = restrict-preserves-∉₂ (updates-preserve-∉₂ {l₁ = l₁} k∉l₂ )
restrict-preserves-∈₂ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
k ∈k l₁ (k , v) l₂ (k , v) restrict l₁ l₂
restrict-preserves-∈₂ {k} {v} {l₁} {(k' , v') xs} k∈kl₁ (here k,v≡k',v')
rewrite cong proj₁ k,v≡k',v' rewrite cong proj₂ k,v≡k',v'
with ∈k-dec k' l₁
... | yes _ = here refl
... | no k'∉kl₁ = absurd (k'∉kl₁ k∈kl₁)
restrict-preserves-∈₂ {l₁ = l₁} {l₂ = (k' , v') xs} k∈kl₁ (there k,v∈xs)
with ∈k-dec k' l₁
... | yes _ = there (restrict-preserves-∈₂ k∈kl₁ k,v∈xs)
... | no _ = restrict-preserves-∈₂ k∈kl₁ k,v∈xs
update-preserves-∈ : {k k' : A} {v v' : B} {l : List (A × B)}
¬ k k' (k , v) l (k , v) update k' v' l
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') xs} k≢k' (here k,v≡k'',v'')
rewrite cong proj₁ k,v≡k'',v'' rewrite cong proj₂ k,v≡k'',v''
with ≡-dec-A k' k''
... | yes k'≡k'' = absurd (k≢k' (sym k'≡k''))
... | no _ = here refl
update-preserves-∈ {k} {k'} {v} {v'} {(k'' , v'') xs} k≢k' (there k,v∈xs)
with ≡-dec-A k' k''
... | yes _ = there k,v∈xs
... | no _ = there (update-preserves-∈ k≢k' k,v∈xs)
updates-preserve-∈₂ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ (k , v) l₂ (k , v) updates l₁ l₂
updates-preserve-∈₂ {k} {v} {[]} {l₂} _ k,v∈l₂ = k,v∈l₂
updates-preserve-∈₂ {k} {v} {(k' , v') xs} {l₂} k∉kl₁ k,v∈l₂ =
update-preserves-∈ (λ k≡k' k∉kl₁ (here k≡k')) (updates-preserve-∈₂ (λ k∈kxs k∉kl₁ (there k∈kxs)) k,v∈l₂)
update-combines : {k : A} {v v' : B} {l : List (A × B)}
Unique (keys l) (k , v) l (k , f v' v) update k v' l
update-combines {k} {v} {v'} {(k' , v'') xs} _ (here k,v=k',v'')
rewrite cong proj₁ k,v=k',v'' rewrite cong proj₂ k,v=k',v''
with ≡-dec-A k' k'
... | yes _ = here refl
... | no k'≢k' = absurd (k'≢k' refl)
update-combines {k} {v} {v'} {(k' , v'') xs} (push k'≢xs uxs) (there k,v∈xs)
with ≡-dec-A k k'
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v∈xs))
... | no _ = there (update-combines uxs k,v∈xs)
updates-combine : {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)}
Unique (keys l₁) Unique (keys l₂)
(k , v₁) l₁ (k , v₂) l₂ (k , f v₁ v₂) updates l₁ l₂
updates-combine {k} {v₁} {v₂} {(k' , v') xs} {l₂} (push k'≢xs uxs₁) u₂ (here k,v₁≡k',v') k,v₂∈l₂
rewrite cong proj₁ k,v₁≡k',v' rewrite cong proj₂ k,v₁≡k',v' =
update-combines (updates-preserve-Unique {l₁ = xs} u₂) (updates-preserve-∈₂ (All¬-¬Any k'≢xs) k,v₂∈l₂)
updates-combine {k} {v₁} {v₂} {(k' , v') xs} {l₂} (push k'≢xs uxs₁) u₂ (there k,v₁∈xs) k,v₂∈l₂ =
update-preserves-∈ k≢k' (updates-combine uxs₁ u₂ k,v₁∈xs k,v₂∈l₂)
where
k≢k' : ¬ k k'
k≢k' with ≡-dec-A k k'
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs (∈-cong proj₁ k,v₁∈xs))
... | no k≢k' = k≢k'
intersect-combines : {k : A} {v₁ v₂ : B} {l₁ l₂ : List (A × B)}
Unique (keys l₁) Unique (keys l₂)
(k , v₁) l₁ (k , v₂) l₂ (k , f v₁ v₂) intersect l₁ l₂
intersect-combines u₁ u₂ k,v₁∈l₁ k,v₂∈l₂ =
restrict-preserves-∈₂ (∈-cong proj₁ k,v₁∈l₁) (updates-combine u₁ u₂ k,v₁∈l₁ k,v₂∈l₂)
Map : Set (a ⊔ℓ b)
Map = Σ (List (A × B)) (λ l Unique (keys l))
_∈_ : (A × B) Map Set (a ⊔ℓ b)
_∈_ p (kvs , _) = MemProp._∈_ p kvs
_∈k_ : A Map Set a
_∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs)
Map-functional : {k : A} {v v' : B} {m : Map} (k , v) m (k , v') m v v'
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
data Expr : Set (a ⊔ℓ b) where
`_ : Map Expr
__ : Expr Expr Expr
_∩_ : Expr Expr Expr
module _ (f : B B B) where
open ImplInsert f renaming
( insert to insert-impl
; union to union-impl
; intersect to intersect-impl
)
union : Map Map Map
union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
intersect : Map Map Map
intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
module _ (fUnion : B B B) (fIntersect : B B B) where
open ImplInsert fUnion using
( union-combines
; union-preserves-∈₁
; union-preserves-∈₂
; union-preserves-∉
)
open ImplInsert fIntersect using
( restrict-needs-both
; updates
; intersect-preserves-∉₁
; intersect-preserves-∉₂
; intersect-combines
)
⟦_⟧ : Expr -> Map
` m = m
e₁ e₂ = union fUnion e₁ e₂
e₁ e₂ = intersect fIntersect e₁ e₂
data Provenance (k : A) : B Expr Set (a ⊔ℓ b) where
single : {v : B} {m : Map} (k , v) m Provenance k v (` m)
in₁ : {v : B} {e₁ e₂ : Expr} Provenance k v e₁ ¬ k ∈k e₂ Provenance k v (e₁ e₂)
in₂ : {v : B} {e₁ e₂ : Expr} ¬ k ∈k e₁ Provenance k v e₂ Provenance k v (e₁ e₂)
bothᵘ : {v₁ v₂ : B} {e₁ e₂ : Expr} Provenance k v₁ e₁ Provenance k v₂ e₂ Provenance k (fUnion v₁ v₂) (e₁ e₂)
bothⁱ : {v₁ v₂ : B} {e₁ e₂ : Expr} Provenance k v₁ e₁ Provenance k v₂ e₂ Provenance k (fIntersect v₁ v₂) (e₁ e₂)
Expr-Provenance : (k : A) (e : Expr) k ∈k e Σ B (λ v (Provenance k v e × (k , v) e ))
Expr-Provenance k (` m) k∈km = let (v , k,v∈m) = locate k∈km in (v , (single k,v∈m , k,v∈m))
Expr-Provenance k (e₁ e₂) k∈ke₁e₂
with ∈k-dec k (proj₁ e₁ ) | ∈k-dec k (proj₁ e₂ )
... | yes k∈ke₁ | yes k∈ke₂ =
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
in (fUnion v₁ v₂ , (bothᵘ g₁ g₂ , union-combines (proj₂ e₁ ) (proj₂ e₂ ) k,v₁∈e₁ k,v₂∈e₂))
... | yes k∈ke₁ | no k∉ke₂ =
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
in (v₁ , (in g₁ k∉ke₂ , union-preserves-∈₁ (proj₂ e₁ ) k,v₁∈e₁ k∉ke₂))
... | no k∉ke₁ | yes k∈ke₂ =
let (v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
in (v₂ , (in k∉ke₁ g₂ , union-preserves-∈₂ k∉ke₁ k,v₂∈e₂))
... | no k∉ke₁ | no k∉ke₂ = absurd (union-preserves-∉ k∉ke₁ k∉ke₂ k∈ke₁e₂)
Expr-Provenance k (e₁ e₂) k∈ke₁e₂
with ∈k-dec k (proj₁ e₁ ) | ∈k-dec k (proj₁ e₂ )
... | yes k∈ke₁ | yes k∈ke₂ =
let (v₁ , (g₁ , k,v₁∈e₁)) = Expr-Provenance k e₁ k∈ke₁
(v₂ , (g₂ , k,v₂∈e₂)) = Expr-Provenance k e₂ k∈ke₂
in (fIntersect v₁ v₂ , (bothⁱ g₁ g₂ , intersect-combines (proj₂ e₁ ) (proj₂ e₂ ) k,v₁∈e₁ k,v₂∈e₂))
... | yes k∈ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ e₁ } k∉ke₂ k∈ke₁e₂)
... | no k∉ke₁ | yes k∈ke₂ = absurd (intersect-preserves-∉₁ {l₂ = proj₁ e₂ } k∉ke₁ k∈ke₁e₂)
... | no k∉ke₁ | no k∉ke₂ = absurd (intersect-preserves-∉₂ {l₁ = proj₁ e₁ } k∉ke₂ k∈ke₁e₂)
module _ (_≈_ : B B Set b) where
open ImplRelation _≈_ renaming (subset to subset-impl)
subset : Map Map Set (a ⊔ℓ b)
subset (kvs₁ , _) (kvs₂ , _) = subset-impl kvs₁ kvs₂
lift : Map Map Set (a ⊔ℓ b)
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁
module _ (≈-refl : {b : B} b b)
(≈-sym : {b₁ b₂ : B} b₁ b₂ b₂ b₁)
(f : B B B) where
private module I = ImplInsert f
-- The Provenance type requires both union and intersection functions,
-- but here we're working with one operation only. Just use the union function
-- for both -- it doesn't matter, since we don't use intersection in
-- these proofs.
module _ (f-idemp : (b : B) f b b b) where
union-idemp : (m : Map) lift (union f m m) m
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
where
mm-m-subset : subset (union f m m) m
mm-m-subset k v k,v∈mm
with Expr-Provenance f f k ((` m) (` m)) (∈-cong proj₁ k,v∈mm)
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
rewrite Map-functional {m = m} v'∈m v''∈m
rewrite Map-functional {m = union f m m} k,v∈mm v'v''∈mm =
(v'' , (f-idemp v'' , v''∈m))
... | (_ , (in (single {v'} v'∈m) k∉km , _)) = absurd (k∉km (∈-cong proj₁ v'∈m))
... | (_ , (in k∉km (single {v''} v''∈m) , _)) = absurd (k∉km (∈-cong proj₁ v''∈m))
m-mm-subset : subset m (union f m m)
m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.union-combines u u k,v∈m k,v∈m))
module _ (f-comm : (b₁ b₂ : B) f b₁ b₂ f b₂ b₁) where
union-comm : (m₁ m₂ : Map) lift (union f m₁ m₂) (union f m₂ m₁)
union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁)
where
union-comm-subset : (m₁ m₂ : Map) subset (union f m₁ m₂) (union f m₂ m₁)
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
with Expr-Provenance f f k ((` m₁) (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ =
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
... | (_ , (in {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂))
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ =
(v₁ , (≈-refl , I.union-preserves-∈₂ k∉km₂ v₁∈m₁))
... | (_ , (in {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂))
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ =
(v₂ , (≈-refl , I.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁))
module _ (f-assoc : (b₁ b₂ b₃ : B) f (f b₁ b₂) b₃ f b₁ (f b₂ b₃)) where
union-assoc : (m₁ m₂ m₃ : Map) lift (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
union-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (union-assoc₁ , union-assoc₂)
where
union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
union-assoc₁ k v k,v∈m₁₂m₃
with Expr-Provenance f f k (((` m₁) (` m₂)) (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
... | (_ , (in k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
in (v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
... | (_ , (in (in k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ , v₂∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂∈m₁₂m₃ =
(v₂ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
... | (_ , (bothᵘ (in k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂v₃∈m₁₂m₃ =
(f v₂ v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
... | (_ , (in (in (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁∈m₁₂m₃ =
(v₁ , (≈-refl , I.union-preserves-∈₁ u₁ v₁∈e₁ (I.union-preserves-∉ k∉ke₂ k∉ke₃)))
... | (_ , (bothᵘ (in (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₃∈m₁₂m₃ =
(f v₁ v₃ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
... | (_ , (in (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃)
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂∈m₁₂m₃ =
(f v₁ v₂ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃))
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ =
(f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
2023-07-30 22:26:05 -07:00
union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
union-assoc₂ k v k,v∈m₁m₂₃
with Expr-Provenance f f k ((` m₁) ((` m₂) (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
... | (_ , (in k∉ke₁ (in k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
(v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
... | (_ , (in k∉ke₁ (in (single {v₂} v₂∈e₂) k∉ke₃) , v₂∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂∈m₁m₂₃ =
(v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃))
... | (_ , (in k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₂v₃∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂v₃∈m₁m₂₃ =
(f v₂ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃))
... | (_ , (in (single {v₁} v₁∈e₁) k∉ke₂₃ , v₁∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁∈m₁m₂₃ =
let (k∉ke₂ , k∉ke₃) = I.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃
in (v₁ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃))
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in k∉ke₂ (single {v₃} v₃∈e₃)) , v₁v₃∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₃∈m₁m₂₃ =
(f v₁ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃))
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in (single {v₂} v₂∈e₂) k∉ke₃) , v₁v₂∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂∈m₁m₂₃ =
(f v₁ v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃))
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃))
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ =
(f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
module _ (f-idemp : (b : B) f b b b) where
intersect-idemp : (m : Map) lift (intersect f m m) m
intersect-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
where
mm-m-subset : subset (intersect f m m) m
mm-m-subset k v k,v∈mm
with Expr-Provenance f f k ((` m) (` m)) (∈-cong proj₁ k,v∈mm)
... | (_ , (bothⁱ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
rewrite Map-functional {m = m} v'∈m v''∈m
rewrite Map-functional {m = intersect f m m} k,v∈mm v'v''∈mm =
(v'' , (f-idemp v'' , v''∈m))
m-mm-subset : subset m (intersect f m m)
m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.intersect-combines u u k,v∈m k,v∈m))
module _ (f-comm : (b₁ b₂ : B) f b₁ b₂ f b₂ b₁) where
intersect-comm : (m₁ m₂ : Map) lift (intersect f m₁ m₂) (intersect f m₂ m₁)
intersect-comm m₁ m₂ = (intersect-comm-subset m₁ m₂ , intersect-comm-subset m₂ m₁)
where
intersect-comm-subset : (m₁ m₂ : Map) subset (intersect f m₁ m₂) (intersect f m₂ m₁)
intersect-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
with Expr-Provenance f f k ((` m₁) (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
... | (_ , (bothⁱ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
rewrite Map-functional {m = intersect f m₁ m₂} k,v∈m₁m₂ v₁v₂∈m₁m₂ =
(f v₂ v₁ , (f-comm v₁ v₂ , I.intersect-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
module _ (f-assoc : (b₁ b₂ b₃ : B) f (f b₁ b₂) b₃ f b₁ (f b₂ b₃)) where
intersect-assoc : (m₁ m₂ m₃ : Map) lift (intersect f (intersect f m₁ m₂) m₃) (intersect f m₁ (intersect f m₂ m₃))
intersect-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (intersect-assoc₁ , intersect-assoc₂)
where
intersect-assoc₁ : subset (intersect f (intersect f m₁ m₂) m₃) (intersect f m₁ (intersect f m₂ m₃))
intersect-assoc₁ k v k,v∈m₁₂m₃
with Expr-Provenance f f k (((` m₁) (` m₂)) (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
... | (_ , (bothⁱ (bothⁱ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃))
rewrite Map-functional {m = intersect f (intersect f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ =
(f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.intersect-combines u₁ (I.intersect-preserves-Unique {l₂} {l₃} u₃) v₁∈e₁ (I.intersect-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
intersect-assoc₂ : subset (intersect f m₁ (intersect f m₂ m₃)) (intersect f (intersect f m₁ m₂) m₃)
intersect-assoc₂ k v k,v∈m₁m₂₃
with Expr-Provenance f f k ((` m₁) ((` m₂) (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
... | (_ , (bothⁱ (single {v₁} v₁∈e₁) (bothⁱ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃))
rewrite Map-functional {m = intersect f m₁ (intersect f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ =
(f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.intersect-combines (I.intersect-preserves-Unique {l₁} {l₂} u₂) u₃ (I.intersect-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
module _ (≈-refl : {b : B} b b)
(≈-sym : {b₁ b₂ : B} b₁ b₂ b₂ b₁)
(_⊔₂_ : B B B) (_⊓₂_ : B B B)
(⊔₂-idemp : (b : B) (b ⊔₂ b) b)
(⊓₂-idemp : (b : B) (b ⊓₂ b) b)
(⊔₂-⊓₂-absorb : (b₁ b₂ : B) (b₁ ⊔₂ (b₁ ⊓₂ b₂)) b₁)
(⊓₂-⊔₂-absorb : (b₁ b₂ : B) (b₁ ⊓₂ (b₁ ⊔₂ b₂)) b₁)
where
private module I = ImplInsert _⊔₂_
private module I = ImplInsert _⊓₂_
private
_⊔_ = union _⊔₂_
_⊓_ = intersect _⊓₂_
intersect-union-absorb : (m₁ m₂ : Map) lift (m₁ (m₁ m₂)) m₁
intersect-union-absorb m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (intersect-union-absorb₁ , intersect-union-absorb₂)
where
intersect-union-absorb₁ : subset (m₁ (m₁ m₂)) m₁
intersect-union-absorb₁ k v k,v∈m₁m₁₂
with Expr-Provenance _ _ k ((` m₁) ((` m₁) (` m₂))) (∈-cong proj₁ k,v∈m₁m₁₂)
... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁)
(bothᵘ (single {v₁'} k,v₁'∈m₁)
(single {v₂} v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂))
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
rewrite Map-functional {m = m₁ (m₁ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ =
(v₁' , (⊓₂-⊔₂-absorb v₁' v₂ , k,v₁'∈m₁))
... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁)
(in (single {v₁'} k,v₁'∈m₁) _) , v₁v₁'∈m₁m₁₂))
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
rewrite Map-functional {m = m₁ (m₁ m₂)} k,v∈m₁m₁₂ v₁v₁'∈m₁m₁₂ =
(v₁' , (⊓₂-idemp v₁' , k,v₁'∈m₁))
... | (_ , (bothⁱ (single {v₁} k,v₁∈m₁)
(in k∉m₁ _ ) , _)) = absurd (k∉m₁ (∈-cong proj₁ k,v₁∈m₁))
intersect-union-absorb₂ : subset m₁ (m₁ (m₁ m₂))
intersect-union-absorb₂ k v k,v∈m₁
with ∈k-dec k l₂
... | yes k∈km₂ =
let (v₂ , k,v₂∈m₂) = locate k∈km₂
in (v ⊓₂ (v ⊔₂ v₂) , (≈-sym (⊓₂-⊔₂-absorb v v₂) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
... | no k∉km₂ = (v ⊓₂ v , (≈-sym (⊓₂-idemp v) , I⊓.intersect-combines u₁ (I⊔.union-preserves-Unique l₁ l₂ u₂) k,v∈m₁ (I⊔.union-preserves-∈₁ u₁ k,v∈m₁ k∉km₂)))
union-intersect-absorb : (m₁ m₂ : Map) lift (m₁ (m₁ m₂)) m₁
union-intersect-absorb m₁@(l₁ , u₁) m₂@(l₂ , u₂) = (union-intersect-absorb₁ , union-intersect-absorb₂)
where
union-intersect-absorb₁ : subset (m₁ (m₁ m₂)) m₁
union-intersect-absorb₁ k v k,v∈m₁m₁₂
with Expr-Provenance _ _ k ((` m₁) ((` m₁) (` m₂))) (∈-cong proj₁ k,v∈m₁m₁₂)
... | (_ , (bothᵘ (single {v₁} k,v₁∈m₁)
(bothⁱ (single {v₁'} k,v₁'∈m₁)
(single {v₂} k,v₂∈m₂)) , v₁v₁'v₂∈m₁m₁₂))
rewrite Map-functional {m = m₁} k,v₁∈m₁ k,v₁'∈m₁
rewrite Map-functional {m = m₁ (m₁ m₂)} k,v∈m₁m₁₂ v₁v₁'v₂∈m₁m₁₂ =
(v₁' , (⊔₂-⊓₂-absorb v₁' v₂ , k,v₁'∈m₁))
... | (_ , (in (single {v₁} k,v₁∈m₁) k∉km₁₂ , k,v₁∈m₁m₁₂))
rewrite Map-functional {m = m₁ (m₁ m₂)} k,v∈m₁m₁₂ k,v₁∈m₁m₁₂ =
(v₁ , (≈-refl , k,v₁∈m₁))
... | (_ , (in k∉km₁ (bothⁱ (single {v₁'} k,v₁'∈m₁)
(single {v₂} k,v₂∈m₂)) , _)) =
absurd (k∉km₁ (∈-cong proj₁ k,v₁'∈m₁))
union-intersect-absorb₂ : subset m₁ (m₁ (m₁ m₂))
union-intersect-absorb₂ k v k,v∈m₁
with ∈k-dec k l₂
... | yes k∈km₂ =
let (v₂ , k,v₂∈m₂) = locate k∈km₂
in (v ⊔₂ (v ⊓₂ v₂) , (≈-sym (⊔₂-⊓₂-absorb v v₂) , I⊔.union-combines u₁ (I⊓.intersect-preserves-Unique {l₁} {l₂} u₂) k,v∈m₁ (I⊓.intersect-combines u₁ u₂ k,v∈m₁ k,v₂∈m₂)))
... | no k∉km₂ = (v , (≈-refl , I⊔.union-preserves-∈₁ u₁ k,v∈m₁ (I⊓.intersect-preserves-∉₂ {k} {l₁} {l₂} k∉km₂)))