Compare commits

...

98 Commits

Author SHA1 Message Date
828b652d3b Rename 'a' to 'b' in fixedpoint algorithm proof
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-08-18 10:28:45 -10:00
12971450e3 Add guardedness to Main directly
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-08-08 13:28:25 -07:00
7d2928ed81 Prove that the sign analysis is correct
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-10 22:31:47 -07:00
5f946de5e8 Remove last remaining assumption for correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-10 21:30:56 -07:00
04bafb2d55 Prove that the inputs to wrap are empty
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-10 21:25:40 -07:00
e0248397b7 Prove that predecessors imply edges
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:18:51 -07:00
41ada43047 Move predecessor code into Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:13:49 -07:00
a081edb881 Add a proof about filter's distributivity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 23:06:49 -07:00
3d2a507f2f Almost prove correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 22:49:53 -07:00
82027ecd04 Move predecessor computation into Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 21:26:32 -07:00
734e82ff6d Wrap generated graphs to ensure entry and exit nodes have no extra edges
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 21:08:32 -07:00
69d1ecebae Prove that the bottom map's valyes are all bottoms
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 20:48:32 -07:00
b78cb91f2a Strengthen lemma about IterProd bottom to definition equality
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 20:20:11 -07:00
16fa4cd1d8 Use records rather than nested pairs to represent 'fixed height'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 20:11:04 -07:00
95669b2c65 Prove that the iterated product is made from iterated bottom elements
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 19:45:15 -07:00
6857f60465 Rename the min/max elements top bottom and top in Prod
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 19:08:46 -07:00
f4392b32c0 Finish the last proof obligation for trace walking
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 19:01:36 -07:00
794c04eee9 Prove the foldr-implies lemma
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 18:37:50 -07:00
80069e76e6 Prove the recursive step of trace walking
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 17:56:47 -07:00
a22c0c9252 Prove a property of multi-key lookup
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 17:56:26 -07:00
20dc99ba1f Re-indent some code to take up less horizontal space
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 16:57:03 -07:00
b3a62da1fb Add a proof that edges lead to 'incoming' inclusion
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-09 16:56:45 -07:00
f0b0d51b48 Add unproven lemma about fold implication
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 23:38:23 -07:00
8ff88f9f9e Move helper code into separate function
I'll need to reuse it.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 23:35:02 -07:00
c1581075d3 Add more test programs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 23:30:23 -07:00
838aaf9c58 Start end-to-end proof of correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 23:30:03 -07:00
4ac9dffa9b Prove that the var->lattice maps respect equality
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 22:53:21 -07:00
3f5551d70c Add a lemma about the effect of joinAll
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 22:34:02 -07:00
5837fdf19b Prove that 'updateAll' has preservation
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 22:29:36 -07:00
4350919871 Add proof about setVariablesForState
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 22:09:56 -07:00
7fe46b014c Slightly simplify evaluation code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 22:05:50 -07:00
66d229c493 Prove that multi-statement evaluation "preserves" the validity of the analysis
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 21:51:53 -07:00
1b8bea8957 Use foldl in multi-statement evaluation
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 21:50:38 -07:00
dd8cdcd10c Add proofs about monotonicity of foldl
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 21:48:41 -07:00
ad4592d4d2 Switch to using implicit arguments where needed
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 21:34:17 -07:00
8d0d87d2d9 Start on proofs of correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 20:50:21 -07:00
cfa3375de5 Expose more functions from FiniteMap
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 20:50:05 -07:00
6b116ed960 Forward some map function to Finite{,Value}Map
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-05-08 20:34:15 -07:00
3859826293 Define interpretation of the sign lattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-30 21:58:41 -07:00
be50c76cb1 Add more higher-order primitives
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-30 21:56:34 -07:00
112a5087ef Tentative start on proving correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-30 19:20:02 -07:00
ccb7abc501 Remove unused code from Utils
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-30 19:15:38 -07:00
91b5d108f6 Simplify proofs about 'loop' using concatenation lemma
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-29 21:28:21 -07:00
c574ca9c56 Prove that graphs build by buildCfg are sufficient
That is, if we have a (semantic) trace, we can
find a corresponding path through the CFG.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-29 20:57:43 -07:00
bbfba34e05 Prove another (simple) case
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-28 13:37:03 -07:00
aec15573fc Add properties of end-to-end traces on loops 2024-04-28 12:53:25 -07:00
b4d395767d Simplify operations used for constructing graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-28 12:40:50 -07:00
07550bc214 Prove 'sufficiency' for if-else.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-28 12:10:12 -07:00
9366ec4a97 Allow promoting end-to-end traces too 2024-04-28 12:00:06 -07:00
0fb884eb07 Use implicit arguments for more things
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-28 11:43:49 -07:00
6b44ac1feb Make graph arguments implicit where possible 2024-04-28 11:37:08 -07:00
69a4e8eb5c Add some helpers and rewrite code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 17:43:16 -07:00
4fee16413a Define end-to-end path concatenation and prove one more case
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 17:34:50 -07:00
316e56f2bc Dip toes into creating end-to-end traces
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 15:27:46 -07:00
ab40a27e78 Formulate correctness of buildCfg using end-to-end traces
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 14:56:19 -07:00
f555947184 Promote traces through loop
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 14:38:07 -07:00
660f6594fd Allow promoting traces through graph composition
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 14:28:00 -07:00
fb32315f58 Allow traces to be promoted through graph overlaying
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-27 14:18:16 -07:00
037358308f Fix up Graph construction 2024-04-27 13:50:06 -07:00
f2b8084a9c Delete code that won't be used for this approach
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-25 23:13:15 -07:00
c00c8e3e85 Use different graph operations to implement construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-25 23:10:41 -07:00
b134c143ca Start working on proving 'sufficiency'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:37:28 -07:00
e218d1b7a3 Add formalization of 'traces through graph'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 21:36:58 -07:00
6e3f06ca5d Add a new 'properties' module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 20:25:40 -07:00
54b11d21b0 Start working on proving facts about graph construction
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:47 -07:00
f3e0d5f2e3 Use 'data' instead of aliases to prove reasoning properties
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 19:31:13 -07:00
855bf3f56c Add functions to reason about the 'monotonic state' operations
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-20 18:09:01 -07:00
2f91ca113e Make 'MonotonicPredicate' into another typeclass
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 20:56:56 -07:00
7571cb7451 Extract 'monotonic state' into its own module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 20:46:30 -07:00
fc27b045d3 Remove nested module from Graphs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 19:33:58 -07:00
de956cdc6a Split the Language file into modules
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 18:39:38 -07:00
7ed7f20227 Add missing edge
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 15:30:07 -07:00
163108b9b3 Add precedence to some language constructs
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 15:29:50 -07:00
8dc5c40eae Get everything compiling
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 14:13:44 -07:00
44f04e4020 Get forward analysis working again
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 14:08:40 -07:00
4fe0d147fa Adjust 'Program' to have a graph and basic blocks
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 13:39:15 -07:00
ba1c9b3ec8 Remove sketch if proof since the proof is done
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 12:31:04 -07:00
b6e357787f Add proof about 'both' and pairing
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-13 12:25:59 -07:00
ce3fa182fe Start formalizing monotonic function predicates
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:49:33 -07:00
71cb97ad8c Reorder some definitions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:27:17 -07:00
57606636a7 Slightly format some code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:22:31 -07:00
da2f7f51d7 Get Language typechecking again, finally
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 23:21:05 -07:00
2db11dcfc7 Use concatenation to represent adding new nodes
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-12 22:04:43 -07:00
3e2719d45f Turn old proof into a hole to clean up later.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 22:45:04 -07:00
78252b6c9e Add proof of node preservation for adding edges.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 22:43:07 -07:00
85fdf544b9 Translate informal proof of (node) transitivity into formal one.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 20:57:08 -07:00
4f14a7b765 Successfully prove that monotonic updates preserve existing indices
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 00:24:52 -07:00
bc5b4b7d9e Explicitly write metas for missing functions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 00:16:10 -07:00
520b2b514c Clear up vector reindexing
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-08 00:12:50 -07:00
f7ac22257e Beat head against the vector-cast wall.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-07 23:44:35 -07:00
b72ad070ba Try using index-based comparisons
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-07 23:18:46 -07:00
195537fe15 Implement graph construction using <*>, map, and update.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-07 20:26:38 -07:00
d4b0796715 Intermediate commit. Switch to *-based definition of <=.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-07 19:51:59 -07:00
b505063771 Start working on proofs of Graph-related things
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-04-04 20:34:28 -07:00
844c99336a Intermediate commit: add while loops and start trying to formalize them. 2024-04-03 22:31:23 -07:00
5d56a7ce2d Fix comments in Forward.agda
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-23 12:09:14 -07:00
2e096bd64e Extract common parts of forward analyses into Forward.agda
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-22 17:50:29 -07:00
1a7b2a1736 Adjust behavior of eval to not require constant 'k in vars' threading
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
2024-03-22 17:15:40 -07:00
21 changed files with 1628 additions and 454 deletions

366
Analysis/Forward.agda Normal file
View File

@@ -0,0 +1,366 @@
open import Language hiding (_[_])
open import Lattice
module Analysis.Forward
{L : Set} {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(≈ˡ-dec : IsDecidable _≈ˡ_) where
open import Data.Empty using (⊥-elim)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; proj₂; _,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.List using (List; _∷_; []; foldr; foldl; cartesianProduct; cartesianProductWith)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Function using (_∘_; flip)
import Chain
open import Utils using (Pairwise; _⇒_; __)
import Lattice.FiniteValueMap
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using ()
renaming
( isLattice to isLatticeˡ
; fixedHeight to fixedHeightˡ
; _≼_ to _≼ˡ_
; ≈-sym to ≈ˡ-sym
)
module WithProg (prog : Program) where
open Program prog
-- The variable -> abstract value (e.g. sign) map is a finite value-map
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
module VariableValuesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeˡ vars
open VariableValuesFiniteMap
using ()
renaming
( FiniteMap to VariableValues
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
; ∈k-dec to ∈k-decᵛ
; all-equal-keys to all-equal-keysᵛ
)
public
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
using ()
renaming
( Provenance-union to Provenance-unionᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
; ⊥-contains-bottoms to ⊥ᵛ-contains-bottoms
)
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _≈_ to _≈ᵐ_
; _∈_ to _∈ᵐ_
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
public
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
using ()
renaming
( ≈-sym to ≈ᵐ-sym
)
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- We now have our (state -> (variables -> value)) map.
-- Define a couple of helpers to retrieve values from it. Specifically,
-- since the State type is as specific as possible, it's always possible to
-- retrieve the variable values at each state.
states-in-Map : (s : State) (sv : StateVariables) s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
variablesAt : State StateVariables VariableValues
variablesAt s sv = proj₁ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-∈ : (s : State) (sv : StateVariables) (s , variablesAt s sv) ∈ᵐ sv
variablesAt-∈ s sv = proj₂ (locateᵐ {s} {sv} (states-in-Map s sv))
variablesAt-≈ : s sv₁ sv₂ sv₁ ≈ᵐ sv₂ variablesAt s sv₁ ≈ᵛ variablesAt s sv₂
variablesAt-≈ s sv₁ sv₂ sv₁≈sv₂ =
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ sv₁ sv₂ sv₁≈sv₂
(states-in-Map s sv₁) (states-in-Map s sv₂)
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State StateVariables VariableValues
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : (k : State) Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
; f'-k∈ks-≡ to joinAll-k∈ks-≡
)
variablesAt-joinAll : (s : State) (sv : StateVariables)
variablesAt s (joinAll sv) joinForKey s sv
variablesAt-joinAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {joinAll sv} (states-in-Map s (joinAll sv)) =
joinAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
-- With 'join' in hand, we need to perform abstract evaluation.
module WithEvaluator (eval : Expr VariableValues L)
(eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ˡ_ (eval e)) where
-- For a particular evaluation function, we need to perform an evaluation
-- for an assignment, and update the corresponding key. Use Exercise 4.26's
-- generalized update to set the single key's value.
private module _ (k : String) (e : Expr) where
open VariableValuesFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x x) (λ a₁≼a₂ a₁≼a₂) (λ _ eval e) (λ _ {vs₁} {vs₂} vs₁≼vs₂ eval-Mono e {vs₁} {vs₂} vs₁≼vs₂) (k [])
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
)
public
-- The per-state update function makes use of the single-key setter,
-- updateVariablesFromExpression, for the case where the statement
-- is an assignment.
--
-- This per-state function adjusts the variables in that state,
-- also monotonically; we derive the for-each-state update from
-- the Exercise 4.26 again.
updateVariablesFromStmt : BasicStmt VariableValues VariableValues
updateVariablesFromStmt (k e) vs = updateVariablesFromExpression k e vs
updateVariablesFromStmt noop vs = vs
updateVariablesFromStmt-Monoʳ : (bs : BasicStmt) Monotonic _≼ᵛ_ _≼ᵛ_ (updateVariablesFromStmt bs)
updateVariablesFromStmt-Monoʳ (k e) {vs₁} {vs₂} vs₁≼vs₂ = updateVariablesFromExpression-Mono k e {vs₁} {vs₂} vs₁≼vs₂
updateVariablesFromStmt-Monoʳ noop vs₁≼vs₂ = vs₁≼vs₂
updateVariablesForState : State StateVariables VariableValues
updateVariablesForState s sv =
foldl (flip updateVariablesFromStmt) (variablesAt s sv) (code s)
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
let
bss = code s
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
(flip updateVariablesFromStmt) updateVariablesFromStmt-Monoʳ
vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
; f'-k∈ks-≡ to updateAll-k∈ks-≡
)
-- Finally, the whole analysis consists of getting the 'join'
-- of all incoming states, then applying the per-state evaluation
-- function. This is just a composition, and is trivially monotonic.
analyze : StateVariables StateVariables
analyze = updateAll joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
public
variablesAt-updateAll : (s : State) (sv : StateVariables)
variablesAt s (updateAll sv) updateVariablesForState s sv
variablesAt-updateAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where
open LatticeInterpretation latticeInterpretationˡ
using ()
renaming
( ⟦_⟧ to ⟦_⟧ˡ
; ⟦⟧-respects-≈ to ⟦⟧ˡ-respects-≈ˡ
; ⟦⟧-⊔- to ⟦⟧ˡ-⊔ˡ-
)
⟦_⟧ᵛ : VariableValues Env Set
⟦_⟧ᵛ vs ρ = {k l} (k , l) ∈ᵛ vs {v} (k , v) Language.∈ ρ l ⟧ˡ v
⟦⊥ᵛ⟧ᵛ∅ : ⊥ᵛ ⟧ᵛ []
⟦⊥ᵛ⟧ᵛ∅ _ ()
⟦⟧ᵛ-respects-≈ᵛ : {vs₁ vs₂ : VariableValues} vs₁ ≈ᵛ vs₂ vs₁ ⟧ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-respects-≈ᵛ {m₁ , _} {m₂ , _}
(m₁⊆m₂ , m₂⊆m₁) ρ ⟦vs₁⟧ρ {k} {l} k,l∈m₂ {v} k,v∈ρ =
let
(l' , (l≈l' , k,l'∈m₁)) = m₂⊆m₁ _ _ k,l∈m₂
⟦l'⟧v = ⟦vs₁⟧ρ k,l'∈m₁ k,v∈ρ
in
⟦⟧ˡ-respects-≈ˡ (≈ˡ-sym l≈l') v ⟦l'⟧v
⟦⟧ᵛ-⊔ᵛ- : {vs₁ vs₂ : VariableValues} ( vs₁ ⟧ᵛ vs₂ ⟧ᵛ) vs₁ ⊔ᵛ vs₂ ⟧ᵛ
⟦⟧ᵛ-⊔ᵛ- {vs₁} {vs₂} ρ ⟦vs₁⟧ρ⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
with ⟦vs₁⟧ρ⟦vs₂⟧ρ
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ- {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
⟦⟧ᵛ-foldr : {vs : VariableValues} {vss : List VariableValues} {ρ : Env}
vs ⟧ᵛ ρ vs ∈ˡ vss foldr _⊔ᵛ_ ⊥ᵛ vss ⟧ᵛ ρ
⟦⟧ᵛ-foldr {vs} {vs vss'} {ρ = ρ} ⟦vs⟧ρ (Any.here refl) =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ (inj₁ ⟦vs⟧ρ)
⟦⟧ᵛ-foldr {vs} {vs' vss'} {ρ = ρ} ⟦vs⟧ρ (Any.there vs∈vss') =
⟦⟧ᵛ-⊔ᵛ- {vs₁ = vs'} {vs₂ = foldr _⊔ᵛ_ ⊥ᵛ vss'} ρ
(inj₂ (⟦⟧ᵛ-foldr ⟦vs⟧ρ vs∈vss'))
InterpretationValid : Set
InterpretationValid = {vs ρ e v} ρ , e ⇒ᵉ v vs ⟧ᵛ ρ eval e vs ⟧ˡ v
module WithValidity (interpretationValidˡ : InterpretationValid) where
updateVariablesFromStmt-matches : {bs vs ρ₁ ρ₂} ρ₁ , bs ⇒ᵇ ρ₂ vs ⟧ᵛ ρ₁ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {ρ₁} (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ = ⟦vs⟧ρ
updateVariablesFromStmt-matches {_} {vs} {ρ₁} {_} (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
with k ≟ˢ k' | k',v'∈ρ₂
... | yes refl | here _ v _
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
let
k'∉[k] = (λ { (Any.here refl) k≢k' refl })
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
in
⟦vs⟧ρ k',l∈vs k',v'∈ρ₁
updateVariablesFromStmt-fold-matches : {bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip updateVariablesFromStmt) vs bss ⟧ᵛ ρ₂
updateVariablesFromStmt-fold-matches [] ⟦vs⟧ρ = ⟦vs⟧ρ
updateVariablesFromStmt-fold-matches {bs bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ρ,bss'⇒ρ₂) ⟦vs⟧ρ =
updateVariablesFromStmt-fold-matches
{bss'} {updateVariablesFromStmt bs vs} ρ,bss'⇒ρ₂
(updateVariablesFromStmt-matches ρ₁,bs⇒ρ ⟦vs⟧ρ)
updateVariablesForState-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ updateVariablesForState s sv ⟧ᵛ ρ₂
updateVariablesForState-matches =
updateVariablesFromStmt-fold-matches
updateAll-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
updateAll-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
rewrite variablesAt-updateAll s sv =
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
stepTrace : {s₁ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ variablesAt s₁ result ⟧ᵛ ρ₂
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ =
let
-- I'd use rewrite, but Agda gets a memory overflow (?!).
⟦joinAll-result⟧ρ =
subst (λ vs vs ⟧ᵛ ρ₁)
(sym (variablesAt-joinAll s₁ result))
⟦joinForKey-s₁⟧ρ
⟦analyze-result⟧ρ =
updateAll-matches {sv = joinAll result}
ρ₁,bss⇒ρ ⟦joinAll-result⟧ρ
analyze-result≈result =
≈ᵐ-sym {result} {updateAll (joinAll result)}
result≈analyze-result
analyze-s₁≈s₁ =
variablesAt-≈ s₁ (updateAll (joinAll result))
result (analyze-result≈result)
in
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ
walkTrace : {s₁ s₂ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ Trace {graph} s₁ s₂ ρ₁ ρ₂ variablesAt s₂ result ⟧ᵛ ρ₂
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-single ρ₁,bss⇒ρ) =
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
let
⟦result-s₁⟧ρ =
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
s₁∈incomingStates =
[]-∈ result (edge⇒incoming s₁→s₂)
(variablesAt-∈ s₁ result)
⟦joinForKey-s⟧ρ =
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
in
walkTrace ⟦joinForKey-s⟧ρ tr
joinForKey-initialState-⊥ᵛ : joinForKey initialState result ⊥ᵛ
joinForKey-initialState-⊥ᵛ = cong (λ ins foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅
⟦joinAll-initialState⟧ᵛ∅ : joinForKey initialState result ⟧ᵛ []
⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅
analyze-correct : {ρ : Env} [] , rootStmt ⇒ˢ ρ variablesAt finalState result ⟧ᵛ ρ
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)

View File

@@ -1,20 +1,20 @@
module Analysis.Sign where
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Nat using (suc)
open import Data.Product using (_×_; proj₁; _,_)
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
open import Data.Integer as Int using (; +_; -[1+_])
open import Data.Nat as Nat using (; suc; zero)
open import Data.Product using (Σ; proj₁; proj₂; _,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (; tt)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.Unit using ()
open import Function using (_∘_)
open import Relation.Nullary using (¬_; yes; no)
open import Language
open import Lattice
open import Utils using (Pairwise)
open import Showable using (Showable; show)
import Lattice.FiniteValueMap
open import Utils using (_⇒_; _∧_; __)
import Analysis.Forward
data Sign : Set where
+ : Sign
@@ -61,11 +61,11 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
open AB.Plain 0ˢ using ()
renaming
( finiteHeightLattice to finiteHeightLatticeᵍ
; isLattice to isLatticeᵍ
( isLattice to isLatticeᵍ
; fixedHeight to fixedHeightᵍ
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
; _⊓_ to _⊓ᵍ_
)
open IsLattice isLatticeᵍ using ()
@@ -111,199 +111,186 @@ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
postulate minus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ minus s₁ s₂)
postulate minus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
⟦_⟧ᵍ : SignLattice Value Set
⟦_⟧ᵍ ⊥ᵍ _ =
⟦_⟧ᵍ ⊤ᵍ _ =
⟦_⟧ᵍ [ + ]ᵍ v = Σ (λ n v ↑ᶻ (+_ (suc n)))
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = v ↑ᶻ (+_ zero)
⟦_⟧ᵍ [ - ]ᵍ v = Σ (λ n v ↑ᶻ -[1+ n ])
⟦⟧ᵍ-respects-≈ᵍ : {s₁ s₂ : SignLattice} s₁ ≈ᵍ s₂ s₁ ⟧ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot
⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof
⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof
⟦⟧ᵍ-⊔ᵍ- : {s₁ s₂ : SignLattice} ( s₁ ⟧ᵍ s₂ ⟧ᵍ) s₁ ⊔ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-⊔ᵍ- {⊥ᵍ} x (inj₂ px₂) = px₂
⟦⟧ᵍ-⊔ᵍ- {⊤ᵍ} x _ = tt
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px
with s₁ ≟ᵍ s₂
... | no _ = tt
... | yes refl
with px
... | inj₁ px₁ = px₁
... | inj₂ px₂ = px₂
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁
⟦⟧ᵍ-⊔ᵍ- {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt
s₁≢s₂⇒¬s₁∧s₂ : {s₁ s₂ : Sign} ¬ s₁ s₂ {v} ¬ (( [ s₁ ]ᵍ ⟧ᵍ [ s₂ ]ᵍ ⟧ᵍ) v)
s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl)
s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , ())
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ (refl , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl)
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ (refl , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ()))
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , ())
s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
⟦⟧ᵍ-⊓ᵍ-∧ : {s₁ s₂ : SignLattice} ( s₁ ⟧ᵍ s₂ ⟧ᵍ) s₁ ⊓ᵍ s₂ ⟧ᵍ
⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot
⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂
⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂)
with s₁ ≟ᵍ s₂
... | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂)
... | yes refl = px₁
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
latticeInterpretationᵍ = record
{ ⟦_⟧ = ⟦_⟧ᵍ
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ
; ⟦⟧-⊔- = ⟦⟧ᵍ-⊔ᵍ-
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧
}
module WithProg (prog : Program) where
open Program prog
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
open VariableSignsFiniteMap
using ()
renaming
( FiniteMap to VariableSigns
; isLattice to isLatticeᵛ
; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; _≼_ to _≼ᵛ_
; ≈₂-dec⇒≈-dec to ≈ᵍ-dec⇒≈ᵛ-dec
; _∈_ to _∈ᵛ_
; _∈k_ to _∈kᵛ_
; _updating_via_ to _updatingᵛ_via_
; locate to locateᵛ
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
)
open IsLattice isLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; ⊔-idemp to ⊔ᵛ-idemp
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeᵍ vars-Unique ≈ᵍ-dec _ fixedHeightᵍ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
)
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg
≈ᵛ-dec = ≈ᵍ-dec⇒≈ᵛ-dec ≈ᵍ-dec
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
eval : (e : Expr) VariableValues SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
eval (e₁ - e₂) vs = minus (eval e₁ vs) (eval e₂ vs)
eval (` k) vs
with ∈k-decᵛ k (proj₁ (proj₁ vs))
... | yes k∈vs = proj₁ (locateᵛ {k} {vs} k∈vs)
... | no _ = ⊤ᵍ
eval (# 0) _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ = [ + ]ᵍ
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
open StateVariablesFiniteMap
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
renaming
( FiniteMap to StateVariables
; isLattice to isLatticeᵐ
; _∈k_ to _∈kᵐ_
; locate to locateᵐ
; _≼_ to _≼ᵐ_
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
)
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
using ()
renaming
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
)
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State StateVariables VariableSigns
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : (k : State) Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
)
-- With 'join' in hand, we need to perform abstract evaluation.
vars-in-Map : (k : String) (vs : VariableSigns)
k ∈ˡ vars k ∈kᵛ vs
vars-in-Map k vs@(m , kvs≡vars) k∈vars rewrite kvs≡vars = k∈vars
states-in-Map : (s : State) (sv : StateVariables) s ∈kᵐ sv
states-in-Map s sv@(m , ksv≡states) rewrite ksv≡states = states-complete s
eval : (e : Expr) ( k k ∈ᵉ e k ∈ˡ vars) VariableSigns SignLattice
eval (e₁ + e₂) k∈e⇒k∈vars vs =
plus (eval e₁ (λ k k∈e₁ k∈e⇒k∈vars k (in⁺₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ k∈e⇒k∈vars k (in⁺₂ k∈e₂)) vs)
eval (e₁ - e₂) k∈e⇒k∈vars vs =
minus (eval e₁ (λ k k∈e₁ k∈e⇒k∈vars k (in⁻₁ k∈e₁)) vs)
(eval e₂ (λ k k∈e₂ k∈e⇒k∈vars k (in⁻₂ k∈e₂)) vs)
eval (` k) k∈e⇒k∈vars vs = proj₁ (locateᵛ {k} {vs} (vars-in-Map k vs (k∈e⇒k∈vars k here)))
eval (# 0) _ _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ _ = [ + ]ᵍ
eval-Mono : (e : Expr) (k∈e⇒k∈vars : k k ∈ᵉ e k ∈ˡ vars) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars)
eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e k∈e⇒k∈vars k (in⁺₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ k∈e⇒k∈vars k (in⁺₂ k∈e₂)
g₁vs = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
g₁vs = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs = eval e₁ vs₂
g₂vs = eval e₂ vs₂
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
k∈e₁⇒k∈vars = λ k k∈e k∈e⇒k∈vars k (in⁻₁ k∈e₁)
k∈e₂⇒k∈vars = λ k k∈e₂ k∈e⇒k∈vars k (in⁻₂ k∈e₂)
g₁vs = eval e₁ k∈e₁⇒k∈vars vs₁
g₂vs = eval e₂ k∈e₂⇒k∈vars vs₁
g₁vs₂ = eval e₁ k∈e₁⇒k∈vars vs₂
g₂vs₂ = eval e₂ k∈e₂⇒k∈vars vs₂
g₁vs = eval e₁ vs₁
g₂vs₁ = eval e₂ vs₁
g₁vs = eval e₁ vs₂
g₂vs = eval e₂ vs₂
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ k∈e₁⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
let
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here))
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here))
in
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
eval-Mono (# 0) _ _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl
private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : k k ∈ᵉ e k ∈ˡ vars) where
open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x x) (λ a₁≼a₂ a₁≼a₂) (λ _ eval e k∈e⇒k∈vars) (λ _ {vs₁} {vs₂} vs₁≼vs₂ eval-Mono e k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂) (k [])
renaming
( f' to updateVariablesFromExpression
; f'-Monotonic to updateVariablesFromExpression-Mono
)
public
updateVariablesForState : State StateVariables VariableSigns
updateVariablesForState s sv
-- More weirdness here. Apparently, capturing the with-equality proof
-- using 'in p' makes code that reasons about this function (below)
-- throw ill-typed with-abstraction errors. Instead, make use of the
-- fact that later with-clauses are generalized over earlier ones to
-- construct a specialization of vars-complete for (code s).
with code s | (λ k vars-complete {k} s)
... | k e | k∈codes⇒k∈vars =
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ =
let
(vs , s,vs∈sv) = locate {s} {sv} (states-in-Map s sv)
(v , k,v₁∈vs₁) = locate {k} {vs₁} k∈kvs₁
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} k∈kvs₂
in
updateVariablesFromExpression k e (λ k k∈e k∈codes⇒k∈vars k (in←₂ k∈e)) vs
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
with code s | (λ k vars-complete {k} s)
... | k e | k∈codes⇒k∈vars =
let
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
updateVariablesFromExpression-Mono k e (λ k k∈e k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂
module ForwardWithEval = ForwardWithProg.WithEvaluator eval eval-Mono
open ForwardWithEval using (result)
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
)
-- For debugging purposes, print out the result.
output = show result
analyze : StateVariables StateVariables
analyze = updateAll joinAll
module ForwardWithInterp = ForwardWithEval.WithInterpretation latticeInterpretationᵍ
open ForwardWithInterp using (⟦_⟧ᵛ; InterpretationValid)
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ = updateAll-Mono {joinAll sv₁} {joinAll sv₂} (joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- This should have fewer cases -- the same number as the actual 'plus' above.
-- But agda only simplifies on first argument, apparently, so we are stuck
-- listing them all.
plus-valid : {g₁ g₂} {z₁ z₂} g₁ ⟧ᵍ (↑ᶻ z₁) g₂ ⟧ᵍ (↑ᶻ z₂) plus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.+ z₂))
plus-valid {⊥ᵍ} {_} _ =
plus-valid {[ + ]ᵍ} {⊥ᵍ} _ =
plus-valid {[ - ]ᵍ} {⊥ᵍ} _ =
plus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ =
plus-valid {⊤ᵍ} {⊥ᵍ} _ =
plus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
plus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ + ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
plus-valid {[ + ]ᵍ} {[ - ]ᵍ} _ _ = tt
plus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
plus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ - ]ᵍ} {[ + ]ᵍ} _ _ = tt
plus-valid {[ - ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
plus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
plus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
plus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
plus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
plus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
plus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to signs)
-- Same for this one. It should be easier, but Agda won't simplify.
minus-valid : {g₁ g₂} {z₁ z₂} g₁ ⟧ᵍ (↑ᶻ z₁) g₂ ⟧ᵍ (↑ᶻ z₂) minus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.- z₂))
minus-valid {⊥ᵍ} {_} _ =
minus-valid {[ + ]ᵍ} {⊥ᵍ} _ =
minus-valid {[ - ]ᵍ} {⊥ᵍ} _ =
minus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ =
minus-valid {⊤ᵍ} {⊥ᵍ} _ =
minus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
minus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ + ]ᵍ} {[ + ]ᵍ} _ _ = tt
minus-valid {[ + ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
minus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
minus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ - ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
minus-valid {[ - ]ᵍ} {[ - ]ᵍ} _ _ = tt
minus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
minus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
minus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
minus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
eval-Valid : InterpretationValid
eval-Valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-Valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
minus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-Valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
with ∈k-decᵛ x (proj₁ (proj₁ vs))
... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ
... | no x∉kvs = tt
eval-Valid (⇒ᵉ- ρ 0) _ = refl
eval-Valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
-- Debugging code: print the resulting map.
output = show signs
open ForwardWithInterp.WithValidity eval-Valid using (analyze-correct) public

View File

@@ -10,7 +10,7 @@ open import Data.Nat using (; suc; _+_; _≤_)
open import Data.Nat.Properties using (+-comm; m+1+n≰m)
open import Data.Product using (_×_; Σ; _,_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
open import Data.Empty using ()
open import Data.Empty as Empty using ()
open IsEquivalence ≈-equiv
@@ -38,11 +38,16 @@ module _ where
Bounded : Set a
Bounded bound = {a₁ a₂ : A} {n : } Chain a₁ a₂ n n bound
Bounded-suc-n : {a₁ a₂ : A} {n : } Bounded n Chain a₁ a₂ (suc n)
Bounded-suc-n : {a₁ a₂ : A} {n : } Bounded n Chain a₁ a₂ (suc n) Empty.
Bounded-suc-n {a₁} {a₂} {n} bounded c = (m+1+n≰m n n+1≤n)
where
n+1≤n : n + 1 n
n+1≤n rewrite (+-comm n 1) = bounded c
Height : Set a
Height height = (Σ (A × A) (λ (a₁ , a₂) Chain a₁ a₂ height) × Bounded height)
record Height (height : ) : Set a where
field
: A
: A
longestChain : Chain height
bounded : Bounded height

View File

@@ -23,15 +23,21 @@ import Chain
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
private
⊥ᴬ : A
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
open ChainA.Height fixedHeight
using ()
renaming
( to ⊥ᴬ
; longestChain to longestChainᴬ
; bounded to boundedᴬ
)
⊥ᴬ≼ : (a : A) ⊥ᴬ a
⊥ᴬ≼ a with ≈-dec a ⊥ᴬ
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊥ᴬ)
... | yes ⊥ᴬ≈a⊓⊥ᴬ = ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))))
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ (ChainA.step x≺⊥ᴬ ≈-refl longestChainᴬ))
where
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ a) ⊥ᴬ
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
@@ -45,7 +51,7 @@ private
-- out, we have exceeded h steps, which shouldn't be possible.
doStep : (g hᶜ : ) (a₁ a₂ : A) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ suc h) (a₂≼fa₂ : a₂ f a₂) Σ A (λ a a f a)
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
doStep (suc g') hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
with ≈-dec a₂ (f a₂)
... | yes a₂≈fa₂ = (a₂ , a₂≈fa₂)
@@ -67,15 +73,15 @@ aᶠ≈faᶠ : aᶠ ≈ f aᶠ
aᶠ≈faᶠ = proj₂ fix
private
stepPreservesLess : (g hᶜ : ) (a₁ a₂ a : A) (a≈fa : a f a) (a₂≼a : a₂ a)
stepPreservesLess : (g hᶜ : ) (a₁ a₂ b : A) (b≈fb : b f b) (a₂≼a : a₂ b)
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ suc h)
(a₂≼fa₂ : a₂ f a₂)
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) a
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) b
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
stepPreservesLess (suc g') hᶜ a₁ a₂ b b≈fb a₂≼b c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
with ≈-dec a₂ (f a₂)
... | yes _ = a₂≼a
... | no _ = stepPreservesLess g' _ _ _ a a≈fa (≼-cong ≈-refl (≈-sym a≈fa) (Monotonicᶠ a₂≼a)) _ _ _
... | yes _ = a₂≼b
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
aᶠ≼ : (a : A) a f a aᶠ a
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))

View File

@@ -38,8 +38,9 @@ module TransportFiniteHeight
open IsEquivalence ≈₁-equiv using () renaming (≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
open IsEquivalence ≈₂-equiv using () renaming (≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans)
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
open import Chain _≈_ -equiv _≺_ -cong using () renaming (Chain to Chain; done to done; step to step)
import Chain
open Chain _≈_ -equiv _≺_ -cong using () renaming (Chain to Chain; done to done; step to step)
open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
private
f-Injective : Injective _≈₁_ _≈₂_ f
@@ -65,10 +66,17 @@ module TransportFiniteHeight
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
isFiniteHeightLattice =
let
(((a₁ , a₂) , c) , bounded₁) = IsFiniteHeightLattice.fixedHeight fhlA
open Chain.Height (IsFiniteHeightLattice.fixedHeight fhlA)
using ()
renaming ( to ⊥₁; to ⊤₁; bounded to bounded₁; longestChain to c)
in record
{ isLattice = lB
; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' bounded₁ (portChain₂ c'))
; fixedHeight = record
{ = f ⊥₁
; = f ⊤₁
; longestChain = portChain₁ c
; bounded = λ c' bounded₁ (portChain₂ c')
}
}
finiteHeightLattice : FiniteHeightLattice B

View File

@@ -1,175 +1,56 @@
module Language where
open import Data.Nat using (; suc; pred)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ)
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Language.Base public
open import Language.Semantics public
open import Language.Traces public
open import Language.Graphs public
open import Language.Properties public
open import Data.Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.Fin using (Fin; suc; zero; from; inject₁) renaming (_≟_ to _≟ᶠ_)
open import Data.Fin.Properties using (suc-injective)
open import Relation.Binary.PropositionalEquality using (cong; _≡_; refl)
open import Data.Nat using (; suc)
open import Data.Product using (_,_; Σ; proj₁; proj₂)
open import Data.Product.Properties as ProdProp using ()
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (¬_)
open import Function using (_∘_)
open import Lattice
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs)
data Expr : Set where
_+_ : Expr Expr Expr
_-_ : Expr Expr Expr
`_ : String Expr
#_ : Expr
data Stmt : Set where
_←_ : String Expr Stmt
open import Lattice.MapSet _≟ˢ_
open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs)
open import Lattice.MapSet _≟ˢ_ using ()
renaming
( MapSet to StringSet
; insert to insertˢ
; to-List to to-Listˢ
; empty to emptyˢ
; singleton to singletonˢ
; _⊔_ to _⊔ˢ_
; `_ to `ˢ_
; _∈_ to _∈ˢ_
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
)
data _∈ᵉ_ : String Expr Set where
in⁺₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ + e₂)
in⁺₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ + e₂)
in⁻₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ - e₂)
in⁻₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ - e₂)
here : {k : String} k ∈ᵉ (` k)
data _∈ᵗ_ : String Stmt Set where
in←₁ : {k : String} {e : Expr} k ∈ᵗ (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k ∈ᵗ (k' e)
private
Expr-vars : Expr StringSet
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
∈-Expr-vars⇒∈ : {k : String} (e : Expr) k ∈ˢ (Expr-vars e) k ∈ᵉ e
∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
with Expr-Provenance k (( (Expr-vars e₁)) ( (Expr-vars e₂))) k∈vs
... | in (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
... | in _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
with Expr-Provenance k (( (Expr-vars e₁)) ( (Expr-vars e₂))) k∈vs
... | in (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
... | in _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
∈⇒∈-Expr-vars : {k : String} {e : Expr} k ∈ᵉ e k ∈ˢ (Expr-vars e)
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₁)
∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₂)
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₁)
∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
{m₂ = Expr-vars e₂}
(∈⇒∈-Expr-vars k∈e₂)
∈⇒∈-Expr-vars here = RelAny.here refl
Stmt-vars : Stmt StringSet
Stmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
∈-Stmt-vars⇒∈ : {k : String} (s : Stmt) k ∈ˢ (Stmt-vars s) k ∈ᵗ s
∈-Stmt-vars⇒∈ {k} (k' e) k∈vs
with Expr-Provenance k (( (singletonˢ k')) ( (Expr-vars e))) k∈vs
... | in (single (RelAny.here refl)) _ = in←₁
... | in _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
... | bothᵘ (single (RelAny.here refl)) _ = in←₁
∈⇒∈-Stmt-vars : {k : String} {s : Stmt} k ∈ᵗ s k ∈ˢ (Stmt-vars s)
∈⇒∈-Stmt-vars {k} {k e} in←₁ =
⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
{m₂ = Expr-vars e}
(RelAny.here refl)
∈⇒∈-Stmt-vars {k} {k' e} (in←₂ k∈e) =
⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
{m₂ = Expr-vars e}
(∈⇒∈-Expr-vars k∈e)
Stmts-vars : {n : } Vec Stmt n StringSet
Stmts-vars = foldr (λ n StringSet)
(λ {k} stmt acc (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
∈-Stmts-vars⇒∈ : {n : } {k : String} (ss : Vec Stmt n)
k ∈ˢ (Stmts-vars ss) Σ (Fin n) (λ f k ∈ᵗ lookup ss f)
∈-Stmts-vars⇒∈ {suc n'} {k} (s ss') k∈vss
with Expr-Provenance k (( (Stmt-vars s)) ( (Stmts-vars ss'))) k∈vss
... | in (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
... | in _ (single k,tt∈vss') =
let
(f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
in
(suc f' , k∈s')
... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
∈⇒∈-Stmts-vars : {n : } {k : String} {ss : Vec Stmt n} {f : Fin n}
k ∈ᵗ lookup ss f k ∈ˢ (Stmts-vars ss)
∈⇒∈-Stmts-vars {suc n} {k} {s ss'} {zero} k∈s =
⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
{m₂ = Stmts-vars ss'}
(∈⇒∈-Stmt-vars k∈s)
∈⇒∈-Stmts-vars {suc n} {k} {s ss'} {suc f'} k∈ss' =
⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
{m₂ = Stmts-vars ss'}
(∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
-- Creating a new number from a natural number can never create one
-- equal to one you get from weakening the bounds on another number.
z≢sf : {n : } (f : Fin n) ¬ (zero suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
indices : (n : ) Σ (List (Fin n)) Unique
indices 0 = ([] , empty)
indices (suc n') =
let
(inds' , unids') = indices n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
indices-complete : (n : ) (f : Fin n) f ∈ˡ (proj₁ (indices n))
indices-complete (suc n') zero = RelAny.here refl
indices-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (indices-complete n' f'))
-- For now, just represent the program and CFG as one type, without branching.
record Program : Set where
field
length :
stmts : Vec Stmt length
rootStmt : Stmt
graph : Graph
graph = wrap (buildCfg rootStmt)
State : Set
State = Graph.Index graph
initialState : State
initialState = proj₁ (wrap-input (buildCfg rootStmt))
finalState : State
finalState = proj₁ (wrap-output (buildCfg rootStmt))
trace : {ρ : Env} [] , rootStmt ⇒ˢ ρ Trace {graph} initialState finalState [] ρ
trace {ρ} ∅,s⇒ρ
with MkEndToEndTrace idx₁ (RelAny.here refl) idx₂ (RelAny.here refl) tr
EndToEndTrace-wrap (buildCfg-sufficient ∅,s⇒ρ) = tr
private
vars-Set : StringSet
vars-Set = Stmts-vars stmts
vars-Set = Stmt-vars rootStmt
vars : List String
vars = to-Listˢ vars-Set
@@ -177,35 +58,36 @@ record Program : Set where
vars-Unique : Unique vars
vars-Unique = proj₂ vars-Set
State : Set
State = Fin length
states : List State
states = proj₁ (indices length)
states = indices graph
states-complete : (s : State) s ˡ states
states-complete = indices-complete length
states-complete : (s : State) s ListMem. states
states-complete = indices-complete graph
states-Unique : Unique states
states-Unique = proj₂ (indices length)
states-Unique = indices-Unique graph
code : State Stmt
code = lookup stmts
code : State List BasicStmt
code st = graph [ st ]
vars-complete : {k : String} (s : State) k ∈ᵗ (code s) k ∈ˡ vars
vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
-- vars-complete : ∀ {k : String} (s : State) → k ∈ᵇ (code s) → k ListMem.∈ vars
-- vars-complete {k} s = ∈⇒∈-Stmts-vars {length} {k} {stmts} {s}
_≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟_
_≟_ = FinProp._≟_
-- Computations for incoming and outgoing edges will have to change too
-- when we support branching etc.
_≟ᵉ_ : IsDecidable (_≡_ {_} {Graph.Edge graph})
_≟ᵉ_ = ProdProp.≡-dec _≟_ _≟_
open import Data.List.Membership.DecPropositional _≟ᵉ_ using (_∈?_)
incoming : State List State
incoming
with length
... | 0 = (λ ())
... | suc n' = (λ
{ zero []
; (suc f') (inject₁ f') []
})
incoming = predecessors graph
initialState-pred-∅ : incoming initialState []
initialState-pred-∅ =
wrap-preds-∅ (buildCfg rootStmt) initialState (RelAny.here refl)
edge⇒incoming : {s₁ s₂ : State} (s₁ , s₂) ListMem.∈ (Graph.edges graph)
s₁ ListMem.∈ (incoming s₂)
edge⇒incoming = edge⇒predecessor graph

145
Language/Base.agda Normal file
View File

@@ -0,0 +1,145 @@
module Language.Base where
open import Data.List as List using (List)
open import Data.Nat using (; suc)
open import Data.Product using (Σ; _,_; proj₁)
open import Data.String as String using (String)
open import Data.Vec using (Vec; foldr; lookup)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Lattice
data Expr : Set where
_+_ : Expr Expr Expr
_-_ : Expr Expr Expr
`_ : String Expr
#_ : Expr
data BasicStmt : Set where
_←_ : String Expr BasicStmt
noop : BasicStmt
infixr 2 _then_
infix 3 if_then_else_
infix 3 while_repeat_
data Stmt : Set where
⟨_⟩ : BasicStmt Stmt
_then_ : Stmt Stmt Stmt
if_then_else_ : Expr Stmt Stmt Stmt
while_repeat_ : Expr Stmt Stmt
data _∈ᵉ_ : String Expr Set where
in⁺₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ + e₂)
in⁺₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ + e₂)
in⁻₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ - e₂)
in⁻₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ - e₂)
here : {k : String} k ∈ᵉ (` k)
data _∈ᵇ_ : String BasicStmt Set where
in←₁ : {k : String} {e : Expr} k ∈ᵇ (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k ∈ᵇ (k' e)
open import Lattice.MapSet (String._≟_)
renaming
( MapSet to StringSet
; insert to insertˢ
; empty to emptyˢ
; singleton to singletonˢ
; _⊔_ to _⊔ˢ_
; `_ to `ˢ_
; _∈_ to _∈ˢ_
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
)
Expr-vars : Expr StringSet
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars here = RelAny.here refl
BasicStmt-vars : BasicStmt StringSet
BasicStmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
BasicStmt-vars noop = emptyˢ
Stmt-vars : Stmt StringSet
Stmt-vars bs = BasicStmt-vars bs
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) (`ˢ (Expr-vars e))) k∈vs
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
-- {m₂ = Expr-vars e}
-- (RelAny.here refl)
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
-- {m₂ = Expr-vars e}
-- (∈⇒∈-Expr-vars k∈e)
Stmts-vars : {n : } Vec Stmt n StringSet
Stmts-vars = foldr (λ n StringSet)
(λ {k} stmt acc (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
-- ∈-Stmts-vars⇒∈ : ∀ {n : } {k : String} (ss : Vec Stmt n) →
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) (`ˢ (Stmts-vars ss'))) k∈vss
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ... | in₂ _ (single k,tt∈vss') =
-- let
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
-- in
-- (suc f' , k∈s')
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ∈⇒∈-Stmts-vars : ∀ {n : } {k : String} {ss : Vec Stmt n} {f : Fin n} →
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmt-vars k∈s)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')

174
Language/Graphs.agda Normal file
View File

@@ -0,0 +1,174 @@
module Language.Graphs where
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using (∈-filter⁺; ∈-filter⁻)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any as RelAny using ()
open import Data.Nat as Nat using (; suc)
open import Data.Nat.Properties using (+-assoc; +-comm)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Product.Properties as ProdProp using ()
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Relation.Nullary using (¬_)
open import Lattice
open import Utils using (Unique; push; Unique-map; x∈xs⇒fx∈fxs; ∈-cartesianProduct)
record Graph : Set where
constructor MkGraph
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
inputs : List Index
outputs : List Index
_↑ˡ_ : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
_↑ʳ_ : {m} n (Fin m × Fin m) Fin (n Nat.+ m) × Fin (n Nat.+ m)
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
_↑ˡⁱ_ : {n} List (Fin n) m List (Fin (n Nat.+ m))
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
_↑ʳⁱ_ : {m} n List (Fin m) List (Fin (n Nat.+ m))
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
_↑ˡᵉ_ : {n} List (Fin n × Fin n) m List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
_↑ʳᵉ_ : {m} n List (Fin m × Fin m) List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
infixr 5 _∙_
_∙_ : Graph Graph Graph
_∙_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
}
infixr 5 _↦_
_↦_ : Graph Graph Graph
_↦_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
}
loop : Graph Graph
loop g = record
{ size = 2 Nat.+ Graph.size g
; nodes = [] [] Graph.nodes g
; edges = (2 ↑ʳᵉ Graph.edges g) List.++
List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g) List.++
List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g) List.++
((suc zero , zero) (zero , suc zero) [])
; inputs = zero []
; outputs = (suc zero) []
}
infixr 5 _skipto_
_skipto_ : Graph Graph Graph
_skipto_ g₁ g₂ = record (g₁ g₂)
{ edges = Graph.edges (g₁ g₂) List.++
(List.cartesianProduct (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.inputs g₂
}
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
singleton : List BasicStmt Graph
singleton bss = record
{ size = 1
; nodes = bss []
; edges = []
; inputs = zero []
; outputs = zero []
}
wrap : Graph Graph
wrap g = singleton [] g singleton []
buildCfg : Stmt Graph
buildCfg bs₁ = singleton (bs₁ [])
buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s)
private
z≢sf : {n : } (f : Fin n) ¬ (zero suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (List.map suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
finValues : (n : ) Σ (List (Fin n)) Unique
finValues 0 = ([] , Utils.empty)
finValues (suc n') =
let
(inds' , unids') = finValues n'
in
( zero List.map suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
finValues-complete : (n : ) (f : Fin n) f ListMem.∈ (proj₁ (finValues n))
finValues-complete (suc n') zero = RelAny.here refl
finValues-complete (suc n') (suc f') = RelAny.there (x∈xs⇒fx∈fxs suc (finValues-complete n' f'))
module _ (g : Graph) where
open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size g}) (FinProp._≟_ {Graph.size g})) using (_∈?_)
indices : List (Graph.Index g)
indices = proj₁ (finValues (Graph.size g))
indices-complete : (idx : (Graph.Index g)) idx ListMem.∈ indices
indices-complete = finValues-complete (Graph.size g)
indices-Unique : Unique indices
indices-Unique = proj₂ (finValues (Graph.size g))
predecessors : (Graph.Index g) List (Graph.Index g)
predecessors idx = List.filter (λ idx' (idx' , idx) ∈? (Graph.edges g)) indices
edge⇒predecessor : {idx₁ idx₂ : Graph.Index g} (idx₁ , idx₂) ListMem.∈ (Graph.edges g)
idx₁ ListMem.∈ (predecessors idx₂)
edge⇒predecessor {idx₁} {idx₂} idx₁,idx₂∈es =
∈-filter⁺ (λ idx' (idx' , idx₂) ∈? (Graph.edges g))
(indices-complete idx₁) idx₁,idx₂∈es
predecessor⇒edge : {idx₁ idx₂ : Graph.Index g} idx₁ ListMem.∈ (predecessors idx₂)
(idx₁ , idx₂) ListMem.∈ (Graph.edges g)
predecessor⇒edge {idx₁} {idx₂} idx₁∈pred =
proj₂ (∈-filter⁻ (λ idx' (idx' , idx₂) ∈? (Graph.edges g)) {v = idx₁} {xs = indices} idx₁∈pred )

300
Language/Properties.agda Normal file
View File

@@ -0,0 +1,300 @@
module Language.Properties where
open import Language.Base
open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import Data.Fin as Fin using (suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; _∷_; [])
open import Data.List.Properties using (filter-none)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; tabulate)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.Nat as Nat using ()
open import Data.Product using (Σ; _,_; _×_; proj₂)
open import Data.Product.Properties as ProdProp using ()
open import Data.Sum using (inj₁; inj₂)
open import Data.Vec as Vec using (_∷_)
open import Data.Vec.Properties using (lookup-++ˡ; ++-identityʳ; lookup-++ʳ)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
open import Relation.Nullary using (¬_)
open import Utils using (x∈xs⇒fx∈fxs; ∈-cartesianProduct; concat-∈)
-- All of the below helpers are to reason about what edges aren't included
-- when combinings graphs. The currenty most important use for this is proving
-- that the entry node has no incoming edges.
--
-- -------------- Begin ugly code to make this work ----------------
↑-≢ : {n m} (f₁ : Fin.Fin n) (f₂ : Fin.Fin m) ¬ (f₁ Fin.↑ˡ m) (n Fin.↑ʳ f₂)
↑-≢ zero f₂ ()
↑-≢ (suc f₁') f₂ f₁≡f₂ = ↑-≢ f₁' f₂ (suc-injective f₁≡f₂)
idx→f∉↑ʳᵉ : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (es₂ : List (Fin.Fin m × Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (n ↑ʳᵉ es₂)
idx→f∉↑ʳᵉ idx f ((idx₁ , idx₂) es') (here idx,f≡idx₁,idx₂) = ↑-≢ f idx₂ (cong proj₂ idx,f≡idx₁,idx₂)
idx→f∉↑ʳᵉ idx f (_ es₂') (there idx→f∈es₂') = idx→f∉↑ʳᵉ idx f es₂' idx→f∈es₂'
idx→f∉pair : {n m} (idx idx' : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.map (idx' ,_) (n ↑ʳⁱ inputs₂))
idx→f∉pair idx idx' f [] ()
idx→f∉pair idx idx' f (input inputs') (here idx,f≡idx',input) = ↑-≢ f input (cong proj₂ idx,f≡idx',input)
idx→f∉pair idx idx' f (_ inputs₂') (there idx,f∈inputs₂') = idx→f∉pair idx idx' f inputs₂' idx,f∈inputs₂'
idx→f∉cart : {n m} (idx : Fin.Fin (n Nat.+ m)) (f : Fin.Fin n) (outputs₁ : List (Fin.Fin n)) (inputs₂ : List (Fin.Fin m)) ¬ (idx , f Fin.↑ˡ m) ListMem.∈ (List.cartesianProduct (outputs₁ ↑ˡⁱ m) (n ↑ʳⁱ inputs₂))
idx→f∉cart idx f [] inputs₂ ()
idx→f∉cart {n} {m} idx f (output outputs₁') inputs₂ idx,f∈pair++cart
with ListMemProp.∈-++⁻ (List.map (output Fin.↑ˡ m ,_) (n ↑ʳⁱ inputs₂)) idx,f∈pair++cart
... | inj₁ idx,f∈pair = idx→f∉pair idx (output Fin.↑ˡ m) f inputs₂ idx,f∈pair
... | inj₂ idx,f∈cart = idx→f∉cart idx f outputs₁' inputs₂ idx,f∈cart
help : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁) (idx : Graph.Index (g₁ g₂))
¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))
help g₂ idx₁ idx idx,idx₁∈g
with ListMemProp.∈-++⁻ (Graph.size (singleton []) ↑ʳᵉ Graph.edges g₂) idx,idx₁∈g
... | inj₁ idx,idx₁∈edges₂ = idx→f∉↑ʳᵉ idx idx₁ (Graph.edges g₂) idx,idx₁∈edges₂
... | inj₂ idx,idx₁∈cart = idx→f∉cart idx idx₁ (Graph.outputs (singleton [])) (Graph.inputs g₂) idx,idx₁∈cart
helpAll : let g₁ = singleton [] in
(g₂ : Graph) (idx₁ : Graph.Index g₁)
All (λ idx ¬ (idx , idx₁ Fin.↑ˡ Graph.size g₂) ListMem.∈ ((Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)))) (indices (g₁ g₂))
helpAll g₂ idx₁ = tabulate (λ {idx} _ help g₂ idx₁ idx)
module _ (g : Graph) where
wrap-preds-∅ : (idx : Graph.Index (wrap g))
idx ListMem.∈ Graph.inputs (wrap g) predecessors (wrap g) idx []
wrap-preds-∅ zero (here refl) =
filter-none (λ idx' (idx' , zero) ∈?
(Graph.edges (wrap g)))
(helpAll (g singleton []) zero)
where open import Data.List.Membership.DecPropositional (ProdProp.≡-dec (FinProp._≟_ {Graph.size (wrap g)}) (FinProp._≟_ {Graph.size (wrap g)})) using (_∈?_)
-- -------------- End ugly code to make this work ----------------
module _ (g : Graph) where
wrap-input : Σ (Graph.Index (wrap g)) (λ idx Graph.inputs (wrap g) idx [])
wrap-input = (_ , refl)
wrap-output : Σ (Graph.Index (wrap g)) (λ idx Graph.outputs (wrap g) idx [])
wrap-output = (_ , refl)
Trace-∙ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env}
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
Trace-∙ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-∙ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
(Trace-∙ˡ tr')
Trace-∙ʳ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env}
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-∙ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-∙ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ _ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx))
(Trace-∙ʳ tr')
EndToEndTrace-∙ˡ : {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g₁} ρ₁ ρ₂
EndToEndTrace {g₁ g₂} ρ₁ ρ₂
EndToEndTrace-∙ˡ {g₁} {g₂} etr = record
{ idx₁ = EndToEndTrace.idx₁ etr Fin.↑ˡ Graph.size g₂
; idx₁∈inputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
(EndToEndTrace.idx₁∈inputs etr))
; idx₂ = EndToEndTrace.idx₂ etr Fin.↑ˡ Graph.size g₂
; idx₂∈outputs = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂)
(EndToEndTrace.idx₂∈outputs etr))
; trace = Trace-∙ˡ (EndToEndTrace.trace etr)
}
EndToEndTrace-∙ʳ : {g₁ g₂ : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g₂} ρ₁ ρ₂
EndToEndTrace {g₁ g₂} ρ₁ ρ₂
EndToEndTrace-∙ʳ {g₁} {g₂} etr = record
{ idx₁ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₁ etr
; idx₁∈inputs = ListMemProp.∈-++⁺ʳ (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂)
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
(EndToEndTrace.idx₁∈inputs etr)))
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr
; idx₂∈outputs = ListMemProp.∈-++⁺ʳ (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
((x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_)
(EndToEndTrace.idx₂∈outputs etr)))
; trace = Trace-∙ʳ (EndToEndTrace.trace etr)
}
Trace-↦ˡ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₁} {ρ₁ ρ₂ : Env}
Trace {g₁} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (idx₁ Fin.↑ˡ Graph.size g₂) (idx₂ Fin.↑ˡ Graph.size g₂) ρ₁ ρ₂
Trace-↦ˡ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-↦ˡ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ˡ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (_↑ˡ Graph.size g₂) idx₁→idx))
(Trace-↦ˡ tr')
Trace-↦ʳ : {g₁ g₂ : Graph} {idx₁ idx₂ : Graph.Index g₂} {ρ₁ ρ₂ : Env}
Trace {g₂} idx₁ idx₂ ρ₁ ρ₂
Trace {g₁ g₂} (Graph.size g₁ Fin.↑ʳ idx₁) (Graph.size g₁ Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-↦ʳ {g₁} {g₂} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-↦ʳ {g₁} {g₂} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (Graph.nodes g₁) (Graph.nodes g₂) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
(ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (Graph.size g₁ ↑ʳ_) idx₁→idx)))
(Trace-↦ʳ {g₁} {g₂} tr')
loop-edge-groups : (g : Graph) List (List (Graph.Edge (loop g)))
loop-edge-groups g =
(2 ↑ʳᵉ Graph.edges g)
(List.map (zero ,_) (2 ↑ʳⁱ Graph.inputs g))
(List.map (_, suc zero) (2 ↑ʳⁱ Graph.outputs g))
((suc zero , zero) (zero , suc zero) [])
[]
loop-edge-help : (g : Graph) {l : List (Graph.Edge (loop g))} {e : Graph.Edge (loop g)}
e ListMem.∈ l l ListMem.∈ loop-edge-groups g
e ListMem.∈ Graph.edges (loop g)
loop-edge-help g e∈l l∈ess = concat-∈ e∈l l∈ess
Trace-loop : {g : Graph} {idx₁ idx₂ : Graph.Index g} {ρ₁ ρ₂ : Env}
Trace {g} idx₁ idx₂ ρ₁ ρ₂ Trace {loop g} (2 Fin.↑ʳ idx₁) (2 Fin.↑ʳ idx₂) ρ₁ ρ₂
Trace-loop {g} {idx₁} {idx₁} (Trace-single ρ₁⇒ρ₂)
rewrite sym (lookup-++ʳ (List.[] List.[] Vec.[]) (Graph.nodes g) idx₁) =
Trace-single ρ₁⇒ρ₂
Trace-loop {g} {idx₁} (Trace-edge ρ₁⇒ρ idx₁→idx tr')
rewrite sym (lookup-++ʳ (List.[] List.[] Vec.[]) (Graph.nodes g) idx₁) =
Trace-edge ρ₁⇒ρ (ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (2 ↑ʳ_) idx₁→idx))
(Trace-loop {g} tr')
EndToEndTrace-loop : {g : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g} ρ₁ ρ₂ EndToEndTrace {loop g} ρ₁ ρ₂
EndToEndTrace-loop {g} etr =
let
zero→idx₁' = x∈xs⇒fx∈fxs (zero ,_)
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
(EndToEndTrace.idx₁∈inputs etr))
zero→idx₁ = loop-edge-help g zero→idx₁' (there (here refl))
idx₂→suc' = x∈xs⇒fx∈fxs (_, suc zero)
(x∈xs⇒fx∈fxs (2 Fin.↑ʳ_)
(EndToEndTrace.idx₂∈outputs etr))
idx₂→suc = loop-edge-help g idx₂→suc' (there (there (here refl)))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace =
Trace-single [] ++⟨ zero→idx₁
Trace-loop {g} (EndToEndTrace.trace etr) ++⟨ idx₂→suc
Trace-single []
}
EndToEndTrace-loop² : {g : Graph} {ρ₁ ρ₂ ρ₃ : Env}
EndToEndTrace {loop g} ρ₁ ρ₂
EndToEndTrace {loop g} ρ₂ ρ₃
EndToEndTrace {loop g} ρ₁ ρ₃
EndToEndTrace-loop² {g} (MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₁)
(MkEndToEndTrace zero (here refl) (suc zero) (here refl) tr₂) =
let
suc→zero = loop-edge-help g (here refl)
(there (there (there (here refl))))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace = tr₁ ++⟨ suc→zero tr₂
}
EndToEndTrace-loop⁰ : {g : Graph} {ρ : Env}
EndToEndTrace {loop g} ρ ρ
EndToEndTrace-loop⁰ {g} {ρ} =
let
zero→suc = loop-edge-help g (there (here refl))
(there (there (there (here refl))))
in
record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = suc zero
; idx₂∈outputs = here refl
; trace = Trace-single [] ++⟨ zero→suc Trace-single []
}
infixr 5 _++_
_++_ : {g₁ g₂ : Graph} {ρ₁ ρ₂ ρ₃ : Env}
EndToEndTrace {g₁} ρ₁ ρ₂ EndToEndTrace {g₂} ρ₂ ρ₃
EndToEndTrace {g₁ g₂} ρ₁ ρ₃
_++_ {g₁} {g₂} etr₁ etr₂
= record
{ idx₁ = EndToEndTrace.idx₁ etr₁ Fin.↑ˡ Graph.size g₂
; idx₁∈inputs = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₁∈inputs etr₁)
; idx₂ = Graph.size g₁ Fin.↑ʳ EndToEndTrace.idx₂ etr₂
; idx₂∈outputs = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₂∈outputs etr₂)
; trace =
let
o∈tr₁ = x∈xs⇒fx∈fxs (Fin._↑ˡ Graph.size g₂) (EndToEndTrace.idx₂∈outputs etr₁)
i∈tr₂ = x∈xs⇒fx∈fxs (Graph.size g₁ Fin.↑ʳ_) (EndToEndTrace.idx₁∈inputs etr₂)
oi∈es = ListMemProp.∈-++⁺ʳ (Graph.edges g₁ ↑ˡᵉ Graph.size g₂)
(ListMemProp.∈-++⁺ʳ (Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
(∈-cartesianProduct o∈tr₁ i∈tr₂))
in
(Trace-↦ˡ {g₁} {g₂} (EndToEndTrace.trace etr₁)) ++⟨ oi∈es
(Trace-↦ʳ {g₁} {g₂} (EndToEndTrace.trace etr₂))
}
EndToEndTrace-singleton : {bss : List BasicStmt} {ρ₁ ρ₂ : Env}
ρ₁ , bss ⇒ᵇˢ ρ₂ EndToEndTrace {singleton bss} ρ₁ ρ₂
EndToEndTrace-singleton ρ₁⇒ρ₂ = record
{ idx₁ = zero
; idx₁∈inputs = here refl
; idx₂ = zero
; idx₂∈outputs = here refl
; trace = Trace-single ρ₁⇒ρ₂
}
EndToEndTrace-singleton[] : (ρ : Env) EndToEndTrace {singleton []} ρ ρ
EndToEndTrace-singleton[] env = EndToEndTrace-singleton []
EndToEndTrace-wrap : {g : Graph} {ρ₁ ρ₂ : Env}
EndToEndTrace {g} ρ₁ ρ₂ EndToEndTrace {wrap g} ρ₁ ρ₂
EndToEndTrace-wrap {g} {ρ₁} {ρ₂} etr = EndToEndTrace-singleton[] ρ₁ ++ etr ++ EndToEndTrace-singleton[] ρ₂
buildCfg-sufficient : {s : Stmt} {ρ₁ ρ₂ : Env} ρ₁ , s ⇒ˢ ρ₂
EndToEndTrace {buildCfg s} ρ₁ ρ₂
buildCfg-sufficient (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
EndToEndTrace-singleton (ρ₁,bs⇒ρ [])
buildCfg-sufficient (⇒ˢ-then ρ₁ ρ₂ ρ₃ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
buildCfg-sufficient ρ₁,s₁⇒ρ ++ buildCfg-sufficient ρ₂,s₂⇒ρ
buildCfg-sufficient (⇒ˢ-if-true ρ₁ ρ₂ _ _ s₁ s₂ _ _ ρ₁,s₁⇒ρ) =
EndToEndTrace-singleton[] ρ₁ ++
(EndToEndTrace-∙ˡ (buildCfg-sufficient ρ₁,s₁⇒ρ)) ++
EndToEndTrace-singleton[] ρ₂
buildCfg-sufficient (⇒ˢ-if-false ρ₁ ρ₂ _ s₁ s₂ _ ρ₁,s₂⇒ρ) =
EndToEndTrace-singleton[] ρ₁ ++
(EndToEndTrace-∙ʳ {buildCfg s₁} (buildCfg-sufficient ρ₁,s₂⇒ρ)) ++
EndToEndTrace-singleton[] ρ₂
buildCfg-sufficient (⇒ˢ-while-true ρ₁ ρ₂ ρ₃ _ _ s _ _ ρ₁,s⇒ρ ρ₂,ws⇒ρ) =
EndToEndTrace-loop² {buildCfg s}
(EndToEndTrace-loop {buildCfg s} (buildCfg-sufficient ρ₁,s⇒ρ))
(buildCfg-sufficient ρ₂,ws⇒ρ)
buildCfg-sufficient (⇒ˢ-while-false ρ _ s _) =
EndToEndTrace-loop⁰ {buildCfg s} {ρ}

73
Language/Semantics.agda Normal file
View File

@@ -0,0 +1,73 @@
module Language.Semantics where
open import Language.Base
open import Agda.Primitive using (lsuc)
open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.Product using (_×_; _,_)
open import Data.String using (String)
open import Data.List as List using (List)
open import Data.Nat using ()
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Lattice
open import Utils using (_⇒_; _∧_; __)
data Value : Set where
↑ᶻ : Value
Env : Set
Env = List (String × Value)
data _∈_ : (String × Value) Env Set where
here : (s : String) (v : Value) (ρ : Env) (s , v) ((s , v) List.∷ ρ)
there : (s s' : String) (v v' : Value) (ρ : Env) ¬ (s s') (s , v) ρ (s , v) ((s' , v') List.∷ ρ)
data _,_⇒ᵉ_ : Env Expr Value Set where
⇒ᵉ- : (ρ : Env) (n : ) ρ , (# n) ⇒ᵉ (↑ᶻ (+ n))
⇒ᵉ-Var : (ρ : Env) (x : String) (v : Value) (x , v) ρ ρ , (` x) ⇒ᵉ v
⇒ᵉ-+ : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ + e₂) ⇒ᵉ (↑ᶻ (z₁ +ᶻ z₂))
⇒ᵉ-- : (ρ : Env) (e₁ e₂ : Expr) (z₁ z₂ : )
ρ , e₁ ⇒ᵉ (↑ᶻ z₁) ρ , e₂ ⇒ᵉ (↑ᶻ z₂)
ρ , (e₁ - e₂) ⇒ᵉ (↑ᶻ (z₁ -ᶻ z₂))
data _,_⇒ᵇ_ : Env BasicStmt Env Set where
⇒ᵇ-noop : (ρ : Env) ρ , noop ⇒ᵇ ρ
⇒ᵇ-← : (ρ : Env) (x : String) (e : Expr) (v : Value)
ρ , e ⇒ᵉ v ρ , (x e) ⇒ᵇ ((x , v) List.∷ ρ)
data _,_⇒ᵇˢ_ : Env List BasicStmt Env Set where
[] : {ρ : Env} ρ , List.[] ⇒ᵇˢ ρ
_∷_ : {ρ₁ ρ₂ ρ₃ : Env} {bs : BasicStmt} {bss : List BasicStmt}
ρ₁ , bs ⇒ᵇ ρ₂ ρ₂ , bss ⇒ᵇˢ ρ₃ ρ₁ , (bs List.∷ bss) ⇒ᵇˢ ρ₃
data _,_⇒ˢ_ : Env Stmt Env Set where
⇒ˢ-⟨⟩ : (ρ₁ ρ₂ : Env) (bs : BasicStmt)
ρ₁ , bs ⇒ᵇ ρ₂ ρ₁ , bs ⇒ˢ ρ₂
⇒ˢ-then : (ρ₁ ρ₂ ρ₃ : Env) (s₁ s₂ : Stmt)
ρ₁ , s₁ ⇒ˢ ρ₂ ρ₂ , s₂ ⇒ˢ ρ₃
ρ₁ , (s₁ then s₂) ⇒ˢ ρ₃
⇒ˢ-if-true : (ρ₁ ρ₂ : Env) (e : Expr) (z : ) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s₁ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-if-false : (ρ₁ ρ₂ : Env) (e : Expr) (s₁ s₂ : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ (+ 0)) ρ₁ , s₂ ⇒ˢ ρ₂
ρ₁ , (if e then s₁ else s₂) ⇒ˢ ρ₂
⇒ˢ-while-true : (ρ₁ ρ₂ ρ₃ : Env) (e : Expr) (z : ) (s : Stmt)
ρ₁ , e ⇒ᵉ (↑ᶻ z) ¬ z (+ 0) ρ₁ , s ⇒ˢ ρ₂ ρ₂ , (while e repeat s) ⇒ˢ ρ₃
ρ₁ , (while e repeat s) ⇒ˢ ρ₃
⇒ˢ-while-false : (ρ : Env) (e : Expr) (s : Stmt)
ρ , e ⇒ᵉ (↑ᶻ (+ 0))
ρ , (while e repeat s) ⇒ˢ ρ
record LatticeInterpretation {l} {L : Set l} {_≈_ : L L Set l}
{_⊔_ : L L L} {_⊓_ : L L L}
(isLattice : IsLattice L _≈_ _⊔_ _⊓_) : Set (lsuc l) where
field
⟦_⟧ : L Value Set
⟦⟧-respects-≈ : {l₁ l₂ : L} l₁ l₂ l₁ l₂
⟦⟧-⊔- : {l₁ l₂ : L} ( l₁ l₂ ) l₁ l₂
⟦⟧-⊓-∧ : {l₁ l₂ : L} ( l₁ l₂ ) l₁ l₂

36
Language/Traces.agda Normal file
View File

@@ -0,0 +1,36 @@
module Language.Traces where
open import Language.Base
open import Language.Semantics using (Env; _,_⇒ᵇˢ_)
open import Language.Graphs
open import Data.Product using (_,_)
open import Data.List.Membership.Propositional using (_∈_)
module _ {g : Graph} where
open Graph g using (Index; edges; inputs; outputs)
data Trace : Index Index Env Env Set where
Trace-single : {ρ₁ ρ₂ : Env} {idx : Index}
ρ₁ , (g [ idx ]) ⇒ᵇˢ ρ₂ Trace idx idx ρ₁ ρ₂
Trace-edge : {ρ₁ ρ₂ ρ₃ : Env} {idx₁ idx₂ idx₃ : Index}
ρ₁ , (g [ idx₁ ]) ⇒ᵇˢ ρ₂ (idx₁ , idx₂) edges
Trace idx₂ idx₃ ρ₂ ρ₃ Trace idx₁ idx₃ ρ₁ ρ₃
infixr 5 _++⟨_⟩_
_++⟨_⟩_ : {idx₁ idx₂ idx₃ idx₄ : Index} {ρ₁ ρ₂ ρ₃ : Env}
Trace idx₁ idx₂ ρ₁ ρ₂ (idx₂ , idx₃) edges
Trace idx₃ idx₄ ρ₂ ρ₃ Trace idx₁ idx₄ ρ₁ ρ₃
_++⟨_⟩_ (Trace-single ρ₁⇒ρ₂) idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₂→idx₃ tr
_++⟨_⟩_ (Trace-edge ρ₁⇒ρ₂ idx₁→idx' tr') idx₂→idx₃ tr = Trace-edge ρ₁⇒ρ₂ idx₁→idx' (tr' ++⟨ idx₂→idx₃ tr)
record EndToEndTrace (ρ₁ ρ₂ : Env) : Set where
constructor MkEndToEndTrace
field
idx₁ : Index
idx₁∈inputs : idx₁ inputs
idx₂ : Index
idx₂∈outputs : idx₂ outputs
trace : Trace idx₁ idx₂ ρ₁ ρ₂

View File

@@ -137,7 +137,7 @@ module _ {a b} {A : Set a} {B : Set b}
const-Mono : (x : B) Monotonic _≼₁_ _≼₂_ (λ _ x)
const-Mono x _ = ⊔₂-idemp x
open import Data.List as List using (List; foldr; _∷_)
open import Data.List as List using (List; foldr; foldl; _∷_)
open import Utils using (Pairwise; _∷_)
foldr-Mono : (l₁ l₂ : List A) (f : A B B) (b₁ b₂ : B)
@@ -150,6 +150,36 @@ module _ {a b} {A : Set a} {B : Set b}
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
foldl-Mono : (l₁ l₂ : List A) (f : B A B) (b₁ b₂ : B)
Pairwise _≼₁_ l₁ l₂ b₁ ≼₂ b₂
( a Monotonic _≼₂_ _≼₂_ (λ b f b a))
( b Monotonic _≼₁_ _≼₂_ (f b))
foldl f b₁ l₁ ≼₂ foldl f b₂ l₂
foldl-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
foldl-Mono (x xs) (y ys) f b₁ b₂ (x≼y xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
foldl-Mono xs ys f (f b₁ x) (f b₂ y) xs≼ys (≼₂-trans (f-Mono₁ x b₁≼b₂) (f-Mono₂ b₂ x≼y)) f-Mono₁ f-Mono₂
module _ {a b} {A : Set a} {B : Set b}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B}
(lB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
open import Data.List as List using (List; foldr; foldl; _∷_)
open import Utils using (Pairwise; _∷_)
foldr-Mono' : (l : List A) (f : A B B)
( a Monotonic _≼₂_ _≼₂_ (f a))
Monotonic _≼₂_ _≼₂_ (λ b foldr f b l)
foldr-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
foldr-Mono' (x xs) f f-Mono₂ b₁≼b₂ = f-Mono₂ x (foldr-Mono' xs f f-Mono₂ b₁≼b₂)
foldl-Mono' : (l : List A) (f : B A B)
( b Monotonic _≼₂_ _≼₂_ (λ a f a b))
Monotonic _≼₂_ _≼₂_ (λ b foldl f b l)
foldl-Mono' List.[] f _ b₁≼b₂ = b₁≼b₂
foldl-Mono' (x xs) f f-Mono₁ b₁≼b₂ = foldl-Mono' xs f f-Mono₁ (f-Mono₁ x b₁≼b₂)
record IsLattice {a} (A : Set a)
(_≈_ : A A Set a)
(_⊔_ : A A A)

View File

@@ -355,7 +355,12 @@ module Plain (x : A) where
rewrite [x]≺y⇒y≡ _ _ [x]≺y with ≈-- y≈z = ⊥-elim (¬-Chain- c)
fixedHeight : IsLattice.FixedHeight isLattice 2
fixedHeight = ((( , ) , longestChain) , isLongest)
fixedHeight = record
{ =
; =
; longestChain = longestChain
; bounded = isLongest
}
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record

View File

@@ -12,7 +12,7 @@ module Lattice.FiniteMap {a b : Level} {A : Set a} {B : Set b}
open IsLattice lB using () renaming (_≼_ to _≼₂_)
open import Lattice.Map ≡-dec-A lB as Map
using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec)
using (Map; ⊔-equal-keys; ⊓-equal-keys)
renaming
( _≈_ to _≈ᵐ_
; _⊔_ to _⊔ᵐ_
@@ -30,13 +30,21 @@ open import Lattice.Map ≡-dec-A lB as Map
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
; ≈-dec to ≈ᵐ-dec
; _[_] to _[_]ᵐ
; []-∈ to []ᵐ-∈
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ to m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ
; locate to locateᵐ
; keys to keysᵐ
; _updating_via_ to _updatingᵐ_via_
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
; updating-via-k∈ks to updatingᵐ-via-k∈ks
; updating-via-k∈ks-≡ to updatingᵐ-via-k∈ks-≡
; updating-via-∈k-forward to updatingᵐ-via-∈k-forward
; updating-via-k∉ks-forward to updatingᵐ-via-k∉ks-forward
; updating-via-k∉ks-backward to updatingᵐ-via-k∉ks-backward
; f'-Monotonic to f'-Monotonicᵐ
; _≼_ to _≼ᵐ_
; ∈k-dec to ∈k-decᵐ
)
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
@@ -82,6 +90,10 @@ module WithKeys (ks : List A) where
_∈k_ : A FiniteMap Set a
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
open Map using (forget) public
∈k-dec = ∈k-decᵐ
locate : {k : A} {fm : FiniteMap} k ∈k fm Σ B (λ v (k , v) fm)
locate {k} {fm = (m , _)} k∈kfm = locateᵐ {k} {m} k∈kfm
@@ -94,6 +106,10 @@ module WithKeys (ks : List A) where
_[_] : FiniteMap List A List B
_[_] (m₁ , _) ks = m₁ [ ks ]ᵐ
[]-∈ : {k : A} {v : B} {ks' : List A} (fm : FiniteMap)
k ∈ˡ ks' (k , v) fm v ∈ˡ (fm [ ks' ])
[]-∈ {k} {v} {ks'} (m , _) k∈ks' k,v∈fm = []ᵐ-∈ m k,v∈fm k∈ks'
≈-equiv : IsEquivalence FiniteMap _≈_
≈-equiv = record
{ ≈-refl =
@@ -149,6 +165,11 @@ module WithKeys (ks : List A) where
fm₁ fm₂ (k , v₁) fm₁ (k , v₂) fm₂ v₁ ≼₂ v₂
m₁≼m₂⇒m₁[k]≼m₂[k] (m₁ , _) (m₂ , _) m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ : (fm₁ fm₂ : FiniteMap) {k : A}
fm₁ fm₂ (k∈kfm₁ : k ∈k fm₁) (k∈kfm₂ : k ∈k fm₂)
proj₁ (locate {fm = fm₁} k∈kfm₁) ≈₂ proj₁ (locate {fm = fm₂} k∈kfm₂)
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ (m₁ , _) (m₂ , _) = m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ᵐ m₁ m₂
module GeneralizedUpdate
{l} {L : Set l}
{_≈ˡ_ : L L Set l} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
@@ -168,6 +189,21 @@ module WithKeys (ks : List A) where
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
f'-∈k-forward : {k l} k ∈k (f l) k ∈k (f' l)
f'-∈k-forward {k} {l} = updatingᵐ-via-∈k-forward (proj₁ (f l)) ks (updater l)
f'-k∈ks : {k l} k ∈ˡ ks k ∈k (f' l) (k , updater l k) (f' l)
f'-k∈ks {k} {l} = updatingᵐ-via-k∈ks (proj₁ (f l)) (updater l)
f'-k∈ks-≡ : {k v l} k ∈ˡ ks (k , v) (f' l) v updater l k
f'-k∈ks-≡ {k} {v} {l} = updatingᵐ-via-k∈ks-≡ (proj₁ (f l)) (updater l)
f'-k∉ks-forward : {k v l} ¬ k ∈ˡ ks (k , v) (f l) (k , v) (f' l)
f'-k∉ks-forward {k} {v} {l} = updatingᵐ-via-k∉ks-forward (proj₁ (f l)) (updater l)
f'-k∉ks-backward : {k v l} ¬ k ∈ˡ ks (k , v) (f' l) (k , v) (f l)
f'-k∉ks-backward {k} {v} {l} = updatingᵐ-via-k∉ks-backward (proj₁ (f l)) (updater l)
all-equal-keys : (fm₁ fm₂ : FiniteMap) (Map.keys (proj₁ fm₁) Map.keys (proj₁ fm₂))
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
@@ -182,7 +218,7 @@ module WithKeys (ks : List A) where
fm₁ fm₂ Pairwise _≼₂_ (fm₁ [ ks' ]) (fm₂ [ ks' ])
m₁≼m₂⇒m₁[ks]≼m₂[ks] _ _ [] _ = []
m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁@(m₁ , km₁≡ks) fm₂@(m₂ , km₂≡ks) (k ks'') m₁≼m₂
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
... | yes k∈km₁ | yes k∈km₂ =
let
(v₁ , k,v₁∈m₁) = locateᵐ {m = m₁} k∈km₁

View File

@@ -28,11 +28,12 @@ open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Relation.Nullary using (¬_)
open import Isomorphism using (IsInverseˡ; IsInverseʳ)
open import Chain using (Height)
open import Lattice.Map ≡-dec-A lB
using
( subset-impl
; locate; forget
; locate
; Map-functional
; Expr-Provenance
; Expr-Provenance-≡
@@ -104,6 +105,14 @@ module IterProdIsomorphism where
_∈ᵐ_ : {ks : List A} A × B FiniteMap ks Set
_∈ᵐ_ {ks} = _∈_ ks
to-build : {b : B} {ks : List A} (uks : Unique ks)
let fm = to uks (IP.build b tt (length ks))
in (k : A) (v : B) (k , v) ∈ᵐ fm v b
to-build {b} {k ks'} (push _ uks') k v (here refl) = refl
to-build {b} {k ks'} (push _ uks') k' v (there k',v∈m') =
to-build {ks = ks'} uks' k' v k',v∈m'
-- The left inverse is: from (to x) = x
from-to-inverseˡ : {ks : List A} (uks : Unique ks)
IsInverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {length ks})
@@ -153,6 +162,26 @@ module IterProdIsomorphism where
fm'₂⊆fm'₁ k' v' k',v'∈fm'₂
in (v'' , (v'≈v'' , there k',v''∈fm'₁))
FromBothMaps : (k : A) (v : B) {ks : List A} (fm₁ fm₂ : FiniteMap ks) Set
FromBothMaps k v fm₁ fm₂ =
Σ (B × B)
(λ (v₁ , v₂) ( (v v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
Provenance-union : {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B}
(k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) FromBothMaps k v fm₁ fm₂
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
with Expr-Provenance-≡ ((` m₁) (` m₂)) k,v∈fm₁fm₂
... | in (single k,v∈m₁) k∉km₂
with k∈km₁ (forget k,v∈m₁)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₂ k∈km₁)
... | in k∉km₁ (single k,v∈m₂)
with k∈km₂ (forget k,v∈m₂)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₁ k∈km₂)
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
private
first-key-in-map : {k : A} {ks : List A} (fm : FiniteMap (k ks))
Σ B (λ v (k , v) ∈ᵐ fm)
@@ -204,26 +233,6 @@ module IterProdIsomorphism where
k,v∈⇒k,v∈pop (m@(_ _ , push k≢ks _) , refl) k≢k' (here refl) = ⊥-elim (k≢k' refl)
k,v∈⇒k,v∈pop (m@(_ _ , push k≢ks _) , refl) k≢k' (there k,v'∈fm') = k,v'∈fm'
FromBothMaps : (k : A) (v : B) {ks : List A} (fm₁ fm₂ : FiniteMap ks) Set
FromBothMaps k v fm₁ fm₂ =
Σ (B × B)
(λ (v₁ , v₂) ( (v v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
Provenance-union : {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B}
(k , v) ∈ᵐ (fm₁ ⊔ᵐ fm₂) FromBothMaps k v fm₁ fm₂
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
with Expr-Provenance-≡ ((` m₁) (` m₂)) k,v∈fm₁fm₂
... | in (single k,v∈m₁) k∉km₂
with k∈km₁ (forget k,v∈m₁)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₂ k∈km₁)
... | in k∉km₁ (single k,v∈m₂)
with k∈km₂ (forget k,v∈m₂)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₁ k∈km₂)
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
pop-⊔-distr : {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ks))
pop (fm₁ ⊔ᵐ fm₂) ≈ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
pop-⊔-distr {k} {ks} fm₁@(m₁ , _) fm₂@(m₂ , _) =
@@ -407,3 +416,12 @@ module IterProdIsomorphism where
(to-⊔-distr uks) (from-⊔-distr {ks})
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
using (isFiniteHeightLattice; finiteHeightLattice) public
-- Helpful lemma: all entries of the 'bottom' map are assigned to bottom.
open Height (IsFiniteHeightLattice.fixedHeight isFiniteHeightLattice) using ()
⊥-contains-bottoms : {k : A} {v : B} (k , v) ∈ᵐ v (Height.⊥ fhB)
⊥-contains-bottoms {k} {v} k,v∈⊥
rewrite IP.⊥-built (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ =
to-build uks k v k,v∈⊥

View File

@@ -11,9 +11,11 @@ module Lattice.IterProd {a} {A B : Set a}
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Agda.Primitive using (lsuc)
open import Data.Nat using (; suc; _+_)
open import Data.Product using (_×_)
open import Data.Nat using (; zero; suc; _+_)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong)
open import Utils using (iterate)
open import Chain using (Height)
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
@@ -30,31 +32,50 @@ IterProd k = iterate k (λ t → A × t) B
-- that are built up by the two iterations. So, do everything in one iteration.
-- This requires some odd code.
build : A B (k : ) IterProd k
build _ b zero = b
build a b (suc s) = (a , build a b s)
private
record RequiredForFixedHeight : Set (lsuc a) where
field
field
≈₁-dec : IsDecidable _≈₁_
≈₂-dec : IsDecidable _≈₂_
h₁ h₂ :
fhA : FixedHeight₁ h₁
fhB : FixedHeight₂ h₂
record IsFiniteHeightAndDecEq {A : Set a} {_≈_ : A A Set a} {_⊔_ : A A A} {_⊓_ : A A A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) : Set (lsuc a) where
⊥₁ : A
⊥₁ = Height.⊥ fhA
⊥₂ : B
⊥₂ = Height.⊥ fhB
⊥k : (k : ) IterProd k
⊥k = build ⊥₁ ⊥₂
record IsFiniteHeightWithBotAndDecEq {A : Set a} {_≈_ : A A Set a} {_⊔_ : A A A} {_⊓_ : A A A} (isLattice : IsLattice A _≈_ _⊔_ _⊓_) ( : A) : Set (lsuc a) where
field
height :
fixedHeight : IsLattice.FixedHeight isLattice height
≈-dec : IsDecidable _≈_
record Everything (A : Set a) : Set (lsuc a) where
⊥-correct : Height.⊥ fixedHeight
record Everything (k : ) : Set (lsuc a) where
T = IterProd k
field
_≈_ : A A Set a
_⊔_ : A A A
_⊓_ : A A A
_≈_ : T T Set a
_⊔_ : T T T
_⊓_ : T T T
isLattice : IsLattice A _≈_ _⊔_ _⊓_
isFiniteHeightIfSupported : RequiredForFixedHeight IsFiniteHeightAndDecEq isLattice
isLattice : IsLattice T _≈_ _⊔_ _⊓_
isFiniteHeightIfSupported :
(req : RequiredForFixedHeight)
IsFiniteHeightWithBotAndDecEq isLattice (RequiredForFixedHeight.⊥k req k)
everything : (k : ) Everything (IterProd k)
everything : (k : ) Everything k
everything 0 = record
{ _≈_ = _≈₂_
; _⊔_ = _⊔₂_
@@ -64,6 +85,7 @@ private
{ height = RequiredForFixedHeight.h₂ req
; fixedHeight = RequiredForFixedHeight.fhB req
; ≈-dec = RequiredForFixedHeight.≈₂-dec req
; ⊥-correct = refl
}
}
everything (suc k') = record
@@ -76,13 +98,16 @@ private
fhlRest = Everything.isFiniteHeightIfSupported everythingRest req
in
record
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightAndDecEq.height fhlRest
{ height = (RequiredForFixedHeight.h₁ req) + IsFiniteHeightWithBotAndDecEq.height fhlRest
; fixedHeight =
P.fixedHeight
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightAndDecEq.height fhlRest)
(RequiredForFixedHeight.fhA req) (IsFiniteHeightAndDecEq.fixedHeight fhlRest)
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightAndDecEq.≈-dec fhlRest)
(RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
(RequiredForFixedHeight.h₁ req) (IsFiniteHeightWithBotAndDecEq.height fhlRest)
(RequiredForFixedHeight.fhA req) (IsFiniteHeightWithBotAndDecEq.fixedHeight fhlRest)
; ≈-dec = P.≈-dec (RequiredForFixedHeight.≈₁-dec req) (IsFiniteHeightWithBotAndDecEq.≈-dec fhlRest)
; ⊥-correct =
cong ((Height.⊥ (RequiredForFixedHeight.fhA req)) ,_)
(IsFiniteHeightWithBotAndDecEq.⊥-correct fhlRest)
}
}
where
@@ -121,16 +146,22 @@ module _ (k : ) where
; fhB = fhB
}
fixedHeight = IsFiniteHeightWithBotAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
isFiniteHeightLattice = record
{ isLattice = isLattice
; fixedHeight = IsFiniteHeightAndDecEq.fixedHeight (Everything.isFiniteHeightIfSupported (everything k) required)
; fixedHeight = fixedHeight
}
finiteHeightLattice : FiniteHeightLattice (IterProd k)
finiteHeightLattice = record
{ height = IsFiniteHeightAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
{ height = IsFiniteHeightWithBotAndDecEq.height (Everything.isFiniteHeightIfSupported (everything k) required)
; _≈_ = _≈_
; _⊔_ = _⊔_
; _⊓_ = _⊓_
; isFiniteHeightLattice = isFiniteHeightLattice
}
⊥-built : Height.⊥ fixedHeight (build (Height.⊥ fhA) (Height.⊥ fhB) k)
⊥-built = IsFiniteHeightWithBotAndDecEq.⊥-correct (Everything.isFiniteHeightIfSupported (everything k) required)

View File

@@ -1112,6 +1112,19 @@ _[_] m (k ∷ ks)
... | yes k∈km = proj₁ (locate {m = m} k∈km) (m [ ks ])
... | no _ = m [ ks ]
[]-∈ : {k : A} {v : B} {ks : List A} (m : Map)
(k , v) m k ∈ˡ ks v ∈ˡ (m [ ks ])
[]-∈ {k} {v} {ks} m k,v∈m (here refl)
with ∈k-dec k (proj₁ m)
... | no k∉km = ⊥-elim (k∉km (forget k,v∈m))
... | yes k∈km
with (v' , k,v'∈m) locate {m = m} k∈km
rewrite Map-functional {m = m} k,v'∈m k,v∈m = here refl
[]-∈ {k} {v} {k' ks'} m k,v∈m (there k∈ks')
with ∈k-dec k' (proj₁ m)
... | no _ = []-∈ m k,v∈m k∈ks'
... | yes _ = there ([]-∈ m k,v∈m k∈ks')
m₁≼m₂⇒m₁[k]≼m₂[k] : (m₁ m₂ : Map) {k : A} {v₁ v₂ : B}
m₁ m₂ (k , v₁) m₁ (k , v₂) m₂ v₁ ≼₂ v₂
m₁≼m₂⇒m₁[k]≼m₂[k] m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂
@@ -1129,3 +1142,12 @@ m₁≼m₂⇒k∈km₁⇒k∈km₂ m₁ m₂ m₁≼m₂ k∈km₁ =
(v' , (v≈v' , k,v'∈m₂)) = (proj₁ m₁≼m₂) _ _ k,v∈m₁m₂
in
forget k,v'∈m₂
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ : (m₁ m₂ : Map) {k : A}
m₁ m₂ (k∈km₁ : k ∈k m₁) (k∈km₂ : k ∈k m₂)
proj₁ (locate {m = m₁} k∈km₁) ≈₂ proj₁ (locate {m = m₂} k∈km₂)
m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂ m₁ m₂ {k} (m₁⊆m₂ , m₂⊆m₁) k∈km₁ k∈km₂
with (v₁ , k,v₁∈m₁) locate {m = m₁} k∈km₁
with (v₂ , k,v₂∈m₂) locate {m = m₂} k∈km₂
with (v₂' , (v₁≈v₂' , k,v₂'∈m₂)) m₁⊆m₂ k v₁ k,v₁∈m₁
rewrite Map-functional {m = m₂} k,v₂∈m₂ k,v₂'∈m₂ = v₁≈v₂'

View File

@@ -143,17 +143,8 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
∙,b-Preserves-≈₁ : (b : B) (λ a (a , b)) Preserves _≈₁_ _≈_
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
amin : A
amin = proj₁ (proj₁ (proj₁ fhA))
amax : A
amax = proj₂ (proj₁ (proj₁ fhA))
bmin : B
bmin = proj₁ (proj₁ (proj₁ fhB))
bmax : B
bmax = proj₂ (proj₁ (proj₁ fhB))
open ChainA.Height fhA using () renaming ( to ⊥₁; to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
open ChainB.Height fhB using () renaming ( to ⊥₂; to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
unzip : {a₁ a₂ : A} {b₁ b₂ : B} {n : } Chain (a₁ , b₁) (a₂ , b₂) n Σ ( × ) (λ (n₁ , n₂) ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n n₁ + n₂)))
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
@@ -172,15 +163,16 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
))
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
fixedHeight =
( ( ((amin , bmin) , (amax , bmax))
, concat
(ChainMapping₁.Chain-map (λ a (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
(ChainMapping.Chain-map (λ b (amax , b)) (a,∙-Monotonic _) proj (a,∙-Preserves-≈ _) (proj₂ (proj₁ fhB)))
)
, λ a₁b₁a₂b₂ let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))
)
fixedHeight = record
{ = (⊥₁ , ⊥₂)
; = (⊤₁ , ⊤₂)
; longestChain = concat
(ChainMapping.Chain-map (λ a (a , ⊥₂)) (,b-Monotonic _) proj (,b-Preserves-≈ _) longestChain₁)
(ChainMapping₂.Chain-map (λ b (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
; bounded = λ a₁b₁a₂b₂
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
}
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record

View File

@@ -108,7 +108,12 @@ private
isLongest (done _) = z≤n
fixedHeight : IsLattice.FixedHeight isLattice 0
fixedHeight = (((tt , tt) , longestChain) , isLongest)
fixedHeight = record
{ = tt
; = tt
; longestChain = longestChain
; bounded = isLongest
}
isFiniteHeightLattice : IsFiniteHeightLattice 0 _≈_ _⊔_ _⊓_
isFiniteHeightLattice = record

View File

@@ -1,3 +1,4 @@
{-# OPTIONS --guardedness #-}
module Main where
open import Language
@@ -6,20 +7,37 @@ open import Data.Vec using (Vec; _∷_; [])
open import IO
open import Level using (0)
testCode : Vec Stmt _
testCode : Stmt
testCode =
("zero" (# 0))
("pos" ((` "zero") Expr.+ (# 1)))
("neg" ((` "zero") Expr.- (# 1)))
("unknown" ((` "pos") Expr.+ (` "neg")))
[]
"zero" (# 0) then
"pos" ((` "zero") Expr.+ (# 1)) then
"neg" ((` "zero") Expr.- (# 1)) then
"unknown" ((` "pos") Expr.+ (` "neg"))
testCodeCond₁ : Stmt
testCodeCond₁ =
"var" (# 1) then
if (` "var") then (
"var" ((` "var") Expr.+ (# 1))
) else (
"var" ((` "var") Expr.- (# 1)) then
"var" (# 1)
)
testCodeCond₂ : Stmt
testCodeCond₂ =
"var" (# 1) then
if (` "var") then (
"x" (# 1)
) else (
noop
)
testProgram : Program
testProgram = record
{ length = _
; stmts = testCode
{ rootStmt = testCode
}
open WithProg testProgram using (output)
open WithProg testProgram using (output; analyze-correct)
main = run {0} (putStrLn output)

View File

@@ -1,14 +1,18 @@
module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Nat using (; suc)
open import Data.List using (List; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Data.Sum using (_⊎_)
open import Function.Definitions using (Injective)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Unary using (Decidable)
data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
@@ -68,3 +72,34 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
_∷_ : {x : A} {y : B} {xs : List A} {ys : List B}
P x y Pairwise P xs ys
Pairwise P (x xs) (y ys)
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)
concat-∈ : {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)}
x l l ls x foldr _++_ [] ls
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
concat-∈ {ls = l' ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
filter-++ : {a p} {A : Set a} (l₁ l₂ : List A) {P : A Set p} (P? : Decidable P)
filter P? (l₁ ++ l₂) filter P? l₁ ++ filter P? l₂
filter-++ [] l₂ P? = refl
filter-++ (x xs) l₂ P?
with P? x
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
... | no _ = (filter-++ xs l₂ P?)
_⇒_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
_⇒_ P Q = a P a Q a
__ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
__ P Q a = P a Q a
_∧_ : {a p₁ p₂} {A : Set a} (P : A Set p₁) (Q : A Set p₂)
A Set (p₁ ⊔ℓ p₂)
_∧_ P Q a = P a × Q a