Compare commits
98 Commits
f0da9a9020
...
828b652d3b
| Author | SHA1 | Date | |
|---|---|---|---|
| 828b652d3b | |||
| 12971450e3 | |||
| 7d2928ed81 | |||
| 5f946de5e8 | |||
| 04bafb2d55 | |||
| e0248397b7 | |||
| 41ada43047 | |||
| a081edb881 | |||
| 3d2a507f2f | |||
| 82027ecd04 | |||
| 734e82ff6d | |||
| 69d1ecebae | |||
| b78cb91f2a | |||
| 16fa4cd1d8 | |||
| 95669b2c65 | |||
| 6857f60465 | |||
| f4392b32c0 | |||
| 794c04eee9 | |||
| 80069e76e6 | |||
| a22c0c9252 | |||
| 20dc99ba1f | |||
| b3a62da1fb | |||
| f0b0d51b48 | |||
| 8ff88f9f9e | |||
| c1581075d3 | |||
| 838aaf9c58 | |||
| 4ac9dffa9b | |||
| 3f5551d70c | |||
| 5837fdf19b | |||
| 4350919871 | |||
| 7fe46b014c | |||
| 66d229c493 | |||
| 1b8bea8957 | |||
| dd8cdcd10c | |||
| ad4592d4d2 | |||
| 8d0d87d2d9 | |||
| cfa3375de5 | |||
| 6b116ed960 | |||
| 3859826293 | |||
| be50c76cb1 | |||
| 112a5087ef | |||
| ccb7abc501 | |||
| 91b5d108f6 | |||
| c574ca9c56 | |||
| bbfba34e05 | |||
| aec15573fc | |||
| b4d395767d | |||
| 07550bc214 | |||
| 9366ec4a97 | |||
| 0fb884eb07 | |||
| 6b44ac1feb | |||
| 69a4e8eb5c | |||
| 4fee16413a | |||
| 316e56f2bc | |||
| ab40a27e78 | |||
| f555947184 | |||
| 660f6594fd | |||
| fb32315f58 | |||
| 037358308f | |||
| f2b8084a9c | |||
| c00c8e3e85 | |||
| b134c143ca | |||
| e218d1b7a3 | |||
| 6e3f06ca5d | |||
| 54b11d21b0 | |||
| f3e0d5f2e3 | |||
| 855bf3f56c | |||
| 2f91ca113e | |||
| 7571cb7451 | |||
| fc27b045d3 | |||
| de956cdc6a | |||
| 7ed7f20227 | |||
| 163108b9b3 | |||
| 8dc5c40eae | |||
| 44f04e4020 | |||
| 4fe0d147fa | |||
| ba1c9b3ec8 | |||
| b6e357787f | |||
| ce3fa182fe | |||
| 71cb97ad8c | |||
| 57606636a7 | |||
| da2f7f51d7 | |||
| 2db11dcfc7 | |||
| 3e2719d45f | |||
| 78252b6c9e | |||
| 85fdf544b9 | |||
| 4f14a7b765 | |||
| bc5b4b7d9e | |||
| 520b2b514c | |||
| f7ac22257e | |||
| b72ad070ba | |||
| 195537fe15 | |||
| d4b0796715 | |||
| b505063771 | |||
| 844c99336a | |||
| 5d56a7ce2d | |||
| 2e096bd64e | |||
| 1a7b2a1736 |
366
Analysis/Forward.agda
Normal file
366
Analysis/Forward.agda
Normal file
@@ -0,0 +1,366 @@
|
||||
open import Language hiding (_[_])
|
||||
open import Lattice
|
||||
|
||||
module Analysis.Forward
|
||||
{L : Set} {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||||
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Nat using (suc)
|
||||
open import Data.Product using (_×_; proj₁; proj₂; _,_)
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.Any as Any using ()
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans; subst)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Function using (_∘_; flip)
|
||||
import Chain
|
||||
|
||||
open import Utils using (Pairwise; _⇒_; _∨_)
|
||||
import Lattice.FiniteValueMap
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
|
||||
using ()
|
||||
renaming
|
||||
( isLattice to isLatticeˡ
|
||||
; fixedHeight to fixedHeightˡ
|
||||
; _≼_ to _≼ˡ_
|
||||
; ≈-sym to ≈ˡ-sym
|
||||
)
|
||||
|
||||
module WithProg (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
-- The variable -> abstract value (e.g. sign) map is a finite value-map
|
||||
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
|
||||
open VariableValuesFiniteMap
|
||||
using ()
|
||||
renaming
|
||||
( FiniteMap to VariableValues
|
||||
; isLattice to isLatticeᵛ
|
||||
; _≈_ to _≈ᵛ_
|
||||
; _⊔_ to _⊔ᵛ_
|
||||
; _≼_ to _≼ᵛ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
|
||||
; _∈_ to _∈ᵛ_
|
||||
; _∈k_ to _∈kᵛ_
|
||||
; _updating_via_ to _updatingᵛ_via_
|
||||
; locate to locateᵛ
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||||
; ∈k-dec to ∈k-decᵛ
|
||||
; all-equal-keys to all-equal-keysᵛ
|
||||
)
|
||||
public
|
||||
open IsLattice isLatticeᵛ
|
||||
using ()
|
||||
renaming
|
||||
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
||||
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
|
||||
using ()
|
||||
renaming
|
||||
( Provenance-union to Provenance-unionᵐ
|
||||
)
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
|
||||
)
|
||||
|
||||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||||
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||||
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
|
||||
open StateVariablesFiniteMap
|
||||
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
|
||||
renaming
|
||||
( FiniteMap to StateVariables
|
||||
; isLattice to isLatticeᵐ
|
||||
; _≈_ to _≈ᵐ_
|
||||
; _∈_ to _∈ᵐ_
|
||||
; _∈k_ to _∈kᵐ_
|
||||
; locate to locateᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
)
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||||
using ()
|
||||
renaming
|
||||
( ≈-sym to ≈ᵐ-sym
|
||||
)
|
||||
|
||||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||||
|
||||
-- We now have our (state -> (variables -> value)) map.
|
||||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||||
-- since the State type is as specific as possible, it's always possible to
|
||||
-- retrieve the variable values at each state.
|
||||
|
||||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||||
|
||||
variablesAt : State → StateVariables → VariableValues
|
||||
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||||
|
||||
variablesAt-∈ : ∀ (s : State) (sv : StateVariables) → (s , variablesAt s sv) ∈ᵐ sv
|
||||
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
|
||||
|
||||
variablesAt-≈ : ∀ s sv₁ sv₂ → sv₁ ≈ᵐ sv₂ → variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
|
||||
variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ =
|
||||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂
|
||||
(states-in-Map s sv₁) (states-in-Map s sv₂)
|
||||
|
||||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||||
--
|
||||
-- L₁ → (A → L₂)
|
||||
--
|
||||
-- Construction, with L₁ = (A → L₂), and f = id
|
||||
|
||||
joinForKey : State → StateVariables → VariableValues
|
||||
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||||
|
||||
-- The per-key join is made up of map key accesses (which are monotonic)
|
||||
-- and folds using the join operation (also monotonic)
|
||||
|
||||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||||
|
||||
-- The name f' comes from the formulation of Exercise 4.26.
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||||
renaming
|
||||
( f' to joinAll
|
||||
; f'-Monotonic to joinAll-Mono
|
||||
; f'-k∈ks-≡ to joinAll-k∈ks-≡
|
||||
)
|
||||
|
||||
variablesAt-joinAll : ∀ (s : State) (sv : StateVariables) →
|
||||
variablesAt s (joinAll sv) ≡ joinForKey s sv
|
||||
variablesAt-joinAll s sv
|
||||
with (vs , s,vs∈usv) ← locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
|
||||
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||||
|
||||
-- With 'join' in hand, we need to perform abstract evaluation.
|
||||
module WithEvaluator (eval : Expr → VariableValues → L)
|
||||
(eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where
|
||||
|
||||
-- For a particular evaluation function, we need to perform an evaluation
|
||||
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
|
||||
-- generalized update to set the single key's value.
|
||||
|
||||
private module _ (k : String) (e : Expr) where
|
||||
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
|
||||
renaming
|
||||
( f' to updateVariablesFromExpression
|
||||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||||
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
|
||||
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
|
||||
)
|
||||
public
|
||||
|
||||
-- The per-state update function makes use of the single-key setter,
|
||||
-- updateVariablesFromExpression, for the case where the statement
|
||||
-- is an assignment.
|
||||
--
|
||||
-- This per-state function adjusts the variables in that state,
|
||||
-- also monotonically; we derive the for-each-state update from
|
||||
-- the Exercise 4.26 again.
|
||||
|
||||
updateVariablesFromStmt : BasicStmt → VariableValues → VariableValues
|
||||
updateVariablesFromStmt (k ← e) vs = updateVariablesFromExpression k e vs
|
||||
updateVariablesFromStmt noop vs = vs
|
||||
|
||||
updateVariablesFromStmt-Monoʳ : ∀ (bs : BasicStmt) → Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs)
|
||||
updateVariablesFromStmt-Monoʳ (k ← e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
|
||||
updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂
|
||||
|
||||
updateVariablesForState : State → StateVariables → VariableValues
|
||||
updateVariablesForState s sv =
|
||||
foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s)
|
||||
|
||||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
|
||||
let
|
||||
bss = code s
|
||||
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
|
||||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||||
in
|
||||
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
|
||||
(flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ
|
||||
vs₁≼vs₂
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
renaming
|
||||
( f' to updateAll
|
||||
; f'-Monotonic to updateAll-Mono
|
||||
; f'-k∈ks-≡ to updateAll-k∈ks-≡
|
||||
)
|
||||
|
||||
-- Finally, the whole analysis consists of getting the 'join'
|
||||
-- of all incoming states, then applying the per-state evaluation
|
||||
-- function. This is just a composition, and is trivially monotonic.
|
||||
|
||||
analyze : StateVariables → StateVariables
|
||||
analyze = updateAll ∘ joinAll
|
||||
|
||||
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
|
||||
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
|
||||
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
|
||||
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||||
|
||||
-- The fixed point of the 'analyze' function is our final goal.
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||||
public
|
||||
|
||||
variablesAt-updateAll : ∀ (s : State) (sv : StateVariables) →
|
||||
variablesAt s (updateAll sv) ≡ updateVariablesForState s sv
|
||||
variablesAt-updateAll s sv
|
||||
with (vs , s,vs∈usv) ← locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
|
||||
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
|
||||
|
||||
module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where
|
||||
open LatticeInterpretation latticeInterpretationˡ
|
||||
using ()
|
||||
renaming
|
||||
( ⟦_⟧ to ⟦_⟧ˡ
|
||||
; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ
|
||||
; ⟦⟧-⊔-∨ to ⟦⟧ˡ-⊔ˡ-∨
|
||||
)
|
||||
|
||||
⟦_⟧ᵛ : VariableValues → Env → Set
|
||||
⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v
|
||||
|
||||
⟦⊥ᵛ⟧ᵛ∅ : ⟦ ⊥ᵛ ⟧ᵛ []
|
||||
⟦⊥ᵛ⟧ᵛ∅ _ ()
|
||||
|
||||
⟦⟧ᵛ-respects-≈ᵛ : ∀ {vs₁ vs₂ : VariableValues} → vs₁ ≈ᵛ vs₂ → ⟦ vs₁ ⟧ᵛ ⇒ ⟦ vs₂ ⟧ᵛ
|
||||
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
|
||||
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
|
||||
let
|
||||
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
|
||||
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
|
||||
in
|
||||
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
|
||||
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ : ∀ {vs₁ vs₂ : VariableValues} → (⟦ vs₁ ⟧ᵛ ∨ ⟦ vs₂ ⟧ᵛ) ⇒ ⟦ vs₁ ⊔ᵛ vs₂ ⟧ᵛ
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁} {vs₂} ρ ⟦vs₁⟧ρ∨⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
|
||||
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
|
||||
← Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
|
||||
with ⟦vs₁⟧ρ∨⟦vs₂⟧ρ
|
||||
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
|
||||
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
|
||||
|
||||
⟦⟧ᵛ-foldr : ∀ {vs : VariableValues} {vss : List VariableValues} {ρ : Env} →
|
||||
⟦ vs ⟧ᵛ ρ → vs ∈ˡ vss → ⟦ foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
|
||||
⟦⟧ᵛ-foldr {vs} {vs ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) =
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ)
|
||||
⟦⟧ᵛ-foldr {vs} {vs' ∷ vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') =
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ
|
||||
(inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))
|
||||
|
||||
InterpretationValid : Set
|
||||
InterpretationValid = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v
|
||||
|
||||
module WithValidity (interpretationValidˡ : InterpretationValid) where
|
||||
|
||||
updateVariablesFromStmt-matches : ∀ {bs vs ρ₁ ρ₂} → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
|
||||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ₁ = ⟦vs⟧ρ₁
|
||||
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ₁ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
|
||||
with k ≟ˢ k' | k',v'∈ρ₂
|
||||
... | yes refl | here _ v _
|
||||
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
|
||||
interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ₁
|
||||
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
|
||||
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
|
||||
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
|
||||
let
|
||||
k'∉[k] = (λ { (Any.here refl) → k≢k' refl })
|
||||
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
|
||||
in
|
||||
⟦vs⟧ρ₁ k',l∈vs k',v'∈ρ₁
|
||||
|
||||
updateVariablesFromStmt-fold-matches : ∀ {bss vs ρ₁ ρ₂} → ρ₁ , bss ⇒ᵇˢ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂
|
||||
updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ
|
||||
updateVariablesFromStmt-fold-matches {bs ∷ bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ∷ ρ,bss'⇒ρ₂) ⟦vs⟧ρ₁ =
|
||||
updateVariablesFromStmt-fold-matches
|
||||
{bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂
|
||||
(updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ₁)
|
||||
|
||||
updateVariablesForState-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ updateVariablesForState s sv ⟧ᵛ ρ₂
|
||||
updateVariablesForState-matches =
|
||||
updateVariablesFromStmt-fold-matches
|
||||
|
||||
updateAll-matches : ∀ {s sv ρ₁ ρ₂} → ρ₁ , (code s) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s sv ⟧ᵛ ρ₁ → ⟦ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
|
||||
updateAll-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||||
rewrite variablesAt-updateAll s sv =
|
||||
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ₂ ⟦vs⟧ρ₁
|
||||
|
||||
|
||||
stepTrace : ∀ {s₁ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ → ⟦ variablesAt s₁ result ⟧ᵛ ρ₂
|
||||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂ =
|
||||
let
|
||||
-- I'd use rewrite, but Agda gets a memory overflow (?!).
|
||||
⟦joinAll-result⟧ρ₁ =
|
||||
subst (λ vs → ⟦ vs ⟧ᵛ ρ₁)
|
||||
(sym (variablesAt-joinAll s₁ result))
|
||||
⟦joinForKey-s₁⟧ρ₁
|
||||
⟦analyze-result⟧ρ₂ =
|
||||
updateAll-matches {sv = joinAll result}
|
||||
ρ₁,bss⇒ρ₂ ⟦joinAll-result⟧ρ₁
|
||||
analyze-result≈result =
|
||||
≈ᵐ-sym {result} {updateAll (joinAll result)}
|
||||
result≈analyze-result
|
||||
analyze-s₁≈s₁ =
|
||||
variablesAt-≈ s₁ (updateAll (joinAll result))
|
||||
result (analyze-result≈result)
|
||||
in
|
||||
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ₂
|
||||
|
||||
walkTrace : ∀ {s₁ s₂ ρ₁ ρ₂} → ⟦ joinForKey s₁ result ⟧ᵛ ρ₁ → Trace {graph} s₁ s₂ ρ₁ ρ₂ → ⟦ variablesAt s₂ result ⟧ᵛ ρ₂
|
||||
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-single ρ₁,bss⇒ρ₂) =
|
||||
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ₂
|
||||
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ₁ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
|
||||
let
|
||||
⟦result-s₁⟧ρ =
|
||||
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ₁ ρ₁,bss⇒ρ
|
||||
s₁∈incomingStates =
|
||||
[]-∈ result (edge⇒incoming s₁→s₂)
|
||||
(variablesAt-∈ s₁ result)
|
||||
⟦joinForKey-s⟧ρ =
|
||||
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
|
||||
in
|
||||
walkTrace ⟦joinForKey-s⟧ρ tr
|
||||
|
||||
joinForKey-initialState-⊥ᵛ : joinForKey initialState result ≡ ⊥ᵛ
|
||||
joinForKey-initialState-⊥ᵛ = cong (λ ins → foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅
|
||||
|
||||
⟦joinAll-initialState⟧ᵛ∅ : ⟦ joinForKey initialState result ⟧ᵛ []
|
||||
⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs → ⟦ vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅
|
||||
|
||||
analyze-correct : ∀ {ρ : Env} → [] , rootStmt ⇒ˢ ρ → ⟦ variablesAt finalState result ⟧ᵛ ρ
|
||||
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)
|
||||
@@ -1,20 +1,20 @@
|
||||
module Analysis.Sign where
|
||||
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Nat using (suc)
|
||||
open import Data.Product using (_×_; proj₁; _,_)
|
||||
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
|
||||
open import Data.Integer as Int using (ℤ; +_; -[1+_])
|
||||
open import Data.Nat as Nat using (ℕ; suc; zero)
|
||||
open import Data.Product using (Σ; proj₁; proj₂; _,_)
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
|
||||
open import Language
|
||||
open import Lattice
|
||||
open import Utils using (Pairwise)
|
||||
open import Showable using (Showable; show)
|
||||
import Lattice.FiniteValueMap
|
||||
open import Utils using (_⇒_; _∧_; _∨_)
|
||||
import Analysis.Forward
|
||||
|
||||
data Sign : Set where
|
||||
+ : Sign
|
||||
@@ -61,11 +61,11 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain 0ˢ using ()
|
||||
renaming
|
||||
( finiteHeightLattice to finiteHeightLatticeᵍ
|
||||
; isLattice to isLatticeᵍ
|
||||
( isLattice to isLatticeᵍ
|
||||
; fixedHeight to fixedHeightᵍ
|
||||
; _≼_ to _≼ᵍ_
|
||||
; _⊔_ to _⊔ᵍ_
|
||||
; _⊓_ to _⊓ᵍ_
|
||||
)
|
||||
|
||||
open IsLattice isLatticeᵍ using ()
|
||||
@@ -111,199 +111,186 @@ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
|
||||
postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂)
|
||||
postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
|
||||
|
||||
⟦_⟧ᵍ : SignLattice → Value → Set
|
||||
⟦_⟧ᵍ ⊥ᵍ _ = ⊥
|
||||
⟦_⟧ᵍ ⊤ᵍ _ = ⊤
|
||||
⟦_⟧ᵍ [ + ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ (suc n)))
|
||||
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = v ≡ ↑ᶻ (+_ zero)
|
||||
⟦_⟧ᵍ [ - ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ -[1+ n ])
|
||||
|
||||
⟦⟧ᵍ-respects-≈ᵍ : ∀ {s₁ s₂ : SignLattice} → s₁ ≈ᵍ s₂ → ⟦ s₁ ⟧ᵍ ⇒ ⟦ s₂ ⟧ᵍ
|
||||
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot
|
||||
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top
|
||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof
|
||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof
|
||||
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof
|
||||
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∨ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊔ᵍ s₂ ⟧ᵍ
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ {⊥ᵍ} x (inj₂ px₂) = px₂
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ {⊤ᵍ} x _ = tt
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px
|
||||
with s₁ ≟ᵍ s₂
|
||||
... | no _ = tt
|
||||
... | yes refl
|
||||
with px
|
||||
... | inj₁ px₁ = px₁
|
||||
... | inj₂ px₂ = px₂
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁
|
||||
⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt
|
||||
|
||||
s₁≢s₂⇒¬s₁∧s₂ : ∀ {s₁ s₂ : Sign} → ¬ s₁ ≡ s₂ → ∀ {v} → ¬ ((⟦ [ s₁ ]ᵍ ⟧ᵍ ∧ ⟦ [ s₂ ]ᵍ ⟧ᵍ) v)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , ())
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ (refl , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ (refl , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , ())
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∧ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊓ᵍ s₂ ⟧ᵍ
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂)
|
||||
with s₁ ≟ᵍ s₂
|
||||
... | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂)
|
||||
... | yes refl = px₁
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁
|
||||
|
||||
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
|
||||
latticeInterpretationᵍ = record
|
||||
{ ⟦_⟧ = ⟦_⟧ᵍ
|
||||
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ
|
||||
; ⟦⟧-⊔-∨ = ⟦⟧ᵍ-⊔ᵍ-∨
|
||||
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧
|
||||
}
|
||||
|
||||
module WithProg (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
|
||||
open VariableSignsFiniteMap
|
||||
using ()
|
||||
renaming
|
||||
( FiniteMap to VariableSigns
|
||||
; isLattice to isLatticeᵛ
|
||||
; _≈_ to _≈ᵛ_
|
||||
; _⊔_ to _⊔ᵛ_
|
||||
; _≼_ to _≼ᵛ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵍ-dec⇒≈ᵛ-dec
|
||||
; _∈_ to _∈ᵛ_
|
||||
; _∈k_ to _∈kᵛ_
|
||||
; _updating_via_ to _updatingᵛ_via_
|
||||
; locate to locateᵛ
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||||
)
|
||||
open IsLattice isLatticeᵛ
|
||||
using ()
|
||||
renaming
|
||||
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
||||
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeᵍ vars-Unique ≈ᵍ-dec _ fixedHeightᵍ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||
)
|
||||
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
|
||||
open ForwardWithProg
|
||||
|
||||
≈ᵛ-dec = ≈ᵍ-dec⇒≈ᵛ-dec ≈ᵍ-dec
|
||||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||||
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
|
||||
eval : ∀ (e : Expr) → VariableValues → SignLattice
|
||||
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
|
||||
eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs)
|
||||
eval (` k) vs
|
||||
with ∈k-decᵛ k (proj₁ (proj₁ vs))
|
||||
... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs)
|
||||
... | no _ = ⊤ᵍ
|
||||
eval (# 0) _ = [ 0ˢ ]ᵍ
|
||||
eval (# (suc n')) _ = [ + ]ᵍ
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
|
||||
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
|
||||
open StateVariablesFiniteMap
|
||||
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
|
||||
renaming
|
||||
( FiniteMap to StateVariables
|
||||
; isLattice to isLatticeᵐ
|
||||
; _∈k_ to _∈kᵐ_
|
||||
; locate to locateᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
)
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
)
|
||||
|
||||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||||
|
||||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||||
--
|
||||
-- L₁ → (A → L₂)
|
||||
--
|
||||
-- Construction, with L₁ = (A → L₂), and f = id
|
||||
|
||||
joinForKey : State → StateVariables → VariableSigns
|
||||
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||||
|
||||
-- The per-key join is made up of map key accesses (which are monotonic)
|
||||
-- and folds using the join operation (also monotonic)
|
||||
|
||||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||||
|
||||
-- The name f' comes from the formulation of Exercise 4.26.
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||||
renaming
|
||||
( f' to joinAll
|
||||
; f'-Monotonic to joinAll-Mono
|
||||
)
|
||||
|
||||
-- With 'join' in hand, we need to perform abstract evaluation.
|
||||
|
||||
vars-in-Map : ∀ (k : String) (vs : VariableSigns) →
|
||||
k ∈ˡ vars → k ∈kᵛ vs
|
||||
vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars
|
||||
|
||||
states-in-Map : ∀ (s : State) (sv : StateVariables) → s ∈kᵐ sv
|
||||
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
|
||||
|
||||
eval : ∀ (e : Expr) → (∀ k → k ∈ᵉ e → k ∈ˡ vars) → VariableSigns → SignLattice
|
||||
eval (e₁ + e₂) k∈e⇒k∈vars vs =
|
||||
plus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs)
|
||||
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs)
|
||||
eval (e₁ - e₂) k∈e⇒k∈vars vs =
|
||||
minus (eval e₁ (λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs)
|
||||
(eval e₂ (λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs)
|
||||
eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here)))
|
||||
eval (# 0) _ _ = [ 0ˢ ]ᵍ
|
||||
eval (# (suc n')) _ _ = [ + ]ᵍ
|
||||
|
||||
eval-Mono : ∀ (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars)
|
||||
eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
eval-Mono : ∀ (e : Expr) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
|
||||
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
let
|
||||
-- TODO: can this be done with less boilerplate?
|
||||
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)
|
||||
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)
|
||||
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
|
||||
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
|
||||
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
|
||||
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
|
||||
g₁vs₁ = eval e₁ vs₁
|
||||
g₂vs₁ = eval e₂ vs₁
|
||||
g₁vs₂ = eval e₁ vs₂
|
||||
g₂vs₂ = eval e₂ vs₂
|
||||
in
|
||||
≼ᵍ-trans
|
||||
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
|
||||
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
|
||||
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
|
||||
eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
|
||||
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
|
||||
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
let
|
||||
-- TODO: here too -- can this be done with less boilerplate?
|
||||
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)
|
||||
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)
|
||||
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
|
||||
g₂vs₁ = eval e₂ k∈e₂⇒k∈vars vs₁
|
||||
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
|
||||
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
|
||||
g₁vs₁ = eval e₁ vs₁
|
||||
g₂vs₁ = eval e₂ vs₁
|
||||
g₁vs₂ = eval e₁ vs₂
|
||||
g₂vs₂ = eval e₂ vs₂
|
||||
in
|
||||
≼ᵍ-trans
|
||||
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
|
||||
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
|
||||
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
|
||||
eval-Mono (` k) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
let
|
||||
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here))
|
||||
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here))
|
||||
in
|
||||
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
|
||||
eval-Mono (# 0) _ _ = ≈ᵍ-refl
|
||||
eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl
|
||||
|
||||
private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) where
|
||||
open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e k∈e⇒k∈vars) (λ _ {vs₁} {vs₂} vs₁≼vs₂ → eval-Mono e k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂) (k ∷ [])
|
||||
renaming
|
||||
( f' to updateVariablesFromExpression
|
||||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||||
)
|
||||
public
|
||||
|
||||
updateVariablesForState : State → StateVariables → VariableSigns
|
||||
updateVariablesForState s sv
|
||||
-- More weirdness here. Apparently, capturing the with-equality proof
|
||||
-- using 'in p' makes code that reasons about this function (below)
|
||||
-- throw ill-typed with-abstraction errors. Instead, make use of the
|
||||
-- fact that later with-clauses are generalized over earlier ones to
|
||||
-- construct a specialization of vars-complete for (code s).
|
||||
with code s | (λ k → vars-complete {k} s)
|
||||
... | k ← e | k∈codes⇒k∈vars =
|
||||
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
|
||||
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
|
||||
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
|
||||
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
|
||||
... | yes k∈kvs₁ | yes k∈kvs₂ =
|
||||
let
|
||||
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
|
||||
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} k∈kvs₁
|
||||
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂
|
||||
in
|
||||
updateVariablesFromExpression k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) vs
|
||||
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
|
||||
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
|
||||
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l → k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
|
||||
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
|
||||
eval-Mono (# 0) _ = ≈ᵍ-refl
|
||||
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
|
||||
|
||||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
|
||||
with code s | (λ k → vars-complete {k} s)
|
||||
... | k ← e | k∈codes⇒k∈vars =
|
||||
let
|
||||
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
|
||||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||||
in
|
||||
updateVariablesFromExpression-Mono k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂
|
||||
module ForwardWithEval = ForwardWithProg.WithEvaluator eval eval-Mono
|
||||
open ForwardWithEval using (result)
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
renaming
|
||||
( f' to updateAll
|
||||
; f'-Monotonic to updateAll-Mono
|
||||
)
|
||||
-- For debugging purposes, print out the result.
|
||||
output = show result
|
||||
|
||||
analyze : StateVariables → StateVariables
|
||||
analyze = updateAll ∘ joinAll
|
||||
module ForwardWithInterp = ForwardWithEval.WithInterpretation latticeInterpretationᵍ
|
||||
open ForwardWithInterp using (⟦_⟧ᵛ; InterpretationValid)
|
||||
|
||||
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
|
||||
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||||
-- This should have fewer cases -- the same number as the actual 'plus' above.
|
||||
-- But agda only simplifies on first argument, apparently, so we are stuck
|
||||
-- listing them all.
|
||||
plus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ plus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.+ z₂))
|
||||
plus-valid {⊥ᵍ} {_} ⊥ _ = ⊥
|
||||
plus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ + ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ + ]ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
plus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
plus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ - ]ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
plus-valid {[ - ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
plus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
|
||||
plus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to signs)
|
||||
-- Same for this one. It should be easier, but Agda won't simplify.
|
||||
minus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ minus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.- z₂))
|
||||
minus-valid {⊥ᵍ} {_} ⊥ _ = ⊥
|
||||
minus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ + ]ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
minus-valid {[ + ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
minus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ - ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ - ]ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
minus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
minus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
|
||||
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
|
||||
eval-Valid : InterpretationValid
|
||||
eval-Valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
|
||||
plus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
|
||||
eval-Valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
|
||||
minus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
|
||||
eval-Valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
|
||||
with ∈k-decᵛ x (proj₁ (proj₁ vs))
|
||||
... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ
|
||||
... | no x∉kvs = tt
|
||||
eval-Valid (⇒ᵉ-ℕ ρ 0) _ = refl
|
||||
eval-Valid (⇒ᵉ-ℕ ρ (suc n')) _ = (n' , refl)
|
||||
|
||||
-- Debugging code: print the resulting map.
|
||||
output = show signs
|
||||
open ForwardWithInterp.WithValidity eval-Valid using (analyze-correct) public
|
||||
|
||||
13
Chain.agda
13
Chain.agda
@@ -10,7 +10,7 @@ open import Data.Nat using (ℕ; suc; _+_; _≤_)
|
||||
open import Data.Nat.Properties using (+-comm; m+1+n≰m)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||||
open import Data.Empty using (⊥)
|
||||
open import Data.Empty as Empty using ()
|
||||
|
||||
open IsEquivalence ≈-equiv
|
||||
|
||||
@@ -38,11 +38,16 @@ module _ where
|
||||
Bounded : ℕ → Set a
|
||||
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
||||
|
||||
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : ℕ} → Bounded n → Chain a₁ a₂ (suc n) → ⊥
|
||||
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : ℕ} → Bounded n → Chain a₁ a₂ (suc n) → Empty.⊥
|
||||
Bounded-suc-n {a₁} {a₂} {n} bounded c = (m+1+n≰m n n+1≤n)
|
||||
where
|
||||
n+1≤n : n + 1 ≤ n
|
||||
n+1≤n rewrite (+-comm n 1) = bounded c
|
||||
|
||||
Height : ℕ → Set a
|
||||
Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)
|
||||
record Height (height : ℕ) : Set a where
|
||||
field
|
||||
⊥ : A
|
||||
⊤ : A
|
||||
|
||||
longestChain : Chain ⊥ ⊤ height
|
||||
bounded : Bounded height
|
||||
|
||||
@@ -23,15 +23,21 @@ import Chain
|
||||
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||
|
||||
private
|
||||
⊥ᴬ : A
|
||||
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
|
||||
open ChainA.Height fixedHeight
|
||||
using ()
|
||||
renaming
|
||||
( ⊥ to ⊥ᴬ
|
||||
; longestChain to longestChainᴬ
|
||||
; bounded to boundedᴬ
|
||||
)
|
||||
|
||||
|
||||
⊥ᴬ≼ : ∀ (a : A) → ⊥ᴬ ≼ a
|
||||
⊥ᴬ≼ a with ≈-dec a ⊥ᴬ
|
||||
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
|
||||
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ)
|
||||
... | yes ⊥ᴬ≈a⊓⊥ᴬ = ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ (ChainA.step x≺⊥ᴬ ≈-refl longestChainᴬ))
|
||||
where
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
|
||||
@@ -45,7 +51,7 @@ private
|
||||
-- out, we have exceeded h steps, which shouldn't be possible.
|
||||
|
||||
doStep : ∀ (g hᶜ : ℕ) (a₁ a₂ : A) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h) (a₂≼fa₂ : a₂ ≼ f a₂) → Σ A (λ a → a ≈ f a)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
||||
doStep (suc g') hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes a₂≈fa₂ = (a₂ , a₂≈fa₂)
|
||||
@@ -67,15 +73,15 @@ aᶠ≈faᶠ : aᶠ ≈ f aᶠ
|
||||
aᶠ≈faᶠ = proj₂ fix
|
||||
|
||||
private
|
||||
stepPreservesLess : ∀ (g hᶜ : ℕ) (a₁ a₂ a : A) (a≈fa : a ≈ f a) (a₂≼a : a₂ ≼ a)
|
||||
stepPreservesLess : ∀ (g hᶜ : ℕ) (a₁ a₂ b : A) (b≈fb : b ≈ f b) (a₂≼a : a₂ ≼ b)
|
||||
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h)
|
||||
(a₂≼fa₂ : a₂ ≼ f a₂) →
|
||||
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ a
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ b
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
||||
stepPreservesLess (suc g') hᶜ a₁ a₂ b b≈fb a₂≼b c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes _ = a₂≼a
|
||||
... | no _ = stepPreservesLess g' _ _ _ a a≈fa (≼-cong ≈-refl (≈-sym a≈fa) (Monotonicᶠ a₂≼a)) _ _ _
|
||||
... | yes _ = a₂≼b
|
||||
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
|
||||
|
||||
aᶠ≼ : ∀ (a : A) → a ≈ f a → aᶠ ≼ a
|
||||
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))
|
||||
|
||||
@@ -38,8 +38,9 @@ module TransportFiniteHeight
|
||||
open IsEquivalence ≈₁-equiv using () renaming (≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||
open IsEquivalence ≈₂-equiv using () renaming (≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans)
|
||||
|
||||
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||
import Chain
|
||||
open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||
open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||
|
||||
private
|
||||
f-Injective : Injective _≈₁_ _≈₂_ f
|
||||
@@ -65,10 +66,17 @@ module TransportFiniteHeight
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||
isFiniteHeightLattice =
|
||||
let
|
||||
(((a₁ , a₂) , c) , bounded₁) = IsFiniteHeightLattice.fixedHeight fhlA
|
||||
open Chain.Height (IsFiniteHeightLattice.fixedHeight fhlA)
|
||||
using ()
|
||||
renaming (⊥ to ⊥₁; ⊤ to ⊤₁; bounded to bounded₁; longestChain to c)
|
||||
in record
|
||||
{ isLattice = lB
|
||||
; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' → bounded₁ (portChain₂ c'))
|
||||
; fixedHeight = record
|
||||
{ ⊥ = f ⊥₁
|
||||
; ⊤ = f ⊤₁
|
||||
; longestChain = portChain₁ c
|
||||
; bounded = λ c' → bounded₁ (portChain₂ c')
|
||||
}
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice B
|
||||
|
||||
236
Language.agda
236
Language.agda
@@ -1,175 +1,56 @@
|
||||
module Language where
|
||||
|
||||
open import Data.Nat using (ℕ; suc; pred)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Vec using (Vec; foldr; lookup; _∷_)
|
||||
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Language.Base public
|
||||
open import Language.Semantics public
|
||||
open import Language.Traces public
|
||||
open import Language.Graphs public
|
||||
open import Language.Properties public
|
||||
|
||||
open import Data.Fin using (Fin; suc; zero)
|
||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||
open import Data.List as List using (List; []; _∷_)
|
||||
open import Data.List.Membership.Propositional as ListMem using ()
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺)
|
||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁) renaming (_≟_ to _≟ᶠ_)
|
||||
open import Data.Fin.Properties using (suc-injective)
|
||||
open import Relation.Binary.PropositionalEquality using (cong; _≡_; refl)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.Product using (_,_; Σ; proj₁; proj₂)
|
||||
open import Data.Product.Properties as ProdProp using ()
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Function using (_∘_)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs)
|
||||
|
||||
data Expr : Set where
|
||||
_+_ : Expr → Expr → Expr
|
||||
_-_ : Expr → Expr → Expr
|
||||
`_ : String → Expr
|
||||
#_ : ℕ → Expr
|
||||
|
||||
data Stmt : Set where
|
||||
_←_ : String → Expr → Stmt
|
||||
|
||||
open import Lattice.MapSet _≟ˢ_
|
||||
open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs)
|
||||
open import Lattice.MapSet _≟ˢ_ using ()
|
||||
renaming
|
||||
( MapSet to StringSet
|
||||
; insert to insertˢ
|
||||
; to-List to to-Listˢ
|
||||
; empty to emptyˢ
|
||||
; singleton to singletonˢ
|
||||
; _⊔_ to _⊔ˢ_
|
||||
; `_ to `ˢ_
|
||||
; _∈_ to _∈ˢ_
|
||||
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
|
||||
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
|
||||
)
|
||||
|
||||
data _∈ᵉ_ : String → Expr → Set where
|
||||
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
|
||||
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
|
||||
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
|
||||
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
|
||||
here : ∀ {k : String} → k ∈ᵉ (` k)
|
||||
|
||||
data _∈ᵗ_ : String → Stmt → Set where
|
||||
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵗ (k ← e)
|
||||
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵗ (k' ← e)
|
||||
|
||||
private
|
||||
Expr-vars : Expr → StringSet
|
||||
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
|
||||
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
|
||||
Expr-vars (` s) = singletonˢ s
|
||||
Expr-vars (# _) = emptyˢ
|
||||
|
||||
∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
|
||||
∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
|
||||
with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||||
... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||||
... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
|
||||
with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||||
... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||||
... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
|
||||
|
||||
∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
|
||||
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
|
||||
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||||
{m₂ = Expr-vars e₂}
|
||||
(∈⇒∈-Expr-vars k∈e₁)
|
||||
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
|
||||
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||||
{m₂ = Expr-vars e₂}
|
||||
(∈⇒∈-Expr-vars k∈e₂)
|
||||
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
|
||||
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||||
{m₂ = Expr-vars e₂}
|
||||
(∈⇒∈-Expr-vars k∈e₁)
|
||||
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
|
||||
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||||
{m₂ = Expr-vars e₂}
|
||||
(∈⇒∈-Expr-vars k∈e₂)
|
||||
∈⇒∈-Expr-vars here = RelAny.here refl
|
||||
|
||||
Stmt-vars : Stmt → StringSet
|
||||
Stmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
|
||||
|
||||
∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵗ s
|
||||
∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
|
||||
with Expr-Provenance k ((`ˢ (singletonˢ k')) ∪ (`ˢ (Expr-vars e))) k∈vs
|
||||
... | in₁ (single (RelAny.here refl)) _ = in←₁
|
||||
... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
|
||||
... | bothᵘ (single (RelAny.here refl)) _ = in←₁
|
||||
|
||||
∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵗ s → k ∈ˢ (Stmt-vars s)
|
||||
∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
|
||||
⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
|
||||
{m₂ = Expr-vars e}
|
||||
(RelAny.here refl)
|
||||
∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
|
||||
⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
|
||||
{m₂ = Expr-vars e}
|
||||
(∈⇒∈-Expr-vars k∈e)
|
||||
|
||||
Stmts-vars : ∀ {n : ℕ} → Vec Stmt n → StringSet
|
||||
Stmts-vars = foldr (λ n → StringSet)
|
||||
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
|
||||
|
||||
∈-Stmts-vars⇒∈ : ∀ {n : ℕ} {k : String} (ss : Vec Stmt n) →
|
||||
k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵗ lookup ss f)
|
||||
∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
|
||||
with Expr-Provenance k ((`ˢ (Stmt-vars s)) ∪ (`ˢ (Stmts-vars ss'))) k∈vss
|
||||
... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||||
... | in₂ _ (single k,tt∈vss') =
|
||||
let
|
||||
(f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
|
||||
in
|
||||
(suc f' , k∈s')
|
||||
... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||||
|
||||
∈⇒∈-Stmts-vars : ∀ {n : ℕ} {k : String} {ss : Vec Stmt n} {f : Fin n} →
|
||||
k ∈ᵗ lookup ss f → k ∈ˢ (Stmts-vars ss)
|
||||
∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
|
||||
⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
|
||||
{m₂ = Stmts-vars ss'}
|
||||
(∈⇒∈-Stmt-vars k∈s)
|
||||
∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
|
||||
⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
|
||||
{m₂ = Stmts-vars ss'}
|
||||
(∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
|
||||
|
||||
-- Creating a new number from a natural number can never create one
|
||||
-- equal to one you get from weakening the bounds on another number.
|
||||
z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (zero ≡ suc f)
|
||||
z≢sf f ()
|
||||
|
||||
z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (mapˡ suc fs)
|
||||
z≢mapsfs [] = []
|
||||
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
|
||||
|
||||
indices : ∀ (n : ℕ) → Σ (List (Fin n)) Unique
|
||||
indices 0 = ([] , empty)
|
||||
indices (suc n') =
|
||||
let
|
||||
(inds' , unids') = indices n'
|
||||
in
|
||||
( zero ∷ mapˡ suc inds'
|
||||
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
|
||||
)
|
||||
|
||||
indices-complete : ∀ (n : ℕ) (f : Fin n) → f ∈ˡ (proj₁ (indices n))
|
||||
indices-complete (suc n') zero = RelAny.here refl
|
||||
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
|
||||
|
||||
|
||||
-- For now, just represent the program and CFG as one type, without branching.
|
||||
record Program : Set where
|
||||
field
|
||||
length : ℕ
|
||||
stmts : Vec Stmt length
|
||||
rootStmt : Stmt
|
||||
|
||||
graph : Graph
|
||||
graph = wrap (buildCfg rootStmt)
|
||||
|
||||
State : Set
|
||||
State = Graph.Index graph
|
||||
|
||||
initialState : State
|
||||
initialState = proj₁ (wrap-input (buildCfg rootStmt))
|
||||
|
||||
finalState : State
|
||||
finalState = proj₁ (wrap-output (buildCfg rootStmt))
|
||||
|
||||
trace : ∀ {ρ : Env} → [] , rootStmt ⇒ˢ ρ → Trace {graph} initialState finalState [] ρ
|
||||
trace {ρ} ∅,s⇒ρ
|
||||
with MkEndToEndTrace idx₁ (RelAny.here refl) idx₂ (RelAny.here refl) tr
|
||||
← EndToEndTrace-wrap (buildCfg-sufficient ∅,s⇒ρ) = tr
|
||||
|
||||
private
|
||||
vars-Set : StringSet
|
||||
vars-Set = Stmts-vars stmts
|
||||
vars-Set = Stmt-vars rootStmt
|
||||
|
||||
vars : List String
|
||||
vars = to-Listˢ vars-Set
|
||||
@@ -177,35 +58,36 @@ record Program : Set where
|
||||
vars-Unique : Unique vars
|
||||
vars-Unique = proj₂ vars-Set
|
||||
|
||||
State : Set
|
||||
State = Fin length
|
||||
|
||||
states : List State
|
||||
states = proj₁ (indices length)
|
||||
states = indices graph
|
||||
|
||||
states-complete : ∀ (s : State) → s ∈ˡ states
|
||||
states-complete = indices-complete length
|
||||
states-complete : ∀ (s : State) → s ListMem.∈ states
|
||||
states-complete = indices-complete graph
|
||||
|
||||
states-Unique : Unique states
|
||||
states-Unique = proj₂ (indices length)
|
||||
states-Unique = indices-Unique graph
|
||||
|
||||
code : State → Stmt
|
||||
code = lookup stmts
|
||||
code : State → List BasicStmt
|
||||
code st = graph [ st ]
|
||||
|
||||
vars-complete : ∀ {k : String} (s : State) → k ∈ᵗ (code s) → k ∈ˡ vars
|
||||
vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
|
||||
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ListMem.∈ vars
|
||||
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
|
||||
|
||||
_≟_ : IsDecidable (_≡_ {_} {State})
|
||||
_≟_ = _≟ᶠ_
|
||||
_≟_ = FinProp._≟_
|
||||
|
||||
-- Computations for incoming and outgoing edges will have to change too
|
||||
-- when we support branching etc.
|
||||
_≟ᵉ_ : IsDecidable (_≡_ {_} {Graph.Edge graph})
|
||||
_≟ᵉ_ = ProdProp.≡-dec _≟_ _≟_
|
||||
|
||||
open import Data.List.Membership.DecPropositional _≟ᵉ_ using (_∈?_)
|
||||
|
||||
incoming : State → List State
|
||||
incoming
|
||||
with length
|
||||
... | 0 = (λ ())
|
||||
... | suc n' = (λ
|
||||
{ zero → []
|
||||
; (suc f') → (inject₁ f') ∷ []
|
||||
})
|
||||
incoming = predecessors graph
|
||||
|
||||
initialState-pred-∅ : incoming initialState ≡ []
|
||||
initialState-pred-∅ =
|
||||
wrap-preds-∅ (buildCfg rootStmt) initialState (RelAny.here refl)
|
||||
|
||||
edge⇒incoming : ∀ {s₁ s₂ : State} → (s₁ , s₂) ListMem.∈ (Graph.edges graph) →
|
||||
s₁ ListMem.∈ (incoming s₂)
|
||||
edge⇒incoming = edge⇒predecessor graph
|
||||
|
||||
145
Language/Base.agda
Normal file
145
Language/Base.agda
Normal file
@@ -0,0 +1,145 @@
|
||||
module Language.Base where
|
||||
|
||||
open import Data.List as List using (List)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.Product using (Σ; _,_; proj₁)
|
||||
open import Data.String as String using (String)
|
||||
open import Data.Vec using (Vec; foldr; lookup)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
||||
|
||||
open import Lattice
|
||||
|
||||
data Expr : Set where
|
||||
_+_ : Expr → Expr → Expr
|
||||
_-_ : Expr → Expr → Expr
|
||||
`_ : String → Expr
|
||||
#_ : ℕ → Expr
|
||||
|
||||
data BasicStmt : Set where
|
||||
_←_ : String → Expr → BasicStmt
|
||||
noop : BasicStmt
|
||||
|
||||
infixr 2 _then_
|
||||
infix 3 if_then_else_
|
||||
infix 3 while_repeat_
|
||||
data Stmt : Set where
|
||||
⟨_⟩ : BasicStmt → Stmt
|
||||
_then_ : Stmt → Stmt → Stmt
|
||||
if_then_else_ : Expr → Stmt → Stmt → Stmt
|
||||
while_repeat_ : Expr → Stmt → Stmt
|
||||
|
||||
data _∈ᵉ_ : String → Expr → Set where
|
||||
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
|
||||
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
|
||||
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
|
||||
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
|
||||
here : ∀ {k : String} → k ∈ᵉ (` k)
|
||||
|
||||
data _∈ᵇ_ : String → BasicStmt → Set where
|
||||
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵇ (k ← e)
|
||||
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵇ (k' ← e)
|
||||
|
||||
open import Lattice.MapSet (String._≟_)
|
||||
renaming
|
||||
( MapSet to StringSet
|
||||
; insert to insertˢ
|
||||
; empty to emptyˢ
|
||||
; singleton to singletonˢ
|
||||
; _⊔_ to _⊔ˢ_
|
||||
; `_ to `ˢ_
|
||||
; _∈_ to _∈ˢ_
|
||||
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
|
||||
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
|
||||
)
|
||||
|
||||
Expr-vars : Expr → StringSet
|
||||
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
|
||||
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
|
||||
Expr-vars (` s) = singletonˢ s
|
||||
Expr-vars (# _) = emptyˢ
|
||||
|
||||
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
|
||||
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
|
||||
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||||
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||||
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
|
||||
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
||||
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
||||
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
||||
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
|
||||
|
||||
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
|
||||
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
|
||||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||||
-- {m₂ = Expr-vars e₂}
|
||||
-- (∈⇒∈-Expr-vars k∈e₁)
|
||||
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
|
||||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||||
-- {m₂ = Expr-vars e₂}
|
||||
-- (∈⇒∈-Expr-vars k∈e₂)
|
||||
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
|
||||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
||||
-- {m₂ = Expr-vars e₂}
|
||||
-- (∈⇒∈-Expr-vars k∈e₁)
|
||||
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
|
||||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
||||
-- {m₂ = Expr-vars e₂}
|
||||
-- (∈⇒∈-Expr-vars k∈e₂)
|
||||
-- ∈⇒∈-Expr-vars here = RelAny.here refl
|
||||
|
||||
BasicStmt-vars : BasicStmt → StringSet
|
||||
BasicStmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
|
||||
BasicStmt-vars noop = emptyˢ
|
||||
|
||||
Stmt-vars : Stmt → StringSet
|
||||
Stmt-vars ⟨ bs ⟩ = BasicStmt-vars bs
|
||||
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
|
||||
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
|
||||
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
|
||||
|
||||
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
|
||||
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
|
||||
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) ∪ (`ˢ (Expr-vars e))) k∈vs
|
||||
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
|
||||
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
|
||||
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
|
||||
|
||||
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
|
||||
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
|
||||
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
|
||||
-- {m₂ = Expr-vars e}
|
||||
-- (RelAny.here refl)
|
||||
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
|
||||
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
|
||||
-- {m₂ = Expr-vars e}
|
||||
-- (∈⇒∈-Expr-vars k∈e)
|
||||
|
||||
Stmts-vars : ∀ {n : ℕ} → Vec Stmt n → StringSet
|
||||
Stmts-vars = foldr (λ n → StringSet)
|
||||
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
|
||||
|
||||
-- ∈-Stmts-vars⇒∈ : ∀ {n : ℕ} {k : String} (ss : Vec Stmt n) →
|
||||
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
|
||||
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
|
||||
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) ∪ (`ˢ (Stmts-vars ss'))) k∈vss
|
||||
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||||
-- ... | in₂ _ (single k,tt∈vss') =
|
||||
-- let
|
||||
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
|
||||
-- in
|
||||
-- (suc f' , k∈s')
|
||||
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
||||
|
||||
-- ∈⇒∈-Stmts-vars : ∀ {n : ℕ} {k : String} {ss : Vec Stmt n} {f : Fin n} →
|
||||
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
|
||||
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
|
||||
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
|
||||
-- {m₂ = Stmts-vars ss'}
|
||||
-- (∈⇒∈-Stmt-vars k∈s)
|
||||
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
|
||||
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
|
||||
-- {m₂ = Stmts-vars ss'}
|
||||
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
|
||||
174
Language/Graphs.agda
Normal file
174
Language/Graphs.agda
Normal file
@@ -0,0 +1,174 @@
|
||||
module Language.Graphs where
|
||||
|
||||
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
|
||||
|
||||
open import Data.Fin as Fin using (Fin; suc; zero)
|
||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||
open import Data.List as List using (List; []; _∷_)
|
||||
open import Data.List.Membership.Propositional as ListMem using ()
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺; ∈-filter⁻)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||
open import Data.Nat as Nat using (ℕ; suc)
|
||||
open import Data.Nat.Properties using (+-assoc; +-comm)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Product.Properties as ProdProp using ()
|
||||
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
|
||||
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
|
||||
open import Relation.Nullary using (¬_)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs; ∈-cartesianProduct)
|
||||
|
||||
record Graph : Set where
|
||||
constructor MkGraph
|
||||
field
|
||||
size : ℕ
|
||||
|
||||
Index : Set
|
||||
Index = Fin size
|
||||
|
||||
Edge : Set
|
||||
Edge = Index × Index
|
||||
|
||||
field
|
||||
nodes : Vec (List BasicStmt) size
|
||||
edges : List Edge
|
||||
inputs : List Index
|
||||
outputs : List Index
|
||||
|
||||
_↑ˡ_ : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
||||
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
|
||||
|
||||
_↑ʳ_ : ∀ {m} n → (Fin m × Fin m) → Fin (n Nat.+ m) × Fin (n Nat.+ m)
|
||||
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
|
||||
|
||||
_↑ˡⁱ_ : ∀ {n} → List (Fin n) → ∀ m → List (Fin (n Nat.+ m))
|
||||
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
|
||||
|
||||
_↑ʳⁱ_ : ∀ {m} n → List (Fin m) → List (Fin (n Nat.+ m))
|
||||
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
|
||||
|
||||
_↑ˡᵉ_ : ∀ {n} → List (Fin n × Fin n) → ∀ m → List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
||||
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
|
||||
|
||||
_↑ʳᵉ_ : ∀ {m} n → List (Fin m × Fin m) → List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
|
||||
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
|
||||
|
||||
infixr 5 _∙_
|
||||
_∙_ : Graph → Graph → Graph
|
||||
_∙_ g₁ g₂ = record
|
||||
{ size = Graph.size g₁ Nat.+ Graph.size g₂
|
||||
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
|
||||
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
|
||||
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
|
||||
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
|
||||
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
|
||||
}
|
||||
|
||||
infixr 5 _↦_
|
||||
_↦_ : Graph → Graph → Graph
|
||||
_↦_ g₁ g₂ = record
|
||||
{ size = Graph.size g₁ Nat.+ Graph.size g₂
|
||||
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
|
||||
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
|
||||
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
||||
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
|
||||
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
|
||||
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
|
||||
}
|
||||
|
||||
loop : Graph → Graph
|
||||
loop g = record
|
||||
{ size = 2 Nat.+ Graph.size g
|
||||
; nodes = [] ∷ [] ∷ Graph.nodes g
|
||||
; edges = (2 ↑ʳᵉ Graph.edges g) List.++
|
||||
List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g) List.++
|
||||
List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g) List.++
|
||||
((suc zero , zero) ∷ (zero , suc zero) ∷ [])
|
||||
; inputs = zero ∷ []
|
||||
; outputs = (suc zero) ∷ []
|
||||
}
|
||||
|
||||
infixr 5 _skipto_
|
||||
_skipto_ : Graph → Graph → Graph
|
||||
_skipto_ g₁ g₂ = record (g₁ ∙ g₂)
|
||||
{ edges = Graph.edges (g₁ ∙ g₂) List.++
|
||||
(List.cartesianProduct (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
|
||||
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
|
||||
; outputs = Graph.size g₁ ↑ʳⁱ Graph.inputs g₂
|
||||
}
|
||||
|
||||
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
||||
_[_] g idx = lookup (Graph.nodes g) idx
|
||||
|
||||
singleton : List BasicStmt → Graph
|
||||
singleton bss = record
|
||||
{ size = 1
|
||||
; nodes = bss ∷ []
|
||||
; edges = []
|
||||
; inputs = zero ∷ []
|
||||
; outputs = zero ∷ []
|
||||
}
|
||||
|
||||
wrap : Graph → Graph
|
||||
wrap g = singleton [] ↦ g ↦ singleton []
|
||||
|
||||
buildCfg : Stmt → Graph
|
||||
buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ [])
|
||||
buildCfg (s₁ then s₂) = buildCfg s₁ ↦ buildCfg s₂
|
||||
buildCfg (if _ then s₁ else s₂) = singleton [] ↦ (buildCfg s₁ ∙ buildCfg s₂) ↦ singleton []
|
||||
buildCfg (while _ repeat s) = loop (buildCfg s)
|
||||
|
||||
private
|
||||
z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (zero ≡ suc f)
|
||||
z≢sf f ()
|
||||
|
||||
z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (List.map suc fs)
|
||||
z≢mapsfs [] = []
|
||||
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
|
||||
|
||||
finValues : ∀ (n : ℕ) → Σ (List (Fin n)) Unique
|
||||
finValues 0 = ([] , Utils.empty)
|
||||
finValues (suc n') =
|
||||
let
|
||||
(inds' , unids') = finValues n'
|
||||
in
|
||||
( zero ∷ List.map suc inds'
|
||||
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
|
||||
)
|
||||
|
||||
finValues-complete : ∀ (n : ℕ) (f : Fin n) → f ListMem.∈ (proj₁ (finValues n))
|
||||
finValues-complete (suc n') zero = RelAny.here refl
|
||||
finValues-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (finValues-complete n' f'))
|
||||
|
||||
module _ (g : Graph) where
|
||||
open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size g}) (FinProp._≟_ {Graph.size g})) using (_∈?_)
|
||||
|
||||
indices : List (Graph.Index g)
|
||||
indices = proj₁ (finValues (Graph.size g))
|
||||
|
||||
indices-complete : ∀ (idx : (Graph.Index g)) → idx ListMem.∈ indices
|
||||
indices-complete = finValues-complete (Graph.size g)
|
||||
|
||||
indices-Unique : Unique indices
|
||||
indices-Unique = proj₂ (finValues (Graph.size g))
|
||||
|
||||
predecessors : (Graph.Index g) → List (Graph.Index g)
|
||||
predecessors idx = List.filter (λ idx' → (idx' , idx) ∈? (Graph.edges g)) indices
|
||||
|
||||
edge⇒predecessor : ∀ {idx₁ idx₂ : Graph.Index g} → (idx₁ , idx₂) ListMem.∈ (Graph.edges g) →
|
||||
idx₁ ListMem.∈ (predecessors idx₂)
|
||||
edge⇒predecessor {idx₁} {idx₂} idx₁,idx₂∈es =
|
||||
∈-filter⁺ (λ idx' → (idx' , idx₂) ∈? (Graph.edges g))
|
||||
(indices-complete idx₁) idx₁,idx₂∈es
|
||||
|
||||
predecessor⇒edge : ∀ {idx₁ idx₂ : Graph.Index g} → idx₁ ListMem.∈ (predecessors idx₂) →
|
||||
(idx₁ , idx₂) ListMem.∈ (Graph.edges g)
|
||||
predecessor⇒edge {idx₁} {idx₂} idx₁∈pred =
|
||||
proj₂ (∈-filter⁻ (λ idx' → (idx' , idx₂) ∈? (Graph.edges g)) {v = idx₁} {xs = indices} idx₁∈pred )
|
||||
300
Language/Properties.agda
Normal file
300
Language/Properties.agda
Normal file
@@ -0,0 +1,300 @@
|
||||
module Language.Properties where
|
||||
|
||||
open import Language.Base
|
||||
open import Language.Semantics
|
||||
open import Language.Graphs
|
||||
open import Language.Traces
|
||||
|
||||
open import Data.Fin as Fin using (suc; zero)
|
||||
open import Data.Fin.Properties as FinProp using (suc-injective)
|
||||
open import Data.List as List using (List; _∷_; [])
|
||||
open import Data.List.Properties using (filter-none)
|
||||
open import Data.List.Relation.Unary.Any using (here; there)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate)
|
||||
open import Data.List.Membership.Propositional as ListMem using ()
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
open import Data.Nat as Nat using ()
|
||||
open import Data.Product using (Σ; _,_; _×_; proj₂)
|
||||
open import Data.Product.Properties as ProdProp using ()
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Vec as Vec using (_∷_)
|
||||
open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
|
||||
open import Relation.Nullary using (¬_)
|
||||
|
||||
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈)
|
||||
|
||||
-- All of the below helpers are to reason about what edges aren't included
|
||||
-- when combinings graphs. The currenty most important use for this is proving
|
||||
-- that the entry node has no incoming edges.
|
||||
--
|
||||
-- -------------- Begin ugly code to make this work ----------------
|
||||
↑-≢ : ∀ {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) → ¬ (f₁ Fin.↑ˡ m) ≡ (n Fin.↑ʳ f₂)
|
||||
↑-≢ zero f₂ ()
|
||||
↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂)
|
||||
|
||||
idx→f∉↑ʳᵉ : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂)
|
||||
idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) ∷ es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂)
|
||||
idx→f∉↑ʳᵉ idx f (_ ∷ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂'
|
||||
|
||||
idx→f∉pair : ∀ {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂))
|
||||
idx→f∉pair idx idx' f [] ()
|
||||
idx→f∉pair idx idx' f (input ∷ inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input)
|
||||
idx→f∉pair idx idx' f (_ ∷ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂'
|
||||
|
||||
idx→f∉cart : ∀ {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) → ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂))
|
||||
idx→f∉cart idx f [] inputs₂ ()
|
||||
idx→f∉cart {n} {m} idx f (output ∷ outputs₁') inputs₂ idx,f∈pair++cart
|
||||
with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart
|
||||
... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair
|
||||
... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart
|
||||
|
||||
help : let g₁ = singleton [] in
|
||||
∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ ↦ g₂)) →
|
||||
¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
||||
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))
|
||||
help g₂ idx₁ idx idx,idx₁∈g
|
||||
with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g
|
||||
... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂
|
||||
... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart
|
||||
|
||||
helpAll : let g₁ = singleton [] in
|
||||
∀ (g₂ : Graph) (idx₁ : Graph.Index g₁) →
|
||||
All (λ idx → ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
|
||||
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ ↦ g₂))
|
||||
helpAll g₂ idx₁ = tabulate (λ {idx} _ → help g₂ idx₁ idx)
|
||||
|
||||
module _ (g : Graph) where
|
||||
wrap-preds-∅ : (idx : Graph.Index (wrap g)) →
|
||||
idx ListMem.∈ Graph.inputs (wrap g) → predecessors (wrap g) idx ≡ []
|
||||
wrap-preds-∅ zero (here refl) =
|
||||
filter-none (λ idx' → (idx' , zero) ∈?
|
||||
(Graph.edges (wrap g)))
|
||||
(helpAll (g ↦ singleton []) zero)
|
||||
where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_)
|
||||
-- -------------- End ugly code to make this work ----------------
|
||||
|
||||
|
||||
module _ (g : Graph) where
|
||||
wrap-input : Σ (Graph.Index (wrap g)) (λ idx → Graph.inputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-input = (_ , refl)
|
||||
|
||||
wrap-output : Σ (Graph.Index (wrap g)) (λ idx → Graph.outputs (wrap g) ≡ idx ∷ [])
|
||||
wrap-output = (_ , refl)
|
||||
|
||||
Trace-∙ˡ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ →
|
||||
Trace {g₁ ∙ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
|
||||
Trace-∙ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
|
||||
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-single ρ₁⇒ρ₂
|
||||
Trace-∙ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
|
||||
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
|
||||
(Trace-∙ˡ tr')
|
||||
|
||||
Trace-∙ʳ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂ →
|
||||
Trace {g₁ ∙ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
|
||||
Trace-∙ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
|
||||
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-single ρ₁⇒ρ₂
|
||||
Trace-∙ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
|
||||
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ _ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx))
|
||||
(Trace-∙ʳ tr')
|
||||
|
||||
EndToEndTrace-∙ˡ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env} →
|
||||
EndToEndTrace {g₁} ρ₁ ρ₂ →
|
||||
EndToEndTrace {g₁ ∙ g₂} ρ₁ ρ₂
|
||||
EndToEndTrace-∙ˡ {g₁} {g₂} etr = record
|
||||
{ idx₁ = EndToEndTrace.idx₁ etr Fin.↑ˡ Graph.size g₂
|
||||
; idx₁∈inputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
|
||||
(EndToEndTrace.idx₁∈inputs etr))
|
||||
; idx₂ = EndToEndTrace.idx₂ etr Fin.↑ˡ Graph.size g₂
|
||||
; idx₂∈outputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
|
||||
(EndToEndTrace.idx₂∈outputs etr))
|
||||
; trace = Trace-∙ˡ (EndToEndTrace.trace etr)
|
||||
}
|
||||
|
||||
EndToEndTrace-∙ʳ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env} →
|
||||
EndToEndTrace {g₂} ρ₁ ρ₂ →
|
||||
EndToEndTrace {g₁ ∙ g₂} ρ₁ ρ₂
|
||||
EndToEndTrace-∙ʳ {g₁} {g₂} etr = record
|
||||
{ idx₁ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₁ etr
|
||||
; idx₁∈inputs = ListMemProp.∈-++⁺ʳ (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
|
||||
(EndToEndTrace.idx₁∈inputs etr)))
|
||||
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr
|
||||
; idx₂∈outputs = ListMemProp.∈-++⁺ʳ (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
|
||||
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
|
||||
(EndToEndTrace.idx₂∈outputs etr)))
|
||||
|
||||
; trace = Trace-∙ʳ (EndToEndTrace.trace etr)
|
||||
}
|
||||
|
||||
Trace-↦ˡ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂ →
|
||||
Trace {g₁ ↦ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
|
||||
Trace-↦ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
|
||||
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-single ρ₁⇒ρ₂
|
||||
Trace-↦ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
|
||||
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
|
||||
(Trace-↦ˡ tr')
|
||||
|
||||
Trace-↦ʳ : ∀ {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂ →
|
||||
Trace {g₁ ↦ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
|
||||
Trace-↦ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
|
||||
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-single ρ₁⇒ρ₂
|
||||
Trace-↦ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
|
||||
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
|
||||
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
|
||||
(ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx)))
|
||||
(Trace-↦ʳ {g₁} {g₂} tr')
|
||||
|
||||
loop-edge-groups : ∀ (g : Graph) → List (List (Graph.Edge (loop g)))
|
||||
loop-edge-groups g =
|
||||
(2 ↑ʳᵉ Graph.edges g) ∷
|
||||
(List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g)) ∷
|
||||
(List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g)) ∷
|
||||
((suc zero , zero) ∷ (zero , suc zero) ∷ []) ∷
|
||||
[]
|
||||
|
||||
loop-edge-help : ∀ (g : Graph) {l : List (Graph.Edge (loop g))} {e : Graph.Edge (loop g)} →
|
||||
e ListMem.∈ l → l ListMem.∈ loop-edge-groups g →
|
||||
e ListMem.∈ Graph.edges (loop g)
|
||||
loop-edge-help g e∈l l∈ess = concat-∈ e∈l l∈ess
|
||||
|
||||
Trace-loop : ∀ {g : Graph} {idx₁ idx₂ : Graph.Index g} {ρ₁ ρ₂ : Env} →
|
||||
Trace {g} idx₁ idx₂ ρ₁ ρ₂ → Trace {loop g} (2 Fin.↑ʳ idx₁) (2 Fin.↑ʳ idx₂) ρ₁ ρ₂
|
||||
Trace-loop {g} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
|
||||
rewrite sym (lookup-++ʳ (List.[] ∷ List.[] ∷ Vec.[]) (Graph.nodes g) idx₁) =
|
||||
Trace-single ρ₁⇒ρ₂
|
||||
Trace-loop {g} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
|
||||
rewrite sym (lookup-++ʳ (List.[] ∷ List.[] ∷ Vec.[]) (Graph.nodes g) idx₁) =
|
||||
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (2 ↑ʳ_) idx₁→idx))
|
||||
(Trace-loop {g} tr')
|
||||
|
||||
EndToEndTrace-loop : ∀ {g : Graph} {ρ₁ ρ₂ : Env} →
|
||||
EndToEndTrace {g} ρ₁ ρ₂ → EndToEndTrace {loop g} ρ₁ ρ₂
|
||||
EndToEndTrace-loop {g} etr =
|
||||
let
|
||||
zero→idx₁' = x∈xs⇒fx∈fxs (zero ,_)
|
||||
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
|
||||
(EndToEndTrace.idx₁∈inputs etr))
|
||||
zero→idx₁ = loop-edge-help g zero→idx₁' (there (here refl))
|
||||
idx₂→suc' = x∈xs⇒fx∈fxs (_, suc zero)
|
||||
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
|
||||
(EndToEndTrace.idx₂∈outputs etr))
|
||||
idx₂→suc = loop-edge-help g idx₂→suc' (there (there (here refl)))
|
||||
in
|
||||
record
|
||||
{ idx₁ = zero
|
||||
; idx₁∈inputs = here refl
|
||||
; idx₂ = suc zero
|
||||
; idx₂∈outputs = here refl
|
||||
; trace =
|
||||
Trace-single [] ++⟨ zero→idx₁ ⟩
|
||||
Trace-loop {g} (EndToEndTrace.trace etr) ++⟨ idx₂→suc ⟩
|
||||
Trace-single []
|
||||
}
|
||||
|
||||
EndToEndTrace-loop² : ∀ {g : Graph} {ρ₁ ρ₂ ρ₃ : Env} →
|
||||
EndToEndTrace {loop g} ρ₁ ρ₂ →
|
||||
EndToEndTrace {loop g} ρ₂ ρ₃ →
|
||||
EndToEndTrace {loop g} ρ₁ ρ₃
|
||||
EndToEndTrace-loop² {g} (MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₁)
|
||||
(MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₂) =
|
||||
let
|
||||
suc→zero = loop-edge-help g (here refl)
|
||||
(there (there (there (here refl))))
|
||||
in
|
||||
record
|
||||
{ idx₁ = zero
|
||||
; idx₁∈inputs = here refl
|
||||
; idx₂ = suc zero
|
||||
; idx₂∈outputs = here refl
|
||||
; trace = tr₁ ++⟨ suc→zero ⟩ tr₂
|
||||
}
|
||||
|
||||
EndToEndTrace-loop⁰ : ∀ {g : Graph} {ρ : Env} →
|
||||
EndToEndTrace {loop g} ρ ρ
|
||||
EndToEndTrace-loop⁰ {g} {ρ} =
|
||||
let
|
||||
zero→suc = loop-edge-help g (there (here refl))
|
||||
(there (there (there (here refl))))
|
||||
in
|
||||
record
|
||||
{ idx₁ = zero
|
||||
; idx₁∈inputs = here refl
|
||||
; idx₂ = suc zero
|
||||
; idx₂∈outputs = here refl
|
||||
; trace = Trace-single [] ++⟨ zero→suc ⟩ Trace-single []
|
||||
}
|
||||
|
||||
infixr 5 _++_
|
||||
_++_ : ∀ {g₁ g₂ : Graph} {ρ₁ ρ₂ ρ₃ : Env} →
|
||||
EndToEndTrace {g₁} ρ₁ ρ₂ → EndToEndTrace {g₂} ρ₂ ρ₃ →
|
||||
EndToEndTrace {g₁ ↦ g₂} ρ₁ ρ₃
|
||||
_++_ {g₁} {g₂} etr₁ etr₂
|
||||
= record
|
||||
{ idx₁ = EndToEndTrace.idx₁ etr₁ Fin.↑ˡ Graph.size g₂
|
||||
; idx₁∈inputs = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₁∈inputs etr₁)
|
||||
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr₂
|
||||
; idx₂∈outputs = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr₂)
|
||||
; trace =
|
||||
let
|
||||
o∈tr₁ = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₂∈outputs etr₁)
|
||||
i∈tr₂ = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr₂)
|
||||
oi∈es = ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
|
||||
(ListMemProp.∈-++⁺ʳ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
|
||||
(∈-cartesianProduct o∈tr₁ i∈tr₂))
|
||||
in
|
||||
(Trace-↦ˡ {g₁} {g₂} (EndToEndTrace.trace etr₁)) ++⟨ oi∈es ⟩
|
||||
(Trace-↦ʳ {g₁} {g₂} (EndToEndTrace.trace etr₂))
|
||||
}
|
||||
|
||||
EndToEndTrace-singleton : ∀ {bss : List BasicStmt} {ρ₁ ρ₂ : Env} →
|
||||
ρ₁ , bss ⇒ᵇˢ ρ₂ → EndToEndTrace {singleton bss} ρ₁ ρ₂
|
||||
EndToEndTrace-singleton ρ₁⇒ρ₂ = record
|
||||
{ idx₁ = zero
|
||||
; idx₁∈inputs = here refl
|
||||
; idx₂ = zero
|
||||
; idx₂∈outputs = here refl
|
||||
; trace = Trace-single ρ₁⇒ρ₂
|
||||
}
|
||||
|
||||
EndToEndTrace-singleton[] : ∀ (ρ : Env) → EndToEndTrace {singleton []} ρ ρ
|
||||
EndToEndTrace-singleton[] env = EndToEndTrace-singleton []
|
||||
|
||||
EndToEndTrace-wrap : ∀ {g : Graph} {ρ₁ ρ₂ : Env} →
|
||||
EndToEndTrace {g} ρ₁ ρ₂ → EndToEndTrace {wrap g} ρ₁ ρ₂
|
||||
EndToEndTrace-wrap {g} {ρ₁} {ρ₂} etr = EndToEndTrace-singleton[] ρ₁ ++ etr ++ EndToEndTrace-singleton[] ρ₂
|
||||
|
||||
buildCfg-sufficient : ∀ {s : Stmt} {ρ₁ ρ₂ : Env} → ρ₁ , s ⇒ˢ ρ₂ →
|
||||
EndToEndTrace {buildCfg s} ρ₁ ρ₂
|
||||
buildCfg-sufficient (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ₂) =
|
||||
EndToEndTrace-singleton (ρ₁,bs⇒ρ₂ ∷ [])
|
||||
buildCfg-sufficient (⇒ˢ-then ρ₁ ρ₂ ρ₃ s₁ s₂ ρ₁,s₁⇒ρ₂ ρ₂,s₂⇒ρ₃) =
|
||||
buildCfg-sufficient ρ₁,s₁⇒ρ₂ ++ buildCfg-sufficient ρ₂,s₂⇒ρ₃
|
||||
buildCfg-sufficient (⇒ˢ-if-true ρ₁ ρ₂ _ _ s₁ s₂ _ _ ρ₁,s₁⇒ρ₂) =
|
||||
EndToEndTrace-singleton[] ρ₁ ++
|
||||
(EndToEndTrace-∙ˡ (buildCfg-sufficient ρ₁,s₁⇒ρ₂)) ++
|
||||
EndToEndTrace-singleton[] ρ₂
|
||||
buildCfg-sufficient (⇒ˢ-if-false ρ₁ ρ₂ _ s₁ s₂ _ ρ₁,s₂⇒ρ₂) =
|
||||
EndToEndTrace-singleton[] ρ₁ ++
|
||||
(EndToEndTrace-∙ʳ {buildCfg s₁} (buildCfg-sufficient ρ₁,s₂⇒ρ₂)) ++
|
||||
EndToEndTrace-singleton[] ρ₂
|
||||
buildCfg-sufficient (⇒ˢ-while-true ρ₁ ρ₂ ρ₃ _ _ s _ _ ρ₁,s⇒ρ₂ ρ₂,ws⇒ρ₃) =
|
||||
EndToEndTrace-loop² {buildCfg s}
|
||||
(EndToEndTrace-loop {buildCfg s} (buildCfg-sufficient ρ₁,s⇒ρ₂))
|
||||
(buildCfg-sufficient ρ₂,ws⇒ρ₃)
|
||||
buildCfg-sufficient (⇒ˢ-while-false ρ _ s _) =
|
||||
EndToEndTrace-loop⁰ {buildCfg s} {ρ}
|
||||
73
Language/Semantics.agda
Normal file
73
Language/Semantics.agda
Normal file
@@ -0,0 +1,73 @@
|
||||
module Language.Semantics where
|
||||
|
||||
open import Language.Base
|
||||
|
||||
open import Agda.Primitive using (lsuc)
|
||||
open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
||||
open import Data.Product using (_×_; _,_)
|
||||
open import Data.String using (String)
|
||||
open import Data.List as List using (List)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (_⇒_; _∧_; _∨_)
|
||||
|
||||
data Value : Set where
|
||||
↑ᶻ : ℤ → Value
|
||||
|
||||
Env : Set
|
||||
Env = List (String × Value)
|
||||
|
||||
data _∈_ : (String × Value) → Env → Set where
|
||||
here : ∀ (s : String) (v : Value) (ρ : Env) → (s , v) ∈ ((s , v) List.∷ ρ)
|
||||
there : ∀ (s s' : String) (v v' : Value) (ρ : Env) → ¬ (s ≡ s') → (s , v) ∈ ρ → (s , v) ∈ ((s' , v') List.∷ ρ)
|
||||
|
||||
data _,_⇒ᵉ_ : Env → Expr → Value → Set where
|
||||
⇒ᵉ-ℕ : ∀ (ρ : Env) (n : ℕ) → ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
|
||||
⇒ᵉ-Var : ∀ (ρ : Env) (x : String) (v : Value) → (x , v) ∈ ρ → ρ , (` x) ⇒ᵉ v
|
||||
⇒ᵉ-+ : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ℤ) →
|
||||
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
|
||||
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
|
||||
⇒ᵉ-- : ∀ (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : ℤ) →
|
||||
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) → ρ , e₂ ⇒ᵉ (↑ᶻ z₂) →
|
||||
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
|
||||
|
||||
data _,_⇒ᵇ_ : Env → BasicStmt → Env → Set where
|
||||
⇒ᵇ-noop : ∀ (ρ : Env) → ρ , noop ⇒ᵇ ρ
|
||||
⇒ᵇ-← : ∀ (ρ : Env) (x : String) (e : Expr) (v : Value) →
|
||||
ρ , e ⇒ᵉ v → ρ , (x ← e) ⇒ᵇ ((x , v) List.∷ ρ)
|
||||
|
||||
data _,_⇒ᵇˢ_ : Env → List BasicStmt → Env → Set where
|
||||
[] : ∀ {ρ : Env} → ρ , List.[] ⇒ᵇˢ ρ
|
||||
_∷_ : ∀ {ρ₁ ρ₂ ρ₃ : Env} {bs : BasicStmt} {bss : List BasicStmt} →
|
||||
ρ₁ , bs ⇒ᵇ ρ₂ → ρ₂ , bss ⇒ᵇˢ ρ₃ → ρ₁ , (bs List.∷ bss) ⇒ᵇˢ ρ₃
|
||||
|
||||
data _,_⇒ˢ_ : Env → Stmt → Env → Set where
|
||||
⇒ˢ-⟨⟩ : ∀ (ρ₁ ρ₂ : Env) (bs : BasicStmt) →
|
||||
ρ₁ , bs ⇒ᵇ ρ₂ → ρ₁ , ⟨ bs ⟩ ⇒ˢ ρ₂
|
||||
⇒ˢ-then : ∀ (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt) →
|
||||
ρ₁ , s₁ ⇒ˢ ρ₂ → ρ₂ , s₂ ⇒ˢ ρ₃ →
|
||||
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
|
||||
⇒ˢ-if-true : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (z : ℤ) (s₁ s₂ : Stmt) →
|
||||
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s₁ ⇒ˢ ρ₂ →
|
||||
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
|
||||
⇒ˢ-if-false : ∀ (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt) →
|
||||
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) → ρ₁ , s₂ ⇒ˢ ρ₂ →
|
||||
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
|
||||
⇒ˢ-while-true : ∀ (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ℤ) (s : Stmt) →
|
||||
ρ₁ , e ⇒ᵉ (↑ᶻ z) → ¬ z ≡ (+ 0) → ρ₁ , s ⇒ˢ ρ₂ → ρ₂ , (while e repeat s) ⇒ˢ ρ₃ →
|
||||
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
|
||||
⇒ˢ-while-false : ∀ (ρ : Env) (e : Expr) (s : Stmt) →
|
||||
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
|
||||
ρ , (while e repeat s) ⇒ˢ ρ
|
||||
|
||||
record LatticeInterpretation {l} {L : Set l} {_≈_ : L → L → Set l}
|
||||
{_⊔_ : L → L → L} {_⊓_ : L → L → L}
|
||||
(isLattice : IsLattice L _≈_ _⊔_ _⊓_) : Set (lsuc l) where
|
||||
field
|
||||
⟦_⟧ : L → Value → Set
|
||||
⟦⟧-respects-≈ : ∀ {l₁ l₂ : L} → l₁ ≈ l₂ → ⟦ l₁ ⟧ ⇒ ⟦ l₂ ⟧
|
||||
⟦⟧-⊔-∨ : ∀ {l₁ l₂ : L} → (⟦ l₁ ⟧ ∨ ⟦ l₂ ⟧) ⇒ ⟦ l₁ ⊔ l₂ ⟧
|
||||
⟦⟧-⊓-∧ : ∀ {l₁ l₂ : L} → (⟦ l₁ ⟧ ∧ ⟦ l₂ ⟧) ⇒ ⟦ l₁ ⊓ l₂ ⟧
|
||||
36
Language/Traces.agda
Normal file
36
Language/Traces.agda
Normal file
@@ -0,0 +1,36 @@
|
||||
module Language.Traces where
|
||||
|
||||
open import Language.Base
|
||||
open import Language.Semantics using (Env; _,_⇒ᵇˢ_)
|
||||
open import Language.Graphs
|
||||
|
||||
open import Data.Product using (_,_)
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
|
||||
module _ {g : Graph} where
|
||||
open Graph g using (Index; edges; inputs; outputs)
|
||||
|
||||
data Trace : Index → Index → Env → Env → Set where
|
||||
Trace-single : ∀ {ρ₁ ρ₂ : Env} {idx : Index} →
|
||||
ρ₁ , (g [ idx ]) ⇒ᵇˢ ρ₂ → Trace idx idx ρ₁ ρ₂
|
||||
Trace-edge : ∀ {ρ₁ ρ₂ ρ₃ : Env} {idx₁ idx₂ idx₃ : Index} →
|
||||
ρ₁ , (g [ idx₁ ]) ⇒ᵇˢ ρ₂ → (idx₁ , idx₂) ∈ edges →
|
||||
Trace idx₂ idx₃ ρ₂ ρ₃ → Trace idx₁ idx₃ ρ₁ ρ₃
|
||||
|
||||
infixr 5 _++⟨_⟩_
|
||||
_++⟨_⟩_ : ∀ {idx₁ idx₂ idx₃ idx₄ : Index} {ρ₁ ρ₂ ρ₃ : Env} →
|
||||
Trace idx₁ idx₂ ρ₁ ρ₂ → (idx₂ , idx₃) ∈ edges →
|
||||
Trace idx₃ idx₄ ρ₂ ρ₃ → Trace idx₁ idx₄ ρ₁ ρ₃
|
||||
_++⟨_⟩_ (Trace-single ρ₁⇒ρ₂) idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₂→idx₃ tr
|
||||
_++⟨_⟩_ (Trace-edge ρ₁⇒ρ₂ idx₁→idx' tr') idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₁→idx' (tr' ++⟨ idx₂→idx₃ ⟩ tr)
|
||||
|
||||
record EndToEndTrace (ρ₁ ρ₂ : Env) : Set where
|
||||
constructor MkEndToEndTrace
|
||||
field
|
||||
idx₁ : Index
|
||||
idx₁∈inputs : idx₁ ∈ inputs
|
||||
|
||||
idx₂ : Index
|
||||
idx₂∈outputs : idx₂ ∈ outputs
|
||||
|
||||
trace : Trace idx₁ idx₂ ρ₁ ρ₂
|
||||
32
Lattice.agda
32
Lattice.agda
@@ -137,7 +137,7 @@ module _ {a b} {A : Set a} {B : Set b}
|
||||
const-Mono : ∀ (x : B) → Monotonic _≼₁_ _≼₂_ (λ _ → x)
|
||||
const-Mono x _ = ⊔₂-idemp x
|
||||
|
||||
open import Data.List as List using (List; foldr; _∷_)
|
||||
open import Data.List as List using (List; foldr; foldl; _∷_)
|
||||
open import Utils using (Pairwise; _∷_)
|
||||
|
||||
foldr-Mono : ∀ (l₁ l₂ : List A) (f : A → B → B) (b₁ b₂ : B) →
|
||||
@@ -150,6 +150,36 @@ module _ {a b} {A : Set a} {B : Set b}
|
||||
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
|
||||
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
|
||||
|
||||
foldl-Mono : ∀ (l₁ l₂ : List A) (f : B → A → B) (b₁ b₂ : B) →
|
||||
Pairwise _≼₁_ l₁ l₂ → b₁ ≼₂ b₂ →
|
||||
(∀ a → Monotonic _≼₂_ _≼₂_ (λ b → f b a)) →
|
||||
(∀ b → Monotonic _≼₁_ _≼₂_ (f b)) →
|
||||
foldl f b₁ l₁ ≼₂ foldl f b₂ l₂
|
||||
foldl-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
|
||||
foldl-Mono (x ∷ xs) (y ∷ ys) f b₁ b₂ (x≼y ∷ xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
|
||||
foldl-Mono xs ys f (f b₁ x) (f b₂ y) xs≼ys (≼₂-trans (f-Mono₁ x b₁≼b₂) (f-Mono₂ b₂ x≼y)) f-Mono₁ f-Mono₂
|
||||
|
||||
module _ {a b} {A : Set a} {B : Set b}
|
||||
{_≈₂_ : B → B → Set b} {_⊔₂_ : B → B → B}
|
||||
(lB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||
|
||||
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
|
||||
|
||||
open import Data.List as List using (List; foldr; foldl; _∷_)
|
||||
open import Utils using (Pairwise; _∷_)
|
||||
|
||||
foldr-Mono' : ∀ (l : List A) (f : A → B → B) →
|
||||
(∀ a → Monotonic _≼₂_ _≼₂_ (f a)) →
|
||||
Monotonic _≼₂_ _≼₂_ (λ b → foldr f b l)
|
||||
foldr-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
|
||||
foldr-Mono' (x ∷ xs) f f-Mono₂ b₁≼b₂ = f-Mono₂ x (foldr-Mono' xs f f-Mono₂ b₁≼b₂)
|
||||
|
||||
foldl-Mono' : ∀ (l : List A) (f : B → A → B) →
|
||||
(∀ b → Monotonic _≼₂_ _≼₂_ (λ a → f a b)) →
|
||||
Monotonic _≼₂_ _≼₂_ (λ b → foldl f b l)
|
||||
foldl-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
|
||||
foldl-Mono' (x ∷ xs) f f-Mono₁ b₁≼b₂ = foldl-Mono' xs f f-Mono₁ (f-Mono₁ x b₁≼b₂)
|
||||
|
||||
record IsLattice {a} (A : Set a)
|
||||
(_≈_ : A → A → Set a)
|
||||
(_⊔_ : A → A → A)
|
||||
|
||||
@@ -355,7 +355,12 @@ module Plain (x : A) where
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 2
|
||||
fixedHeight = (((⊥ , ⊤) , longestChain) , isLongest)
|
||||
fixedHeight = record
|
||||
{ ⊥ = ⊥
|
||||
; ⊤ = ⊤
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
||||
@@ -12,7 +12,7 @@ module Lattice.FiniteMap {a b : Level} {A : Set a} {B : Set b}
|
||||
|
||||
open IsLattice lB using () renaming (_≼_ to _≼₂_)
|
||||
open import Lattice.Map ≡-dec-A lB as Map
|
||||
using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec)
|
||||
using (Map; ⊔-equal-keys; ⊓-equal-keys)
|
||||
renaming
|
||||
( _≈_ to _≈ᵐ_
|
||||
; _⊔_ to _⊔ᵐ_
|
||||
@@ -30,13 +30,21 @@ open import Lattice.Map ≡-dec-A lB as Map
|
||||
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
||||
; ≈-dec to ≈ᵐ-dec
|
||||
; _[_] to _[_]ᵐ
|
||||
; []-∈ to []ᵐ-∈
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ to m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ
|
||||
; locate to locateᵐ
|
||||
; keys to keysᵐ
|
||||
; _updating_via_ to _updatingᵐ_via_
|
||||
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
|
||||
; updating-via-k∈ks to updatingᵐ-via-k∈ks
|
||||
; updating-via-k∈ks-≡ to updatingᵐ-via-k∈ks-≡
|
||||
; updating-via-∈k-forward to updatingᵐ-via-∈k-forward
|
||||
; updating-via-k∉ks-forward to updatingᵐ-via-k∉ks-forward
|
||||
; updating-via-k∉ks-backward to updatingᵐ-via-k∉ks-backward
|
||||
; f'-Monotonic to f'-Monotonicᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ∈k-dec to ∈k-decᵐ
|
||||
)
|
||||
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||
@@ -82,6 +90,10 @@ module WithKeys (ks : List A) where
|
||||
_∈k_ : A → FiniteMap → Set a
|
||||
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
|
||||
|
||||
open Map using (forget) public
|
||||
|
||||
∈k-dec = ∈k-decᵐ
|
||||
|
||||
locate : ∀ {k : A} {fm : FiniteMap} → k ∈k fm → Σ B (λ v → (k , v) ∈ fm)
|
||||
locate {k} {fm = (m , _)} k∈kfm = locateᵐ {k} {m} k∈kfm
|
||||
|
||||
@@ -94,6 +106,10 @@ module WithKeys (ks : List A) where
|
||||
_[_] : FiniteMap → List A → List B
|
||||
_[_] (m₁ , _) ks = m₁ [ ks ]ᵐ
|
||||
|
||||
[]-∈ : ∀ {k : A} {v : B} {ks' : List A} (fm : FiniteMap) →
|
||||
k ∈ˡ ks' → (k , v) ∈ fm → v ∈ˡ (fm [ ks' ])
|
||||
[]-∈ {k} {v} {ks'} (m , _) k∈ks' k,v∈fm = []ᵐ-∈ m k,v∈fm k∈ks'
|
||||
|
||||
≈-equiv : IsEquivalence FiniteMap _≈_
|
||||
≈-equiv = record
|
||||
{ ≈-refl =
|
||||
@@ -149,6 +165,11 @@ module WithKeys (ks : List A) where
|
||||
fm₁ ≼ fm₂ → (k , v₁) ∈ fm₁ → (k , v₂) ∈ fm₂ → v₁ ≼₂ v₂
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] (m₁ , _) (m₂ , _) m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
|
||||
|
||||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ : ∀ (fm₁ fm₂ : FiniteMap) {k : A} →
|
||||
fm₁ ≈ fm₂ → ∀ (k∈kfm₁ : k ∈k fm₁) (k∈kfm₂ : k ∈k fm₂) →
|
||||
proj₁ (locate {fm = fm₁} k∈kfm₁) ≈₂ proj₁ (locate {fm = fm₂} k∈kfm₂)
|
||||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ (m₁ , _) (m₂ , _) = m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ m₁ m₂
|
||||
|
||||
module GeneralizedUpdate
|
||||
{l} {L : Set l}
|
||||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
@@ -168,6 +189,21 @@ module WithKeys (ks : List A) where
|
||||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
|
||||
f'-∈k-forward : ∀ {k l} → k ∈k (f l) → k ∈k (f' l)
|
||||
f'-∈k-forward {k} {l} = updatingᵐ-via-∈k-forward (proj₁ (f l)) ks (updater l)
|
||||
|
||||
f'-k∈ks : ∀ {k l} → k ∈ˡ ks → k ∈k (f' l) → (k , updater l k) ∈ (f' l)
|
||||
f'-k∈ks {k} {l} = updatingᵐ-via-k∈ks (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∈ks-≡ : ∀ {k v l} → k ∈ˡ ks → (k , v) ∈ (f' l) → v ≡ updater l k
|
||||
f'-k∈ks-≡ {k} {v} {l} = updatingᵐ-via-k∈ks-≡ (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∉ks-forward : ∀ {k v l} → ¬ k ∈ˡ ks → (k , v) ∈ (f l) → (k , v) ∈ (f' l)
|
||||
f'-k∉ks-forward {k} {v} {l} = updatingᵐ-via-k∉ks-forward (proj₁ (f l)) (updater l)
|
||||
|
||||
f'-k∉ks-backward : ∀ {k v l} → ¬ k ∈ˡ ks → (k , v) ∈ (f' l) → (k , v) ∈ (f l)
|
||||
f'-k∉ks-backward {k} {v} {l} = updatingᵐ-via-k∉ks-backward (proj₁ (f l)) (updater l)
|
||||
|
||||
all-equal-keys : ∀ (fm₁ fm₂ : FiniteMap) → (Map.keys (proj₁ fm₁) ≡ Map.keys (proj₁ fm₂))
|
||||
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
|
||||
|
||||
@@ -182,7 +218,7 @@ module WithKeys (ks : List A) where
|
||||
fm₁ ≼ fm₂ → Pairwise _≼₂_ (fm₁ [ ks' ]) (fm₂ [ ks' ])
|
||||
m₁≼m₂⇒m₁[ks]≼m₂[ks] _ _ [] _ = []
|
||||
m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁@(m₁ , km₁≡ks) fm₂@(m₂ , km₂≡ks) (k ∷ ks'') m₁≼m₂
|
||||
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
|
||||
with ∈k-decᵐ k (proj₁ m₁) | ∈k-decᵐ k (proj₁ m₂)
|
||||
... | yes k∈km₁ | yes k∈km₂ =
|
||||
let
|
||||
(v₁ , k,v₁∈m₁) = locateᵐ {m = m₁} k∈km₁
|
||||
|
||||
@@ -28,11 +28,12 @@ open import Data.List.Relation.Unary.All using (All)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Isomorphism using (IsInverseˡ; IsInverseʳ)
|
||||
open import Chain using (Height)
|
||||
|
||||
open import Lattice.Map ≡-dec-A lB
|
||||
using
|
||||
( subset-impl
|
||||
; locate; forget
|
||||
; locate
|
||||
; Map-functional
|
||||
; Expr-Provenance
|
||||
; Expr-Provenance-≡
|
||||
@@ -104,6 +105,14 @@ module IterProdIsomorphism where
|
||||
_∈ᵐ_ : ∀ {ks : List A} → A × B → FiniteMap ks → Set
|
||||
_∈ᵐ_ {ks} = _∈_ ks
|
||||
|
||||
to-build : ∀ {b : B} {ks : List A} (uks : Unique ks) →
|
||||
let fm = to uks (IP.build b tt (length ks))
|
||||
in ∀ (k : A) (v : B) → (k , v) ∈ᵐ fm → v ≡ b
|
||||
to-build {b} {k ∷ ks'} (push _ uks') k v (here refl) = refl
|
||||
to-build {b} {k ∷ ks'} (push _ uks') k' v (there k',v∈m') =
|
||||
to-build {ks = ks'} uks' k' v k',v∈m'
|
||||
|
||||
|
||||
-- The left inverse is: from (to x) = x
|
||||
from-to-inverseˡ : ∀ {ks : List A} (uks : Unique ks) →
|
||||
IsInverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {length ks})
|
||||
@@ -153,6 +162,26 @@ module IterProdIsomorphism where
|
||||
fm'₂⊆fm'₁ k' v' k',v'∈fm'₂
|
||||
in (v'' , (v'≈v'' , there k',v''∈fm'₁))
|
||||
|
||||
FromBothMaps : ∀ (k : A) (v : B) {ks : List A} (fm₁ fm₂ : FiniteMap ks) → Set
|
||||
FromBothMaps k v fm₁ fm₂ =
|
||||
Σ (B × B)
|
||||
(λ (v₁ , v₂) → ( (v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
||||
|
||||
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B} →
|
||||
(k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) → FromBothMaps k v fm₁ fm₂
|
||||
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
|
||||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈fm₁fm₂
|
||||
... | in₁ (single k,v∈m₁) k∉km₂
|
||||
with k∈km₁ ← (forget k,v∈m₁)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₂ k∈km₁)
|
||||
... | in₂ k∉km₁ (single k,v∈m₂)
|
||||
with k∈km₂ ← (forget k,v∈m₂)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₁ k∈km₂)
|
||||
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
||||
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||
|
||||
private
|
||||
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) →
|
||||
Σ B (λ v → (k , v) ∈ᵐ fm)
|
||||
@@ -204,26 +233,6 @@ module IterProdIsomorphism where
|
||||
k,v∈⇒k,v∈pop (m@(_ ∷ _ , push k≢ks _) , refl) k≢k' (here refl) = ⊥-elim (k≢k' refl)
|
||||
k,v∈⇒k,v∈pop (m@(_ ∷ _ , push k≢ks _) , refl) k≢k' (there k,v'∈fm') = k,v'∈fm'
|
||||
|
||||
FromBothMaps : ∀ (k : A) (v : B) {ks : List A} (fm₁ fm₂ : FiniteMap ks) → Set
|
||||
FromBothMaps k v fm₁ fm₂ =
|
||||
Σ (B × B)
|
||||
(λ (v₁ , v₂) → ( (v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
||||
|
||||
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B} →
|
||||
(k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) → FromBothMaps k v fm₁ fm₂
|
||||
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
|
||||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈fm₁fm₂
|
||||
... | in₁ (single k,v∈m₁) k∉km₂
|
||||
with k∈km₁ ← (forget k,v∈m₁)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₂ k∈km₁)
|
||||
... | in₂ k∉km₁ (single k,v∈m₂)
|
||||
with k∈km₂ ← (forget k,v∈m₂)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₁ k∈km₂)
|
||||
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
||||
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||
|
||||
pop-⊔-distr : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) →
|
||||
pop (fm₁ ⊔ᵐ fm₂) ≈ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
||||
pop-⊔-distr {k} {ks} fm₁@(m₁ , _) fm₂@(m₂ , _) =
|
||||
@@ -407,3 +416,12 @@ module IterProdIsomorphism where
|
||||
(to-⊔-distr uks) (from-⊔-distr {ks})
|
||||
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
|
||||
using (isFiniteHeightLattice; finiteHeightLattice) public
|
||||
|
||||
-- Helpful lemma: all entries of the 'bottom' map are assigned to bottom.
|
||||
|
||||
open Height (IsFiniteHeightLattice.fixedHeight isFiniteHeightLattice) using (⊥)
|
||||
|
||||
⊥-contains-bottoms : ∀ {k : A} {v : B} → (k , v) ∈ᵐ ⊥ → v ≡ (Height.⊥ fhB)
|
||||
⊥-contains-bottoms {k} {v} k,v∈⊥
|
||||
rewrite IP.⊥-built (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ =
|
||||
to-build uks k v k,v∈⊥
|
||||
|
||||
@@ -11,9 +11,11 @@ module Lattice.IterProd {a} {A B : Set a}
|
||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
|
||||
open import Agda.Primitive using (lsuc)
|
||||
open import Data.Nat using (ℕ; suc; _+_)
|
||||
open import Data.Product using (_×_)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||||
open import Data.Product using (_×_; _,_; proj₁; proj₂)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong)
|
||||
open import Utils using (iterate)
|
||||
open import Chain using (Height)
|
||||
|
||||
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
|
||||
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
|
||||
@@ -30,31 +32,50 @@ IterProd k = iterate k (λ t → A × t) B
|
||||
-- that are built up by the two iterations. So, do everything in one iteration.
|
||||
-- This requires some odd code.
|
||||
|
||||
build : A → B → (k : ℕ) → IterProd k
|
||||
build _ b zero = b
|
||||
build a b (suc s) = (a , build a b s)
|
||||
|
||||
private
|
||||
record RequiredForFixedHeight : Set (lsuc a) where
|
||||
field
|
||||
field
|
||||
≈₁-dec : IsDecidable _≈₁_
|
||||
≈₂-dec : IsDecidable _≈₂_
|
||||
h₁ h₂ : ℕ
|
||||
fhA : FixedHeight₁ h₁
|
||||
fhB : FixedHeight₂ h₂
|
||||
|
||||
record IsFiniteHeightAndDecEq {A : Set a} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) : Set (lsuc a) where
|
||||
⊥₁ : A
|
||||
⊥₁ = Height.⊥ fhA
|
||||
|
||||
⊥₂ : B
|
||||
⊥₂ = Height.⊥ fhB
|
||||
|
||||
⊥k : ∀ (k : ℕ) → IterProd k
|
||||
⊥k = build ⊥₁ ⊥₂
|
||||
|
||||
record IsFiniteHeightWithBotAndDecEq {A : Set a} {_≈_ : A → A → Set a} {_⊔_ : A → A → A} {_⊓_ : A → A → A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) (⊥ : A) : Set (lsuc a) where
|
||||
field
|
||||
height : ℕ
|
||||
fixedHeight : IsLattice.FixedHeight isLattice height
|
||||
≈-dec : IsDecidable _≈_
|
||||
|
||||
record Everything (A : Set a) : Set (lsuc a) where
|
||||
⊥-correct : Height.⊥ fixedHeight ≡ ⊥
|
||||
|
||||
record Everything (k : ℕ) : Set (lsuc a) where
|
||||
T = IterProd k
|
||||
|
||||
field
|
||||
_≈_ : A → A → Set a
|
||||
_⊔_ : A → A → A
|
||||
_⊓_ : A → A → A
|
||||
_≈_ : T → T → Set a
|
||||
_⊔_ : T → T → T
|
||||
_⊓_ : T → T → T
|
||||
|
||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightIfSupported : RequiredForFixedHeight → IsFiniteHeightAndDecEq isLattice
|
||||
isLattice : IsLattice T _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightIfSupported :
|
||||
∀ (req : RequiredForFixedHeight) →
|
||||
IsFiniteHeightWithBotAndDecEq isLattice (RequiredForFixedHeight.⊥k req k)
|
||||
|
||||
everything : ∀ (k : ℕ) → Everything (IterProd k)
|
||||
everything : ∀ (k : ℕ) → Everything k
|
||||
everything 0 = record
|
||||
{ _≈_ = _≈₂_
|
||||
; _⊔_ = _⊔₂_
|
||||
@@ -64,6 +85,7 @@ private
|
||||
{ height = RequiredForFixedHeight.h₂ req
|
||||
; fixedHeight = RequiredForFixedHeight.fhB req
|
||||
; ≈-dec = RequiredForFixedHeight.≈₂-dec req
|
||||
; ⊥-correct = refl
|
||||
}
|
||||
}
|
||||
everything (suc k') = record
|
||||
@@ -76,13 +98,16 @@ private
|
||||
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
|
||||
in
|
||||
record
|
||||
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightAndDecEq.height fhlRest
|
||||
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
|
||||
; fixedHeight =
|
||||
P.fixedHeight
|
||||
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
|
||||
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightAndDecEq.height fhlRest)
|
||||
(RequiredForFixedHeight.fhA req) (IsFiniteHeightAndDecEq.fixedHeight fhlRest)
|
||||
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
|
||||
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
|
||||
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
|
||||
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
|
||||
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
|
||||
; ⊥-correct =
|
||||
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
|
||||
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
|
||||
}
|
||||
}
|
||||
where
|
||||
@@ -121,16 +146,22 @@ module _ (k : ℕ) where
|
||||
; fhB = fhB
|
||||
}
|
||||
|
||||
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = IsFiniteHeightAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
; fixedHeight = fixedHeight
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice (IterProd k)
|
||||
finiteHeightLattice = record
|
||||
{ height = IsFiniteHeightAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
{ height = IsFiniteHeightWithBotAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
||||
⊥-built : Height.⊥ fixedHeight ≡ (build (Height.⊥ fhA) (Height.⊥ fhB) k)
|
||||
⊥-built = IsFiniteHeightWithBotAndDecEq.⊥-correct (Everything.isFiniteHeightIfSupported (everything k) required)
|
||||
|
||||
|
||||
@@ -1112,6 +1112,19 @@ _[_] m (k ∷ ks)
|
||||
... | yes k∈km = proj₁ (locate {m = m} k∈km) ∷ (m [ ks ])
|
||||
... | no _ = m [ ks ]
|
||||
|
||||
[]-∈ : ∀ {k : A} {v : B} {ks : List A} (m : Map) →
|
||||
(k , v) ∈ m → k ∈ˡ ks → v ∈ˡ (m [ ks ])
|
||||
[]-∈ {k} {v} {ks} m k,v∈m (here refl)
|
||||
with ∈k-dec k (proj₁ m)
|
||||
... | no k∉km = ⊥-elim (k∉km (forget k,v∈m))
|
||||
... | yes k∈km
|
||||
with (v' , k,v'∈m) ← locate {m = m} k∈km
|
||||
rewrite Map-functional {m = m} k,v'∈m k,v∈m = here refl
|
||||
[]-∈ {k} {v} {k' ∷ ks'} m k,v∈m (there k∈ks')
|
||||
with ∈k-dec k' (proj₁ m)
|
||||
... | no _ = []-∈ m k,v∈m k∈ks'
|
||||
... | yes _ = there ([]-∈ m k,v∈m k∈ks')
|
||||
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] : ∀ (m₁ m₂ : Map) {k : A} {v₁ v₂ : B} →
|
||||
m₁ ≼ m₂ → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → v₁ ≼₂ v₂
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
|
||||
@@ -1129,3 +1142,12 @@ m₁≼m₂⇒k∈km₁⇒k∈km₂ m₁ m₂ m₁≼m₂ k∈km₁ =
|
||||
(v' , (v≈v' , k,v'∈m₂)) = (proj₁ m₁≼m₂) _ _ k,v∈m₁m₂
|
||||
in
|
||||
forget k,v'∈m₂
|
||||
|
||||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ : ∀ (m₁ m₂ : Map) {k : A} →
|
||||
m₁ ≈ m₂ → ∀ (k∈km₁ : k ∈k m₁) (k∈km₂ : k ∈k m₂) →
|
||||
proj₁ (locate {m = m₁} k∈km₁) ≈₂ proj₁ (locate {m = m₂} k∈km₂)
|
||||
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ m₁ m₂ {k} (m₁⊆m₂ , m₂⊆m₁) k∈km₁ k∈km₂
|
||||
with (v₁ , k,v₁∈m₁) ← locate {m = m₁} k∈km₁
|
||||
with (v₂ , k,v₂∈m₂) ← locate {m = m₂} k∈km₂
|
||||
with (v₂' , (v₁≈v₂' , k,v₂'∈m₂)) ← m₁⊆m₂ k v₁ k,v₁∈m₁
|
||||
rewrite Map-functional {m = m₂} k,v₂∈m₂ k,v₂'∈m₂ = v₁≈v₂'
|
||||
|
||||
@@ -143,17 +143,8 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||||
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||||
|
||||
amin : A
|
||||
amin = proj₁ (proj₁ (proj₁ fhA))
|
||||
|
||||
amax : A
|
||||
amax = proj₂ (proj₁ (proj₁ fhA))
|
||||
|
||||
bmin : B
|
||||
bmin = proj₁ (proj₁ (proj₁ fhB))
|
||||
|
||||
bmax : B
|
||||
bmax = proj₂ (proj₁ (proj₁ fhB))
|
||||
open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
|
||||
open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
|
||||
|
||||
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||
@@ -172,15 +163,16 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
))
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||
fixedHeight =
|
||||
( ( ((amin , bmin) , (amax , bmax))
|
||||
, concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
|
||||
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ fhB)))
|
||||
)
|
||||
, λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))
|
||||
)
|
||||
fixedHeight = record
|
||||
{ ⊥ = (⊥₁ , ⊥₂)
|
||||
; ⊤ = (⊤₁ , ⊤₂)
|
||||
; longestChain = concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
|
||||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
|
||||
; bounded = λ a₁b₁a₂b₂ →
|
||||
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
||||
@@ -108,7 +108,12 @@ private
|
||||
isLongest (done _) = z≤n
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 0
|
||||
fixedHeight = (((tt , tt) , longestChain) , isLongest)
|
||||
fixedHeight = record
|
||||
{ ⊥ = tt
|
||||
; ⊤ = tt
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
||||
36
Main.agda
36
Main.agda
@@ -1,3 +1,4 @@
|
||||
{-# OPTIONS --guardedness #-}
|
||||
module Main where
|
||||
|
||||
open import Language
|
||||
@@ -6,20 +7,37 @@ open import Data.Vec using (Vec; _∷_; [])
|
||||
open import IO
|
||||
open import Level using (0ℓ)
|
||||
|
||||
testCode : Vec Stmt _
|
||||
testCode : Stmt
|
||||
testCode =
|
||||
("zero" ← (# 0)) ∷
|
||||
("pos" ← ((` "zero") Expr.+ (# 1))) ∷
|
||||
("neg" ← ((` "zero") Expr.- (# 1))) ∷
|
||||
("unknown" ← ((` "pos") Expr.+ (` "neg"))) ∷
|
||||
[]
|
||||
⟨ "zero" ← (# 0) ⟩ then
|
||||
⟨ "pos" ← ((` "zero") Expr.+ (# 1)) ⟩ then
|
||||
⟨ "neg" ← ((` "zero") Expr.- (# 1)) ⟩ then
|
||||
⟨ "unknown" ← ((` "pos") Expr.+ (` "neg")) ⟩
|
||||
|
||||
testCodeCond₁ : Stmt
|
||||
testCodeCond₁ =
|
||||
⟨ "var" ← (# 1) ⟩ then
|
||||
if (` "var") then (
|
||||
⟨ "var" ← ((` "var") Expr.+ (# 1)) ⟩
|
||||
) else (
|
||||
⟨ "var" ← ((` "var") Expr.- (# 1)) ⟩ then
|
||||
⟨ "var" ← (# 1) ⟩
|
||||
)
|
||||
|
||||
testCodeCond₂ : Stmt
|
||||
testCodeCond₂ =
|
||||
⟨ "var" ← (# 1) ⟩ then
|
||||
if (` "var") then (
|
||||
⟨ "x" ← (# 1) ⟩
|
||||
) else (
|
||||
⟨ noop ⟩
|
||||
)
|
||||
|
||||
testProgram : Program
|
||||
testProgram = record
|
||||
{ length = _
|
||||
; stmts = testCode
|
||||
{ rootStmt = testCode
|
||||
}
|
||||
|
||||
open WithProg testProgram using (output)
|
||||
open WithProg testProgram using (output; analyze-correct)
|
||||
|
||||
main = run {0ℓ} (putStrLn output)
|
||||
|
||||
41
Utils.agda
41
Utils.agda
@@ -1,14 +1,18 @@
|
||||
module Utils where
|
||||
|
||||
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Product as Prod using (_×_)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.List using (List; []; _∷_; _++_) renaming (map to mapˡ)
|
||||
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Sum using (_⊎_)
|
||||
open import Function.Definitions using (Injective)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
open import Relation.Unary using (Decidable)
|
||||
|
||||
data Unique {c} {C : Set c} : List C → Set c where
|
||||
empty : Unique []
|
||||
@@ -68,3 +72,34 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
|
||||
_∷_ : ∀ {x : A} {y : B} {xs : List A} {ys : List B} →
|
||||
P x y → Pairwise P xs ys →
|
||||
Pairwise P (x ∷ xs) (y ∷ ys)
|
||||
|
||||
∈-cartesianProduct : ∀ {a b} {A : Set a} {B : Set b}
|
||||
{x : A} {xs : List A} {y : B} {ys : List B} →
|
||||
x ∈ xs → y ∈ ys → (x Prod., y) ∈ cartesianProduct xs ys
|
||||
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
|
||||
∈-cartesianProduct {x = x} {xs = x' ∷ _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)
|
||||
|
||||
concat-∈ : ∀ {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)} →
|
||||
x ∈ l → l ∈ ls → x ∈ foldr _++_ [] ls
|
||||
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
|
||||
concat-∈ {ls = l' ∷ ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
|
||||
|
||||
filter-++ : ∀ {a p} {A : Set a} (l₁ l₂ : List A) {P : A → Set p} (P? : Decidable P) →
|
||||
filter P? (l₁ ++ l₂) ≡ filter P? l₁ ++ filter P? l₂
|
||||
filter-++ [] l₂ P? = refl
|
||||
filter-++ (x ∷ xs) l₂ P?
|
||||
with P? x
|
||||
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
|
||||
... | no _ = (filter-++ xs l₂ P?)
|
||||
|
||||
_⇒_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
||||
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
|
||||
_⇒_ P Q = ∀ a → P a → Q a
|
||||
|
||||
_∨_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
||||
A → Set (p₁ ⊔ℓ p₂)
|
||||
_∨_ P Q a = P a ⊎ Q a
|
||||
|
||||
_∧_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
||||
A → Set (p₁ ⊔ℓ p₂)
|
||||
_∧_ P Q a = P a × Q a
|
||||
|
||||
Reference in New Issue
Block a user